CN107405381A - 预防和修复急性肾损伤的组合物和方法 - Google Patents

预防和修复急性肾损伤的组合物和方法 Download PDF

Info

Publication number
CN107405381A
CN107405381A CN201580072401.0A CN201580072401A CN107405381A CN 107405381 A CN107405381 A CN 107405381A CN 201580072401 A CN201580072401 A CN 201580072401A CN 107405381 A CN107405381 A CN 107405381A
Authority
CN
China
Prior art keywords
leu
ala
glu
cell
arg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580072401.0A
Other languages
English (en)
Other versions
CN107405381B (zh
Inventor
P·杜安
谭涛
麻建杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rutgers State University of New Jersey
Ohio State Innovation Foundation
Original Assignee
Rutgers State University of New Jersey
Ohio State Innovation Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rutgers State University of New Jersey, Ohio State Innovation Foundation filed Critical Rutgers State University of New Jersey
Publication of CN107405381A publication Critical patent/CN107405381A/zh
Application granted granted Critical
Publication of CN107405381B publication Critical patent/CN107405381B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本文公开了用于修复细胞膜的组合物和方法。特别地,提供了用于修复肾损伤的含有MG53的组合物和方法及其在预防和治疗肾损伤中的治疗用途,所述MG53是TRIM蛋白家族中的成员。

Description

预防和修复急性肾损伤的组合物和方法
相关申请的交叉引用
本申请要求2014年12月30日提交的序列号为62/098,154的美国临时专利申请的优先权,并且该美国临时专利申请标题为Compositions and Methods to Prevent andRepair Acute Kidney Injury,其通过引用并入本文。
通过引用并入
按照37 C.F.R.§1.52(e)(5),包含在电子文件名:Ma_2015utility_ST25.txt中的序列信息;大小57KB;创建日期:2015年12月29日;所使用的Patent-In 3.5和Checker4.4.0的全部内容特此通过引用并入本文。
关于联邦赞助研究的声明
美国政府根据以下赠款在本发明中享有一定权利:RO1-HL0691000,该RO1-HL0691000由美国国家卫生研究院(NIH)授予麻建杰博士。
背景技术
1.发现的领域。本发明涉及多肽组合物及其用于调节细胞膜修复的使用方法。
2.背景信息。为了维持细胞的稳态,真核细胞必须通过主动再循环和修复来保持其质膜(plasma membrane)的完整性,以应对各种损伤来源。例如,为了应对外部损伤和内部退化,机体的细胞必须修复每个单独细胞周围的膜,以保持它们的功能和生物体的健康。
对质膜的损伤的修复是需要几个步骤的主动和动态过程,包括可以检测对质膜的急性损伤的分子传感器的参与、细胞内囊泡在损伤位点处的成核以及囊泡融合以形成膜片(membrane patch)。已经证实,细胞外钙的内流参与细胞内囊泡与质膜的融合,然而,参与受损膜信号感应的分子机制和用于修复膜片形成的成核过程尚未完全解决。
细胞修复外膜能力的缺陷与广泛的疾病和病理状况相关,例如,神经退行性疾病(例如,帕金森病(Parkinson’s Disease)、疯牛病(BSE)和阿尔茨海默病(Alzheimer’s))、心脏病发作、心力衰竭、肌营养不良症、褥疮、糖尿病性溃疡、氧化损伤以及由于化疗药物的给药引起的副作用而发生的组织损伤如鼻窦炎。此外,与各种疾病相关的肌肉无力和萎缩以及正常的衰老过程与改变的膜修复相关。为了使这些细胞对急性损伤产生应答而对其膜进行修复,它们利用被称为囊泡的位于细胞内的小膜袋。这些囊泡通常存在于细胞内,但是一旦细胞膜发生损伤,这些囊泡则移动至损伤位点并形成膜片以维持细胞完整性。没有这种基本功能,细胞可能死亡,并且这种细胞损伤的累积效应最终可能导致组织或器官的功能障碍。
对质膜的损伤的修复为生理学的重要方面,且该过程的中断可能导致许多人类疾病(包括心-肾紊乱)中的病理生理学。我们之前鉴定出了一种名为MG53的新型TRIM家族蛋白作为细胞膜修复机制的重要组成部分。MG53的氧化还原依赖性寡聚化允许细胞内囊泡至损伤位点成核以形成膜修复膜片。MG53敲除小鼠(Mg53-/-)在横纹肌中表现出有缺陷的膜修复,这导致渐进性骨骼肌病和增加心肌细胞对I/R诱导的损伤的易感性。虽然MG53主要在横纹肌中表达,但其在非肌肉细胞中的表达及其在其他器官保护中的生理作用在很大程度上是未知的。我们最近的研究确定了在肺组织中表达的MG53的改变形式,且重组人MG53蛋白(rhMG53)的静脉内或吸入递送可以改善啮齿动物模型中的急性肺损伤。
在正常肾功能期间,主动内吞作用和胞吐作用发生在近端小管上皮(PTE)的刷状缘中。PTE细胞中的动态膜转运和重塑过程使得它们非常容易受到膜损伤,当暴露于如缺血-再灌注(I/R)、肾毒素、化疗和脓毒症等应激条件下,需要内在的修复机制来支持正常的肾功能并保护它们免受过度损伤。虽然肾脏在轻度损伤后具有自我修复能力,但是PTE细胞的修复不足可能引发炎症应答,引起广泛的损伤和纤维化重塑,导致发展为慢性肾衰竭。
急性肾损伤(AKI)常见于医院和门诊,并且与高死亡率有关。目前,没有预防或治疗AKI的有效手段。因此,在这种情况下患上AKI的患者需要长期住院,从而导致用于AKI治疗和慢性肾衰竭预防的高成本。在理解与PTE细胞损伤的修复相关的分子机制方面的知识空白阻碍了AKI的新疗法的研发。
因此,存在对用于治疗与急性和慢性细胞以及组织损伤(例如但不限于AKI)有关的病症的细胞膜修复过程的药物调节剂的研发的持续需求。
发明内容
本说明书涉及令人惊奇的和意想不到的发现,即MG53构成了肾脏保护(reno-protection)的重要组成部分。本说明书表明,MG53令人惊奇地且意外地修复了对肾近端小管上皮(PTE)细胞的损伤。因此,本说明书提供了用于修复PTE损伤后质膜修复的组合物和方法,其代表急性肾损伤(AKI)的潜在后果,并且代表治疗和预防肾损伤的新型治疗方法。例如,本说明书提供了MG53核酸、MG53多肽和含有其有效量的MG53核酸、MG53多肽的治疗组合物,其单独使用或与其它可以调节或增强PTE中细胞膜重封的过程的组分合用。
在某些方面,本说明书涉及用作治疗和预防与细胞和/或组织损伤相关的疾病和病症的治疗剂的组合物。本发明的治疗组合物包括有效量的MG53多肽和/或编码MG53多肽的核酸,例如,SEQ ID NO:1的蛋白和MG53多肽突变体、同系物、片段、截短体(truncation)、假肽(pseudopeptide)、肽类似物和模拟肽(peptidomimetics),以及可以调节MG5的活性的化合物。
在一种示例性的实施方式中,本说明书提供了用于治疗肾损伤、疾病或病症的药物组合物,其含有有效量的具有足以治疗或改善肾损伤、疾病或病症的症状的MG53样活性的重组MG53多肽或其片段,以及药学上可接受的载体。在某些实施方式中,肾损伤、疾病或病症是急性肾损伤(AKI)。还在某些另外的实施方式中,药物组合物采取适于静脉注射的形式。在某些实施方式中,该组合物可以是单次剂量形式或者包括约全天、周或月的剂量。
在某些另外的方面,本说明书涉及治疗肾细胞或组织损害/损伤的方法。在某些示例性的实施方式中,该方法包括,例如,本文所述的用于预防和/或治疗肾损伤的治疗组合物的给药。在某些实施方式中,该方法包括将含有有效量的Mitsugumin 53(MG53)的组合物给药至对其有需求的受试者,其中,所述组合物在治疗、预防或改善肾损伤中是有效的。在某些实施方式中,肾损伤是急性肾损伤。在某些实施方式中,急性肾损伤包括手术相关的AKI、,造影剂诱导的AKI,药物或化疗诱导的AKI,毒素诱导的AKI,透析、缺血/再灌注诱导的AKI,脓毒症诱导的AKI,肾毒素暴露或它们的组合中的至少一种。
在某些实施方式中,所述方法包括将化疗剂(相同或不同制剂)和有效量的MG53共同给药至受试者的步骤。在某些实施方式中,所述化疗剂是顺铂。
在本文所述的任何方面或实施方式中,受试者可以是人或非人的灵长类动物。
上述权利要求中任意一项所述的方法,其中,具有MG53活性的MG53多肽或其片段的量足以增强近端小管上皮(PTE)细胞中的膜修复。
在本文所述的任何方面或实施方式中,MG53多肽可以是具有膜修复活性的重组MG53多肽或其片段。
在本文所述的任何方面或实施方式中,具有MG53活性的MG53多肽或其片段是重组人MG53(rhMG53)多肽。
前述通用的实用方面仅作为实例给出,并不意图限制本公开和所附权利要求的范围。本领域普通技术人员将根据本发明的权利要求、说明书和实施例理解本发明的其它目的和优点。例如,本发明的各个方面和实施方式可以以多种组合来使用,所有这些都由本说明书明确地考虑。这些额外的目的和优点明确地包括在本发明的范围内。
附图说明
并入并形成说明书的一部分的附图示出了本发明的几种实施方式,并且与说明书一起用于解释本发明的原理。附图仅用于示出本发明的实施方式的目的,而不应被解释为限制本发明。
图1:MG53是TRIM蛋白家族的肌肉特异性成员。来自各种生物体的MG53的蛋白序列的比对(参见SEQ ID NOs:1、3、5、9-16)表明该蛋白是TRIM家族的成员。功能结构域以灰色框表示,而箭头表示该结构域接续到该序列的另一行。框中亮氨酸残基表示高度保守的亮氨酸拉链基序的位置。
图2:示出了包含在MG53中存在的一种或多种保守的三联基序的某些同源蛋白的示例性结构域比较。MG53具有易位至多种形式损伤后的细胞膜的损伤位点并调节受损膜修复的独特能力–这是列出的其他TRIM家族蛋白未表现出的功能。虽然这些TRIM蛋白均包含相似的结构域和/或在横纹肌中表达,但是没有完全重现MG53的结构域结构。
图3:MG53含有独特的TRIM基序和SPRY基序,且主要在肌肉细胞中表达。A、MG53的基序结构图。从cDNA克隆和同源性检索的结果可以看出,如图所示,在MG53中检测到几个基序序列。兔和小鼠的MG53 cDNA的序列分别保存在登录号为AB231473和AB231474的数据库中。B、蛋白印迹(Western blot)分析显示了MG53在骨骼肌和心肌中的特异性表达。使用抗小鼠MG53多克隆抗体来对来自小鼠组织(肺、肾、骨骼肌、肝、心和脑)的裂解物(每泳道20μg总蛋白)进行分析。C、来自小鼠骨骼肌细胞的纵向横切面的免疫荧光染色。比例尺为125μm。
图4.由于细胞膜损伤增加,在mg53-/-骨骼肌中可观察到递增的病理学现象。A、苏木素和伊红(H/E)染色表明,与年轻(3m)野生型(wt)或mg53-/-小鼠相比,在老龄mg53-/-肌肉(10m)中,中央核(箭头)的数量增加。B、老龄(8-10个月)mg53-/-小鼠(蓝色,n=541)的肌纤维直径与老龄(8-10个月)野生型对照(黑色,n=562)相比有所减小,而年轻的(3-5个月)wt(n=765)与mg53-/-(n=673)肌肉相比则无差异。当与wt相比时,在mg53-/-骨骼肌中显示中央核的肌纤维的百分比随着年龄而增加。数据为平均值±s.e.m.,*p<0.05,通过方差分析(ANOVA)。C、按照所述步骤,使用体外电压刺激方案评估从进行30分钟小坡运动的小鼠获得的完整比目鱼肌的收缩性能的跟踪记录。黑色迹线代表wt肌肉,蓝色迹线对应于mg53-/-肌肉。D、在疲劳刺激(之前,空白柱)之前,与wt(黑色)(n=4)相比,在老龄mg53-/-肌肉(蓝色)中以g/mg总蛋白标准化的最大强直性张力显著降低。在疲劳刺激后6分钟(之后,实心柱),wt肌肉恢复明显多于mg53-/-肌肉。通过方差分析,*p<0.05。E、当与wt肌肉中的最小染色相比时,广泛的伊文思(Evans)蓝染色表明,进行小坡运动的mg53-/-骨骼肌损伤严重。F、伊文思蓝染料的量图利用甲酰胺从运动后的老龄mg53-/-(蓝色)和wt(黑色)骨骼肌提取得出。通过学生t检验(Student’s t-test),数据表示每克肌肉的伊文思蓝(ng)的平均值±s.e.m.n=8-12,*p<0.005。
图5.去除MG53导致肌肉膜修复功能缺陷。(a)分离的wt FDB纤维中MG53的免疫染色用以表明其在损伤位点的共定位。这些是来自>20种在分离过程中表现出损伤的不同的肌肉纤维的代表性图像。(b)激光诱导的肌纤维膜损伤后,从wt小鼠分离的FDB肌纤维中的膜不可渗透的FM-143荧光染料的排除。(c)激光诱导的损伤后,FM-143荧光染料内流入从mg53-/-小鼠分离的FDB肌纤维。表明激光损伤后的时间。(d)激光损伤肌纤维膜诱导的FM-143在FDB肌纤维内呈时间依赖性累积。从wt小鼠获得的纤维n=30,而从mg53-/-小鼠获得的纤维n=18,数据为平均值±s.e.m.。
图6.MG53敲除小鼠易受心脏损伤。来自未运动的野生型小鼠的心肌的石蜡包埋切片表现出正常形态(左)和无伊文思蓝染色(右)。相比之下,mg53-/-小鼠表现出伊文思蓝浸润到肌细胞,表明mg53-/-心脏的膜完整性存在明显缺陷。
图7.MG53的缺失增加对心脏缺血再灌注损伤的易感性。从野生型(WT)和mg53-/-小鼠分离心脏,并在离体心脏灌注动物模型(Langendorff)装置上灌注。通过停止灌洗液流动诱导全身缺血30分钟。灌注液流动恢复后(时间点0)心脏产生的损伤,可通过对(a)肌酸激酶(CK)或(b)乳酸脱氢酶(LDH)的酶测定来测量。来自mg53-/-小鼠的心脏(虚线)表现出比WT(实线)更多的损伤。对于每个列出的时间点,数据均以平均值±S.D.表示。
图8.含有MG53的囊泡在物理损伤后在质膜内形成膜片。a)使用微量移液管造成的C2C12成肌细胞膜损伤导致GFP-MG53在损伤位点(箭头)的快速累积。图像代表n=40单独细胞。b)对于严重损伤如细胞膜的分离而产生的成熟C2C12肌管的恢复,与GFP-MG53向愈合位点的募集有关(n=28)。c)野生型和mg53-/-原代骨骼肌管的存活率的比较。该数据表明,MG53是横纹肌细胞中的膜重封所必需的。
图9.TRIM和SPRY结构域在将MG53靶向于肌细胞的细胞表面膜中的作用。A、MG53缺失融合蛋白构建体的示意图,其中GFP融合于N-末端或C-末端。参考SEQ ID NO:1,“TRIM”代表a.a.1-287,且“SPRY”代表a.a.288-477并包括PRY基序和SPRY基序两者。B、代表性的共聚焦图像示出了每一种缺失构建体在C2C12细胞中的细胞内定位。比例尺为5μm。C、MG53通过TRIM基序与小窝蛋白-3(caveolin-3)相互作用。将来自共转染GFP-MG53或GFP-TRIM和pcDNA-Cav-3的CHO细胞的细胞裂解物使用抗小窝蛋白-3(小鼠单克隆抗体)进行IP。(泳道1,混合的细胞裂解物作为阳性对照;泳道2,正常小鼠IgG作为阴性对照;泳道3,来自过表达GFP-MG53的细胞的裂解物;泳道4,来自过表达GFP-TRIM的细胞的裂解物)。
图10.TRIM和SPRY结构域在将MG53靶向于非肌肉CHO细胞中的细胞表面膜中的作用。代表性的共聚焦图像显示,GFP-MG53表现出细胞内囊泡、膜靶向性和出芽,然而,MG53-GFP在天然情况下主要是可溶的(上图);SPRY-GFP和GFP-SPRY呈胞质性分布(中图);TRIM-GFP和GFP-TRIM主要是细胞内囊泡,且不靶向于质膜(下图)。“TRIM”代表a.a.1-287,且“SPRY”代表a.a.288-477并包括PRY和SPRY基序两者。比例尺为5μm。
图11.MG53可以与驱动蛋白家族成员11(Kif11)相互作用。(a)从稳定表达RFP(mRFP)、RFP-MG53(MG53)或C29L突变体RFP-MG53(C29L)的FLAG标签型的HEK293细胞中分离细胞裂解物。使用抗FLAG抗体将提取物进行免疫共沉淀,随后在SDS-PAGE凝胶上进行电泳。考马斯(Coommassie)染色显示了通过该方法将发生co-IP(免疫共沉淀)的特异性条带。一条突出的条带对应于Kif11(箭头)。(b)使用质谱来鉴定来自这些凝胶的特殊条带。这种代表性的质谱示踪显示,MG53可以从细胞裂解物中沉降Kif11。
图12.MG53可以与COP9复合物同系物亚基6(CSN6)相互作用。用HA标记的人MG53和myc标记的CSN6瞬时转染HEK293细胞,随后使用抗重组标签的抗体进行免疫共沉淀(IP)。使用蛋白免疫印迹(IB)证实沉降后该蛋白的存在。MG53可以沉降CSN6,并且该CSN6也可以沉降MG53。这为这两种蛋白可以在细胞内相互作用提供了证据。泳道1=HA-hMG53+hCSN6+DMSO,泳道2=HA-hMG53+hCSN6+MG132,泳道3=HA-mMG53+hCSN6+DMSO,泳道4=HA-mMG53+hCSN6+MG132。
图13.MG53可以与髓鞘碱性蛋白(myelin basic protein)或轴周蛋白(periaxin)相互作用。(a)用于从野生型(WT)或mg53-/-(KO)骨骼肌生化分离囊泡片段的方法的示意图。(b)使用a所示方法分离的片段通过15%(左)的梯度(右)SDS-PAGE凝胶进行电泳。亮蓝(CBB)染色显示了差异地存在于WT或KO肌肉中的特异性条带。经质谱鉴定,两条突出的条带为髓鞘碱性蛋白或轴周蛋白(箭头)。
图14.MG53通过与磷脂酰丝氨酸结合与细胞膜相互作用,以介导囊泡运输。当GFP-MG53在这些mg53(-/-)肌管中表达时,该蛋白将适当地定位于质膜和细胞内囊泡(上图)。PIP2-Strip(条带)脂质点印迹分析表明,重组MG53(1μg/ml)特异性地结合磷脂酰丝氨酸(PS)而不是其他膜脂质,包括鞘氨醇-1-P(sphingosine-1-P)、磷脂酸(phosphatidicacid)、磷脂酰胆碱(phosphotidylcholine)、磷脂酰乙醇胺(phosphatidylethanolamine)和各种磷酸肌醇(phosphainositol)代谢物(B)。使用膜联蛋白-V-GFP(Annexin-V-GFP),我们观察到Annexin-V-GFP在C2C12成肌细胞损伤位点快速标记。转染入C2C12成肌细胞中的Annexin-V-GFP(一种具有明确的结合PS的能力的分子)显示使用微电极(左)造成细胞创伤后的易位最小,而Annexin-V-GFP与RFP-MG53的共表达(右)引起Annexin-V-GFP的加速累积(C)。通过RFP-MG53的共表达加速了Annexin-V-GFP的累积(0.93±0.21△F/F0对照;2.9±0.63△F/F0+MG53)。细胞外Ca2+通过受损质膜内流使得Annexin-V与PS结合,导致其从细胞损伤之前的可溶性模式转变至质膜和细胞内囊泡的独特定位(D)。细胞外溶液中Ca2+的去除阻断了在损伤位点PS被Annexin-V-GFP标记,维持RFP-MG53向损伤位点的易位(E)。
图15.质膜的急性破坏导致细胞内部暴露于外部氧化环境。(A和B)在通过加入二硫苏糖醇(DTT)而产生的还原环境中,MG53主要作为单体存在。(C)在细胞外溶液中加入5mMDTT对C2C12细胞中MG53介导的膜修复过程产生了巨大的影响。硫柳汞氧化半胱氨酸残基的巯基。(E)多个保守的半胱氨酸残基突变成丙氨酸-保持了膜靶向性,但完全破坏了其促进膜修复过程的能力;即,在损伤位点没有观察到C242A的累积。
图16.(A)在还原性细胞外环境(+DTT)下,GFP-MG53向损伤位点的易位被很大程度地破坏。将氧化剂(硫柳汞)加入至细胞外溶液中导致GFP-MG53向细胞膜上的损伤位点的易位增加。这些实验在C2C12细胞中进行。(B)具有C242A突变(GFP-C242A)的MG53不能易位至质膜上的损伤位点。由于不同的保守性半胱氨酸突变体C313A在氧化条件下保持寡聚化模式,并表现出与野生型GFP-MG53相似的易位和膜修复功能。因此,Cys242的氧化可能诱导MG53的寡聚化,为损伤位点的修复复合体(repairsome)的形成提供成核位点。这些实验用C2C12细胞进行。(C)细胞外氧化还原状态的调节可以影响分离的肌纤维膜的重封,因为向细胞外溶液中加入DTT可阻碍膜重封,如通过细胞外施用的FM-143染料内流的增加所测量的那样。
图17.MG53介导的修复复合体形成和急性肌纤维膜损伤的恢复。在用GFP-MG53和GFP-C242A转染的mg53-/-肌管中,使用FM4-64(FM1-43的红移变体)的内流作为的膜修复能力的指标。在UV脱除绿色荧光后,在损伤位点发生GFP-MG53的快速易位,而GFP-C242A由于其有缺陷的寡聚特性而保持静止。与GFP-C242A相比,在用GFP-MG53转染的细胞中观察到FM4-64的内流显著减少,表明该突变体在损伤后不能恢复膜完整性(B)。MG53的寡聚化似乎是修复复合体形成的一个步骤,因为在wt骨骼肌中表达的GFP-C242A突变体显示出优于天然MG53的显性负性作用(C)。与GFP-MG53相比,GFP-C242A在成年wt肌纤维中的过表达抑制了肌纤维膜修复功能(C)。
图18.由MG53催化的体外泛素化。将重组麦芽糖结合蛋白(MBP)和MG53的融合蛋白(MBP-MG53)与ATP、泛素、E1和E2酶共孵育,并用抗MBP抗体进行免疫印迹。当MBP-MG53与Ubc4或UbcH5(作为E2)共孵育时,观察到源自泛素化的高分子量梯形条带(ladder)(a)。C29L突变体中MG53的固有E3连接酶活性显著降低(b)。(c)蛋白印迹证实,全长GFP-MG53和GFP-C29L蛋白存在于分化的C2C12肌管中,因此C29L突变体是稳定的,且这些融合蛋白的降解不太可能有助于GFP-C29L的差异亚细胞分布。
GFP-C29L C2C12肌管中主要呈胞浆模式(d,左)。蛋白印迹证实,全长GFP-MG53和GFP-C29L蛋白存在于分化的C2C12肌管中(c),因此这些融合蛋白的降解不太可能有助于在(d)中观察到的GFP-C29L和GFP-MG53的差异亚细胞分布。利用这些融合蛋白在源自mg53-/-新生鼠的原代培养的骨骼肌管中的瞬时表达可观察到类似现象,其中,对于GFP-C29L突变体,GFP-MG53至肌纤维膜和细胞内囊泡的靶向性减弱(d,右)。急性膜损伤后,在C2C12成肌细胞中观察到GFP-MG53的快速累积,而GFP-C29L似乎在膜损伤的修复中是固定的且无效的(e,左)。在C2C12肌管中也观察到与GFP-C29L类似的缺陷(e,中)。此外,虽然损伤后在原代培养的mg53-/-肌管中GFP-MG53可能易位至质膜,但在这些细胞中表达的GFP-C29L通常对急性细胞损伤保持无反应(e,右)。
图19.在损伤表达GFP-MG53的C2C12成肌细胞之前从细胞外溶液中除去锌(Zn)的效果。用N,N,N,N-四(2-吡啶基-甲基)乙二胺(TPEN)螯合Zn可以防止GFP-MG53易位至微电极穿透的位置(A),表明Zn对于MG53的功能是必需的。添加Zn离子载体Zn-1-羟基吡啶-2-硫酮(Zn-HPT)可以诱导C2C12细胞中GFP-MG53的易位(B)。野生型FDB肌纤维:+Zn-HPT减少了由UV激光诱导的损伤后可以内流入肌纤维的FM-1-43染料的量(C)。
图20.在mg53-/-骨骼肌中,锌在膜修复上的保护作用丧失。(a)从野生型(WT)小鼠(3-6个月)分离单个趾短屈肌(FDB)肌纤维。将引起肌肉局部损伤的强UV激光施用于FDB纤维(箭头)。将FM1-43荧光染料(2.5μM)的内流用作测量膜修复能力的指标。在UV照射后200s拍摄图像(对照)。2μM锌离子载体(1-羟基吡啶-2-硫酮)(+Zn-HPT)的应用导致膜修复能力增加,如通过UV-损伤后FM1-43染料的内流量减少所反映的。加入40μM的TPEN(四-2-吡啶基亚甲基二胺),一种用于锌离子的特异性缓冲液,导致膜修复能力受损,如通过UV-损伤(+TPEN)后FM1-43染料内流的显著增加所反映的。(b)从mg53-/-小鼠(3-6个月)分离的FDB肌纤维表现出有缺陷的膜修复功能,如通过相同的UV-损伤处理后FM1-43染料的内流量的增加所示(对照)。(c)使用Ca-EDTA(100μM),一种缓冲锌而不改变细胞外Ca浓度的试剂,也引起WT肌肉(左)中膜修复能力受损。用Ca-EDTA进行处理未引起mg53-/-肌肉中膜修复能力产生任何显著的变化。(d)MG53中锌结合基序的示意图。MG53的氨基末端含有两个公认的锌结合基序:一个位于环基序(RING基序)(a.a.1-56,人cDNA),且另一个位于B-盒基序(a.a.86-117,人cDNA)。显示了参与锌结合的特异性氨基酸。
图21.细胞外锌内流促进MG53介导的囊泡易位至急性膜损伤位点。a)GFP-MG53融合蛋白在C2C12成肌细胞中表达。GFP-MG53在静息条件下显示定位于细胞内囊泡和质膜(左)。通过微电极穿透产生的细胞的急性损伤(箭头,右图)。b)将C2C12细胞与40μM的Ca-EDTA共孵育。c)向细胞外溶液中加入20μM的TPEN。d)将用GFP-MG53瞬时转染的C2C12细胞与20μM的Zn-HPT共孵育。在对照条件(0min)下,延长与Zn-HPT的孵育(15min)。e)Ca-EDTA和TPEN对C2C12成肌细胞中GFP-MG53介导的膜修复影响的总结数据。
图22.锌结合于MG53的RING和B-盒基序。a)在C2C12成肌细胞中瞬时表达的MG53的RING和B-盒基序中的位点特异性突变。在没有DTT的情况下,转染后24小时,收集细胞,且用抗MG53的特异性抗体通过蛋白印迹法测定各种GFP-MG53突变体的表达(左图)。寡聚化模式被标记为“二聚体”。通过加入10mM的DTT,所有突变构建体均表现为~75kD(预测的GFP-MG53的分子大小)的单体形式。
图23.MG53可以通过RING基序结合Zn。(a)MG53含有规则的TRIM结构域,该TRIM结构域含有Zn结合基序(Ring(环))和B盒(Bbox)基序。(b)细菌培养物通过超声处理裂解、离心并在4度下与含有10μM锌的柱缓冲液中的直链淀粉树脂结合过夜。该树脂然后通过无锌柱缓冲液洗涤,随后通过含有0.3mM麦芽糖的50ml的无锌柱缓冲液。如图所示,通过SDS-PAGE凝胶确认蛋白的水平和稳定性。泳道1(标志物),泳道2(mMG53),泳道3(mC29L-MG53突变体),泳道4(mC29L/C105S双突变体DM克隆1),泳道5(mC29L/C105S双突变体DM克隆2),泳道6(10mg/ml的BSA),泳道7(5mg/ml的BSA),泳道8(2.5mg/ml的BSA),泳道9(1mg/ml的BSA)。(c)首先检测珠上的蛋白是否存在溶液中的游离锌(根据制备,0.01至0.1μM或ND)。珠(等分试样)用锌特异性探针TSQ染色,且在荧光显微镜下并采用相对荧光强度来观察荧光。然后将蛋白在56℃下变性5分钟、涡旋、离心,并从溶液中再次进行测量。该检测使用TSQ(Mol探针)和锌的原子标准溶液(Sigma)进行校准。图表明了与重组野生型(WT)MG53、C29L突变体(C29L)和双突变体(DM)结合的Zn的量。两个突变体均位于TRIM结构域的Ring基序中。数据表示为平均值±S.D.。与wt相比,*P<0.05,**P<0.001;n=4~5。
图24.将从野生型小鼠分离的FDB肌纤维负载2μM的TSQ,TSQ是一种细胞内液中锌的特异性荧光指示剂(下图)。使用强UV-激光引起FDB肌纤维的局部损伤,如通过FM4-64荧光染料(fluorescent day)在局部损伤位点的累积所反映的(上图)。请注意,在急性损伤位点观察到TSQ荧光的显著升高(因此,锌较多)。
图25.从杂交瘤分离的抗hMG53的单克隆抗体(mAb 4A3F6F2)在蛋白印迹上检测人(和小鼠)MG53蛋白方面是非常有效的。
图26.MG53的重组表达。(a)使用Ni-NTA柱从Sf9昆虫细胞分离的重组人MG53蛋白(箭头)片段的考马斯蓝染色凝胶。输入=细胞提取物,FT=流出液,M=标志物,E=洗脱次数。(b)从Sf9昆虫细胞分离的重组人TAT-MG53(箭头)的考马斯蓝染色凝胶。(c)从大肠杆菌发酵分离的重组小鼠TAT-MG53(箭头)的考马斯蓝染色凝胶。
图27.示出了hMG53的氨基末端的信号肽使得重组MG53作为分泌蛋白输出。蛋白印迹显示,可从经工程改造的hMG53cDNA瞬时转染CHO细胞的条件培养基中纯化出大量的MG53蛋白。
图28.在用Flag-MG53融合蛋白构建体和一系列HA-MG53融合蛋白突变体转染的HEK293细胞中进行的免疫共沉淀(Co-IP)实验。(a)用抗Flag抗体在全细胞提取物上进行Co-IP,随后用抗HA抗体进行蛋白印迹。(b)Co-IP实验显示,MG53二聚体的形成需要卷曲螺旋结构域的存在。
图29.表达RFP-MG53的稳定的HEK293(人胚胎肾)细胞系。(a)稳定表达RFP(红色荧光蛋白)对照蛋白(表现为胞质表达模式)的细胞系。(b)仅用微电极损伤表达RFP的HEK293细胞未引起RFP易位至损伤位点(箭头)。细胞外缓冲液(*)的过度内流会发生FRP荧光的部分脱除。(c)稳定表达RFP-MG53的HEK293细胞显示定位于细胞内囊泡。(d)表达RFP-MG53的HEK293细胞的损伤导致MG53在不到90秒内大量易位至损伤位点(箭头)。
图30.在C2C12细胞中表达的GFP-MG53,随后用三七的醇提取物进行灌流。灌流后2分钟内,三七的应用可迅速诱导MG53向质膜易位。
图31.重组MG53作为组织修复试剂的治疗用途。RFP-MG53(含有红色荧光蛋白的MG53融合蛋白)在HEK293细胞中表达、分离并施用于正在培养的C2C12成肌细胞周围的外部培养基。用微电极造成细胞机械性创伤,同时通过共聚焦显微镜观察融合蛋白的定位。可以观察到RFP-MG53易位至该膜损伤的位点(圆圈)。
图32.MG53的基因过表达防止膜损伤。用RFP-MG53或RFP转染人胚胎肾(HEK293)细胞,然后用不同强度的电场进行电穿孔。通过评估乳酸脱氢酶(LDH)从由电穿孔而产生的质膜中的孔渗漏出至细胞外培养基中的量来测量膜损伤的量。膜发生损伤越严重,LDH测定的读数将越高。
图33.荧光染料内流可用于测量电穿孔后的膜损伤。将人胚胎腭间充质(HEPM)细胞(1×106)置于PTI荧光系统的旋转比色皿中。将FM1-43染料添加至细胞外,并用479nm的激发光和598nm的发射光显示最小荧光。当细胞以50V/cm或100V/cm的电场强度进行电穿孔时,检测出荧光呈剂量依赖性增加。电穿孔在不存在染料的细胞中未产生自发荧光(对照)。
图34.荧光染料内流可用于测量机械损伤后的膜损伤。将人胚胎腭间充质(HEPM)细胞(1×106)置于PTI荧光系统的旋转比色皿中。将FM1-43染料添加至细胞外,并通过479nm的激发光和598nm的发射光显示最小荧光。将细胞从比色皿中取出(倾倒,Pour),用28号针头对其进行剪切(Shear),导致FM1-43荧光的增加。机械剪切应力在作为对照(无染料)不存在染料的细胞中未产生自发荧光。
图35.重组MG53保护肾细胞免受细胞膜损伤。(a)用10μg/mL重组人MG53或溶剂对照处理HEK293细胞(8×104),然后以各种场强进行电穿孔。细胞外重组MG53可以防止电穿孔损伤。(b)将MG53或溶剂对照加入至重组LDH中以产生LDH活性的标准曲线。
图36.重组MG53保护龈衬里细胞(gum lining cells)免受细胞膜损伤。(a)用10μg/mL重组人MG53或溶剂对照处理HEPM细胞(5×104),然后以各种场强进行电穿孔。细胞外重组MG53可以防止电穿孔损伤。(b)将MG53或溶剂对照加入至重组LDH中以产生LDH活性的标准曲线。
图37.重组MG53保护肾细胞免受机械细胞膜损伤。用玻璃微珠处理HEK293细胞(8×104)以诱导机械损伤。当将玻璃珠添加到培养基中时,将不同剂量的重组人MG53或溶剂对照施用于样品。将细胞在轨道振荡器上旋转,然后分析上清液的LDH水平。
图38.MG53的作用对蛋白的功能是特异性的。MG53被证明在重封由于暴露于玻璃珠而产生的Hela宫颈上皮细胞的损伤时是有效的。当重组蛋白被煮沸时,该蛋白不能再促进膜重封。
图39.氮芥诱导的人角质细胞的膜损伤可以通过MG53进行预防。各种剂量的氮芥(皮肤起泡剂),可以从原代人角质细胞产生LDH释放。插图示出了暴露于皮肤起泡剂的效果。
图40.外部施加的重组MG53需要磷脂酰丝氨酸(PS)结合以重封受损膜。HEK293细胞用重组人MG53或溶剂进行处理,并在玻璃微珠(黑色柱)的存在下通过振荡损伤细胞。通过在488nm下记录的比色测定记录的细胞的LDH释放来测量膜损伤。用磷脂酰丝氨酸(PS)同时处理细胞可以防止质膜的重封。*p<0.05。
图41.与另一种磷脂酰丝氨酸(PS)结合蛋白的竞争。HEK293细胞用重组人MG53或溶剂进行处理,并在玻璃微珠(黑色柱)的存在下通过振荡损伤细胞。通过在488nm下记录的比色测定记录的细胞的LDH释放来测量膜损伤。用过量(5:1)的磷脂酰丝氨酸(PS)结合蛋白和膜联蛋白V(Annexin V)同时处理细胞。*p<0.05。
图42.MG53在人胚胎腭间充质(HEPM)牙细胞中的表达。GFP-MG53在这些细胞类型中适当地定位,它也可以通过微电极的物理穿透或用皂角苷去垢剂处理来有效地易位至膜损伤后的质膜上。
图43.MG53在人胚胎腭间充质(HEPM)牙细胞中的表达。GFP-MG53在这些细胞类型中适当地定位,它也可以在通过微电极的物理穿透或用皂角苷去垢剂处理造成的膜损伤后有效地易位至质膜上。
图44.脂多糖可诱导HEPM细胞中的膜损伤,其可以通过暴露于MG53而避免。当用LPS(1mg/mL)处理HEPM细胞24小时后,可以观察到LDH释放,表明膜损伤已经发生。MG53的施加可以阻止正常水平的LDH从HEPM细胞中释放,而与LPS和MG53共孵育则表现为LDH从细胞中的正常释放。
图45.MG53易位至胃细胞中的膜修复位点。用GFP-MG53转染人胃腺癌(AGS)细胞,然后通过微电极针穿刺(上图)或用0.005%皂角苷处理以使膜透化(下图)从而造成机械膜损伤。通过活细胞共聚焦显微镜监测GFP-MG53向损伤位点(箭头)的易位。
图46.MG53易位至神经细胞中的膜修复位点。用GFP-MG53转染小鼠原代星形胶质细胞,然后通过微电极针穿刺(上图)或用0.005%皂角苷处理以使膜透化(下图)从而造成机械膜损伤。通过活细胞共聚焦显微镜监测GFP-MG53向损伤位点(箭头)的易位。
图47.MG53易位至气道上皮细胞中的膜修复位点。用GFP-MG53转染人C38气道上皮细胞,然后通过微电极针穿刺(上图)或用0.005%皂角苷处理以使膜透化(下图)从而造成机械膜损伤。通过活细胞共聚焦显微镜监测GFP-MG53向损伤位点(箭头)的易位。
图48.外部MG53重封气道上皮细胞中的膜损伤。人IB3气道上皮细胞用外部重组人MG53或溶剂对照进行处理,然后暴露于由玻璃珠引起的机械性膜损伤。通过在488nm下记录的比色测定记录的细胞的LDH释放来测量膜损伤。*p<0.05。
图49.MG53易位至免疫细胞中的膜修复位点。用GFP-MG53转染小鼠白血病单核细胞巨噬细胞(RAW 264.7)细胞,然后通过微电极针穿刺(上图)或用0.005%皂角苷处理以使膜透化(下图)从而造成机械膜损伤。通过活细胞共聚焦显微镜监测GFP-MG53向损伤位点的易位(箭头)。
图50.a)在C2C12细胞中表达的GFP-C29L突变体(左图)在含有标称游离锌的细胞外溶液中显示出向急性损伤位点的缺陷性移动(中图)。加入2μM的Zn-HPT,其作为锌跨质膜内流的离子载体,可以部分地恢复(rescue)GFP-C29L向急性损伤位点的移动(右图)。右图所示的图像为在含有2μM Zn-HPT细胞外液中,用微电极穿透后50秒,从单个C2C12细胞获得的。b)在含有标称游离锌的细胞外溶液中,C2C12细胞中表达的GFP-C105S突变体(左图)在微电极穿透后不能移动到急性损伤位点(中图)。c)在含有标称游离锌的条件下(中图)或在加入2μM的Zn-HPT后(右图),C2C12细胞中表达的GFP-C29L/C105S双突变体(左图)完全丧失了急性膜损伤的修复能力。
图51.C2C12细胞中急性膜损伤的修复过程中,C29L、C105S和C29L/C105S对锌内流的依赖性的总结数据。MG53其他突变体的数据总结于表1中。
图52.说明了本发明人目前关于由MG53介导的膜修复机制的假设的图解。虽然不受限于任何特定的理论,但是实验证据表明,MG53可能由于其与含磷脂酰丝氨酸的囊泡的结合而定位于质膜的内表面。在正常条件下,MG53可能是单体,并且由于与小窝蛋白-3结合而在膜表面附近被螯合(sequester)。细胞膜MG53损伤后,在通常为其还原形式的细胞膜MG53暴露于局部氧化环境,其触发二硫键(disulfide cross-bridges)形成以及分子间MG53寡聚化。MG53的寡聚化使含磷脂酰丝氨酸的囊泡聚集于损伤位点。
图53.MG53缺陷损伤肾功能。如尿液的胶体蓝染色的SDS-PAGE(a)和尿蛋白/肌酐(Up/Uc)水平(b)所示,Mg53-/-小鼠由于它们是老龄小鼠(20周vs 10周龄)而出现蛋白尿。**P<0.001。使用牛血清白蛋白(BSA)作为负载对照(10μg和3μg)。(c)与同窝出生的wt对照小鼠相比,Mg53-/-动物表现出肾功能受损,血肌酐(SCr)升高(**P<0.001)。(d)与wt肾相比,Mg53-/-肾的内皮层显示出病理学症状,具有明显的空泡化(红色箭头)和无组织的潴泡(黄色箭头)。(e)H&E染色显示Mg53-/-肾中的间质隔室扩大。(f)透射电子显微照片显示了源自Mg53-/-肾的PTE细胞的顶面处的无组织的微绒毛和刷状缘。(g)mg53-/-肾中的管间间隔比wt肾中的大~2.5倍(总12张图像的平均,P<0.001)。
图54.在近端肾小管上皮细胞中MG53介导的膜修复。(a)源自wt(+/+)或Mg53敲除(-/-)小鼠的总肾或分离的皮层和髓质的裂解物(50μg)的蛋白印迹。将十分之一(5μg)的wt骨骼肌裂解物用于比较目的。纯化的rhMG53用作阳性对照。(b)在PTE细胞中检测到MG53蛋白,但在从大鼠分离的肾小球中没有检测到。分别通过E-钙粘蛋白或肾升压素(nephrin)的表达证实PTE细胞或肾小球的鉴定。(c)来自人肾和膀胱的总组织裂解物(50μg)使用抗MG53抗体进行免疫印迹。(d)在Mg53-/-PTE细胞中表达的GFP-MG53在微电极穿透后易位至急性机械损伤区域。(e)wt PTE细胞在急性机械损伤后存活,而Mg53-/-PTE细胞经常在微电极穿透10秒内死亡。(f)GFP-MG53过表达在微电极诱导的膜损伤后恢复了Mg53-/-PTE细胞的存活。相对于Mg53-/-组的P值均<0.001。
图55.MG53缺陷加重I/R诱导的AKI。H&E和PAS用于评估假处理(上图)或I/R诱导的AKI(底图)中wt(a)和Mg53-/-小鼠(b)的病理变化。Mg53-/-肾较易受I/R诱导的损伤。在I/R诱导的AKI(d)后5天,wt和Mg53-/-小鼠之间的时间依赖性尿蛋白排泄(c)和SCr水平表现出显著差异。*P<0.01,**P<0.001。
图56.在缺氧/复氧(A/R)损伤后,PTE细胞的质膜上的rhMG53和Annexin V的共定位。(a)用罗丹明标记的rhMG53(0.1mg/ml)或罗丹明标记的BSA(0.1mg/ml,作为对照)处理PTE细胞。用FITC-Annexin V进行免疫染色,用于标记在质膜上暴露的PS。对照PTE细胞对于rhMG53或Annexin V染色是阴性的。暴露于A/R的PTE细胞对于rhMG53或Annexin V染色是阳性的(底图)。除了在质膜上定位(与Annexin V的重叠模式)外,在暴露于A/R后,相当一部分的rhMG53可以内流入PTE细胞。作为对照,与BSA共孵育的细胞既未表现出质膜靶向性也未表现出BSA的细胞内定位。
图57.rhMG53蛋白在大鼠模型中改善I/R诱导的AKI。Ualb/Uc(a)或SCr(b)评估的肾功能证实了rhMG53在预防I/R诱导的AKI中的有益效果。(c)用抗KIM-1的IHC染色表明I/R损伤后5天肾病理学症状减轻。(d)H&E染色显示rhMG53处理导致I/R诱导的AKI后5天肾组织病理学症状的改善。(e)基于KIM-1的定量分析的损伤评分(如(c)所示)表明接受rhMG53的I/R损伤的大鼠中肾小管损伤减轻(n=4-9/组,*P<0.01,**P<0.001)。
图58.顺铂诱导的PTE细胞损伤导致rhMG53和Annexin V在质膜上的共定位。用50μg/ml的顺铂处理PTE细胞3小时。然后将罗丹明标记的rhMG53(0.1mg/ml)或罗丹明标记的BSA(0.1mg/ml,作为对照)加入细胞中。用FITC-Annexin V进行免疫染色,用于标记质膜上暴露的PS。对照PTE细胞对于rhMG53或Annexin V染色是阴性的。暴露于顺铂的PTE细胞对于rhMG53或Annexin V染色是阳性的(底图)。与BSA共孵育的细胞在对照条件下或在顺铂处理后既未表现出质膜靶向性也未表现出BSA的细胞内定位。
图59.rhMG53保护小鼠免于顺铂诱导的AKI。(a)在顺铂处理(30mg/kg,腹膜腔内注射(i.p.))后5天的wt小鼠中,H&E和PAS染色显示肾病理学症状。在顺铂处理前10min,将rhMG53(2mg/kg,左)或溶剂(右)单次静脉注射给药至小鼠。肾组织学显示rhMG53给药后肾小管损伤程度降低。(b)在不同组合的治疗(溶剂、顺铂、顺铂+rhMG53)后小鼠的尿蛋白测定(Up/Uc)的总结数据。(c)接受rhMG53的小鼠在顺铂治疗后5天显示出SCr水平降低。*P<0.01,**P<0.001。(d)MTT测定显示rhMG53不改变鼠胰腺癌细胞(KPC-Brca1)中顺铂诱导的细胞死亡的IC50。n=4/组。(e)rhMG53不改变顺铂抑制肿瘤生长的功效。将KPC-Brca1胰腺肿瘤细胞皮下注射至裸鼠的两侧腋下,并允许其生长5天,然后开始治疗。箭头指示小鼠何时接受将顺铂(6mg/kg,腹腔注射(i.p.))与rhMG53(2mg/kg,静脉注射(i.v.))或作为溶剂对照的生理盐水一起注射给药。使用或不使用rhMG53给药小鼠都表现出相似程度的肿瘤抑制(每组n=10)。
图60.野生型和Mg53-/-小鼠的肾的超微结构检查。源自4月龄小鼠的肾小管(PTE)和肾小球(足细胞(Podocyte))的透射电子显微照片。左图:与野生型肾(上)相比,Mg53-/-肾显示异常出现的刷状缘和细胞内空泡化(底部,箭头)。右图:来自Mg53-/-肾的肾小球似乎在结构上具有完整性,并且其足细胞与wt小鼠的相当。足细胞足突的插入-放大视图。
图61.在人肾近端小管细胞(HKC-8)中MG53介导的细胞膜修复的概括。HKC-8细胞在37℃和5%CO2的加湿环境中,在补充有GlutaMAX、葡萄糖(1g/L)和丙酮酸钠(110g/L)、10%FBS、100单位/ml青霉素和100μg/ml链霉素的DMEM培养基中生长。用脂质体LTX试剂将GFP-MG53或MG53的突变体形式,GFP-C242A转染进HKC-8细胞中(对照)。通过细胞膜的微电极穿透损伤细胞(箭头)。表达GFP-MG53(n=10)的HKC-8细胞,但不是表达突变体形式(C242A,n=8)的那些细胞,显示MG53在由微电极穿透而引起的急性损伤位点的累积(损伤后,箭头)。
图62.Mg53-/-PTE细胞中异常的膜结构。源自wt(左)和Mg53-/-(右)小鼠的原代培养的PTE细胞的代表性扫描电子显微照片。野生型PTE细胞显示丰富的微绒毛(a)和有组织的丝状伪足的网络(b),其在Mg53-/-细胞中的数量和长度是减少的(c、d)。
图63.将rhMG53浓缩至I/R损伤的大鼠肾的PTE室。(a)为了分析rhMG53是否可以通过肾小球基底膜,使用免疫印迹法检测了rhMG53的肾小球通透性。将不同量的rhMG53(mg/kg,在顶部表示)注射到健康的斯普拉格道利(Sprague Dawley)大鼠中,并在注射后1.5小时和6小时的时间间隔内收集尿排泄物。rhMG53(泳道1)作为阳性对照。通过朱红S(PonceauS)染色证实等蛋白负载。(b)用2mg/kg的rhMG53(静脉注射)处理经I/R诱导的AKI的大鼠。肾样品在I/R损伤后2小时冷冻保存。肾的冷冻切片用H&E和PHA-L染色(左),或用抗MG53抗体探测(中)。PHA-L和rhMG53的重合表明rhMG53浓缩到I/R损伤的肾的PTE区域(右)。
图64.犬模型中rhMG53的毒理学评价。每隔一天静脉注射rhMG53(1mg/kg体重)至比格(Beagle)犬,总共7次。组织学(H&E染色)分析未显示主要重要器官有任何明显异常(a),表明动物可耐受重复暴露于rhMG53。在起始给药(第一次给药)和重复静脉注射给药结束(第七次给药)时,rhMG53的血清水平的ELISA测定显示MG53的药代动力学性质保持不变,两者的半衰期均为~1.4小时(b)。
具体实施方式
本说明书通过引用将WO 2008/054561;蔡(Cai)等人,MG53 nucleates assemblyof cell membrane repair machinery.Nature Cell Biol.,11(1):p56-64(2009年1月);和蔡(Cai)等人,MG53 regulates membrane budding and exocytosis in musclecells.Journal of Biological Chemistry.,284(5)3314-22(2009年1月),并入本文,其全部用于所有目的。
本说明书部分地涉及能够促进细胞膜修复的重组核酸序列和相关多肽(参见,SEQID NOs.:1-15)的令人惊奇的和意想不到的发现。特别地,本发明人发现,急性膜修复期间的囊泡融合是由Mitsugumin 53(MG53)(SEQ ID NOs.1-15)驱动的,MG53是一种三联基序(TRIM)家族蛋白。MG53表达促进细胞内囊泡运输至质膜并与质膜融合。特别地,如本文所述,MG53是肾保护的重要组成部分。
动态膜修复不仅对于长期维持细胞完整性而且对于急性细胞损伤的恢复均是必需的。细胞膜的修复需要细胞内囊泡的运输,该运输与囊泡在质膜上的累积有关。细胞膜的急性损伤导致含有MG53的囊泡的募集,以修复损伤位点的膜。我们的数据表明MG53介导的膜修复在生理和病理生理条件下均构成了肾保护的重要组成部分。由于不存在MG53,因此膜修复中的缺陷可能导致肾对应激诱导的损伤的敏感性增加。我们表明MG53在肾近端小管(PTE)中表达,且源自Mg53-/-肾的PTE细胞在急性膜损伤的修复中是有缺陷的。超微结构分析显示了Mg53-/-肾的突出缺陷存在于PTE细胞的顶端表面,此处在正常生理条件下发生主动内吞作用和胞吐作用。因此,MG53介导的对PTE细胞损伤的靶向性修复代表了用于预防与缺血/再灌注和肾毒素暴露相关的AKI的新型治疗方法。
近端小管,尤其是S3段,是缺血或肾毒素损伤期间受影响最严重的肾单位段。我们发现MG53在内皮层中表达丰富,但不存在于髓质区域,这进一步支持了MG53在肾损伤保护中的生理功能。MG53的分子大小为53千道尔顿,并且含有正电荷(pI=6.2)。以前的研究显示,具有相似性质的蛋白可以穿过肾小球,从而提供了静脉内给药的rhMG53可以进入PTE细胞的顶端表面的可行性。事实上,我们已经表明,在符合血清中rhMG53的药代动力学性质的时间范围内,在静脉注射给药后几小时内,rhMG53可以被排泄到尿液中。如图63所示,尿液中MG53的量不会随注射的rhMG53的量成比例地增加,因此由PTE细胞分泌的MG53也可能有助于尿液中MG53的出现。经过滤或分泌的MG53均可以有助于修复小管上皮细胞的损伤。我们发现rhMG53可以靶向于受损的PTE细胞,但是当肾是健康的时候,rhMG53未靶向于PTE细胞。这表明肾的损伤,而不是假定的转运机制,为rhMG53进入肾上皮的顶端表面提供了手段。应激诱导的肾损伤,I/R或顺铂导致PS在PTE细胞的顶端表面暴露,其起到用于rhMG53启动AKI修复过程的锚定机制的作用。
我们认为我们的数据支持rhMG53在人AKI中的潜在作用。我们用rhMG53在预防顺铂诱导的肾毒性方面的研究特别令人兴奋,因为它代表了可以选择性保护肾功能而不干扰顺铂的肿瘤抑制剂功效的首个蛋白治疗剂。顺铂在肿瘤抑制中的作用机制包括阻断DNA合成,而没有证据表明rhMG53参与了这一过程,使得rhMG53可以用作化疗的潜在佐剂以避免顺铂的肾毒性。除了肾毒素诱导的肾损伤外,心胸外科手术相关的AKI也是重要的临床问题,因为~1/3经过手术的患者发生AKI。我们表明在缺血再灌注前rhMG53的静脉给药可有效预防啮齿动物模型中AKI的发生。在心胸外科手术或化疗前对患者进行rhMG53的预防性给药将是预防AKI及相关并发症的新策略。由于MG53在正常生理条件下存在于循环系统中,所以rhMG53的给药不太可能产生免疫反应,并且将可能是用于治疗急性组织损伤的安全生物试剂。我们已经制定了方案以扩大rhMG53蛋白的纯化和生产,使其可以用于人受试者的未来临床研究。在大型动物模型中检测rhMG53静脉注射给药的安全性的预试验中,我们发现rhMG53的重复静脉注射剂量对比格犬没有不良影响(见补充图64a)。此外,rhMG53在这些狗中的血清半衰期约为1.4小时(图64b)。这类似于老鼠小鼠的半衰期。这些大型动物数据为rhMG53将在人体研究中具有良好的耐受性提供了希望。rhMG53在大型动物体内的快速清除与其通过肾小球过滤的肾排泄一致,与我们在啮齿动物中发现的相似(图63),这表明rhMG53将被递送至发挥治疗作用的预期位置,即近端小管。
自从我们在2009年发现MG53以来,已经在提高该基因在组织修复的生物学中以及在代谢综合征的调节中的作用机制方面取得了重大进展。MG53属于TRIM家族蛋白的成员,该家族蛋白含有具有E3连接酶活性的保守RING基序。几项研究表明,胰岛素受体底物1(IRS-1)和粘着斑激酶(FAK)是用于MG53介导的泛素化和降解的E3连接酶底物。Song等人的最近报告(R.Song等人,Central role of E3 ubiquitin ligase MG53 in insulinresistance and metabolic disorders.Nature 494,375-379(2013))声称,MG53表达在胰岛素抵抗的动物模型中显著升高,且MG53过度表达足以引发肌肉胰岛素抵抗和代谢综合征。然而,Yi等人的独立报告(J.S.Yi等人,MG53-induced IRS-1ubiquitinationnegatively regulates skeletal myogenesis and insulin signalling.Nat Commun 4,2354(2013))没有提供糖尿病中MG53上调的证据,因为源自人糖尿病患者和胰岛素抵抗小鼠的肌肉样本显示MG53的正常表达,这表明改变的MG53表达不能作为代谢综合征发展的致病因素。MG53表达在代谢综合征中保持不变也被其他研究者在早期研究中提出。虽然IRS-1的MG53介导的下调可以在一定程度上有助于骨骼肌中葡萄糖代谢的失调,但是Tamemoto等人和Terauchi等人的早期出版物(H.Tamemoto等人,Insulin resistance and growthretardation in mice lacking insulin receptor substrate-1.Nature 372,182-186(1994);Y.Terauchi等人,Development of non-insulin-dependent diabetes mellitusin the double knockout mice with disruption of insulin receptor substrate-1and beta cell glucokinase genes.Genetic reconstitution of diabetes as apolygenic disease.J Clin Invest 99,861-866(1997))表明与野生型对照小鼠相比,具有敲除IRS-1的动物模型显示正常的葡萄糖耐受性。这进一步挑战了Song等人的建议,即IRS-1的MG53介导的下调作为代谢综合征发展的致病因素。显然,需要更多的研究来详细分析在代谢功能调节中MG53和IRS-1之间的功能关系,因为这对于我们将基础研究转化为临床应用的努力是至关重要的。原则上,破坏假定的E3连接酶活性而不影响其膜修复功能的MG53的蛋白工程改造可为rhMG53治疗AKI和慢性肾疾病提供更好的方法。
许多研究仍然致力于完全理解修复PTE细胞损伤的分子机制。除了MG53以外,其他基因也可参与细胞膜修复机制的组装,例如,dysferlin、小窝蛋白3、膜联蛋白(annexin)、NM-IIA、PTRF等等。未来研究的一个途径是评估MG53表达的遗传变异或其相关修复机制是否会使患者易患缺血性或肾毒性肾损伤。如果是这样,这可以提供一种筛选患者的方法,以在通常引起AKI的治疗之前确定AKI的易感性。
本发明所包含的生物聚合物组合物在本文中共同地和互换地称为“MG53核酸”或“MG53多核苷酸”或“编码膜修复多肽的核酸”或“膜修复蛋白核酸”,并且相应的被编码的多肽被称为“MG53多肽”或“MG53蛋白”或“膜修复多肽”。除非另有说明,否则“MG53”通常用于指任何MG53相关的和/或MG53衍生的生物聚合物,如本文明确地、隐含地或内在地所述。此外,如本文所用,“膜修复多肽”和“促进膜修复的多肽”可互换使用以指本发明的多肽及其生物学活性。
除非另有定义,本文使用的所有技术和科学术语都具有与本发明所属领域的普通技术人员通常理解的相同的含义。本文提及的所有出版物、专利申请、专利和其它参考文献都通过引用整体并入本文。在冲突的情况下,将以本说明书(包括定义)为主。此外,材料、方法和实施例仅是说明性的而不意欲限制。
为了应对外部损伤和内部退化,机体的细胞必须修复每个单独细胞周围的膜,以保持其功能和生物体的健康。细胞修复外膜的能力的缺陷与例如神经退行性疾病(帕金森病)、心脏病发作、心力衰竭和肌营养不良症等许多疾病有关。此外,与各种疾病相关的肌肉无力和萎缩以及正常的衰老过程与改变的膜修复有关。此外,膜损伤发生在除慢性疾病之外的许多其他病理状态中。在糖尿病和其他健康患者中,由于UV暴露引起的皮肤老化、轻微的切口、皮肤磨损、手术切口以及溃疡都涉及细胞膜损伤的某些部分。为了使这些细胞响应于急性损伤而修复它们的膜,它们利用被称为囊泡的细胞内的小膜袋。这些囊泡通常存在于细胞内,但是一旦细胞膜发生损伤,这些囊泡则移动到损伤位点并形成膜片以维持细胞完整性。没有这种基本功能,细胞可能死亡,并且这种细胞损伤的累积效应最终可能导致组织或器官的功能障碍。
可以预期的是,本发明提供了用于治疗和/或预防细胞损伤的有害作用的组合物和方法。如上所述,本说明书涉及令人惊奇的和意想不到的发现,即MG53构成了肾保护的重要组成部分。本说明书证实,MG53令人惊奇地且意想不到地修复了肾近端小管上皮(PTE)细胞的损伤。
在某些方面,本说明书提供了含有MG53核酸或MG53多肽的组合物以及含有有效量的MG53核酸或MG53多肽的治疗组合物,其单独使用或与其它可以调节或增强PTE中细胞膜重封的过程的组分合用。在某些实施方式中,MG53多肽具有SEQ ID NO.1的氨基酸序列。在某些另外的实施方式中,MG53多肽是SEQ ID NO:1的同系物、片段、截短体、假肽、肽类似物或模拟肽。在某些方面,本说明书包括可以调节MG53活性的化合物。
在一种示例性的实施方式中,本说明书提供了用于治疗肾损伤、疾病或病症的药物组合物,其含有有效量的具有足以治疗或改善肾损伤、疾病或病症的症状的MG53样活性的重组MG53多肽或其片段,以及药学上可接受的载体。在某些实施方式中,肾损伤、疾病或病症是急性肾损伤(AKI)。在某些另外的实施方式中,药物组合物采取适于静脉注射的形式。在某些实施方式中,组合物可以是单次剂量形式或者包括约全天、周或月的剂量。
在某些另外的方面,本说明书涉及治疗肾细胞或组织损害/损伤的方法。在某些示例性的实施方式中,该方法包括,例如,本文所述的用于预防和/或治疗肾损伤的治疗组合物的给药。在某些实施方式中,该方法包括将含有有效量的Mitsugumin 53(MG53)的组合物给药至对其有需求的受试者,其中,该组合物在治疗、预防或改善肾损伤中是有效的。在某些实施方式中,肾损伤是急性肾损伤。在某些实施方式中,急性肾损伤包括手术相关的AKI,造影剂诱导的AKI,药物或化疗诱导的AKI,毒素诱导的AKI,透析、缺血/再灌注诱导的AKI,脓毒症诱导的AKI,肾毒素暴露或它们的组合中的至少一种。
在某些实施方式中,该方法包括将化疗剂(相同或不同制剂)和有效量的MG53共同给药至受试者的步骤。在某些实施方式中,所述化疗剂是顺铂。
在本文所述的任何方面或实施方式中,组合物进一步含有药学上可接受的载体或赋形剂。
在本文所述的任何方面或实施方式中,受试者可以是人或非人的灵长类动物。
在另一方面,本说明书提供了一种增强PTE细胞膜修复的方法,其包括使用含有有效量的Mitsugumin 53(MG53)的组合物处理具有受损的细胞膜的PTE细胞,其中,该组合物有效地增强PTE细胞膜修复。
在本文所述的任何方面或实施方式中,MG53多肽可以是具有膜修复活性的重组MG53多肽或其片段。
在本文所述的任何方面或实施方式中,具有MG53活性的MG53多肽或其片段是重组人MG53(rhMG53)多肽。
在本文所述的任何方面或实施方式中,MG53多肽包括SEQ ID NO:1的氨基酸序列或由SEQ ID NO:1的氨基酸序列组成。
在任何方面或实施方式中,MG53多肽是重组产生的多肽。在某些实施方式中,MG53多肽包括SEQ ID NO:1的氨基酸序列或由SEQ ID NO:1的氨基酸序列组成。在某些实施方式中,MG53多肽(例如,SEQ ID NO:1)进一步包括信号肽(例如,分泌信号序列)、融合蛋白、蛋白标签、保守氨基酸修饰、非保守氨基酸变体或其组合中的至少一种。
在另一种实施方式中,本发明包括编码如SEQ ID NOs.:1、3、5、7、8、9-15所示的MG53多肽的合成的或重组的核酸和/或同系物,或其片段,其中,该多肽促进细胞膜的修复。
如本文所述,有效量、药学有效剂量、治疗有效量或药学有效量是预防、抑制疾病状态或病理状态的发生或对其进行治疗(在一定程度上缓解症状,优选全部症状)所需的剂量。有效量依赖于疾病的类型、使用的组合物、给药途径、待治疗的哺乳动物的类型、所考虑的特定哺乳动物的身体特征、并发用药以及医学领域的技术人员将考虑的其它因素。通常,根据带负电荷的聚合物的效价,活性组分的给药量为0.1-1000mg/kg体重/天。此外,本发明组合物的有效量包括在实施例中使用的那些量,以促进预期或期望的生物效应。
在某些实施方式中,有效量的MG53多肽每天、每周、每月、每两个月、每三个月、每六个月或每年至少给药一次。在某些实施方式中,有效量的MG53多肽以单次剂量形式进行给药,即含有有效量的一个或多个单位。
如本文所述,在一个方面,本说明书提供了含有有效量的用于在治疗或预防肾损伤的方法中使用的Mitsugumin 53(MG53)多肽的组合物,该方法包括将该组合物给药于对其有需要的受试者,其中,该组合物在改善肾损伤的效果或症状中是有效的。
在本文所述的任何方面或实施方式中,所述肾损伤是急性肾损伤(AKI)。
在本文所述的任何方面或实施方式中,所述MG53多肽是具有近端小管上皮(PTE)膜修复活性的重组MG53多肽。在本文所述的任何方面或实施方式中,所述MG53多肽是重组人MG53(rhMG53)多肽。
在本文所述的任何方面或实施方式中,所述肾损伤是手术相关的肾损伤,造影剂诱导的AKI,药物或化疗诱导的AKI、毒素诱导的AKI,透析、缺血/再灌注诱导的AKI,脓毒症诱导的AKI或其组合中的至少一种。
在本文所述的任何方面或实施方式中,所述方法包括将化疗剂共同给药至向受试者。
在本文所述的任何方面或实施方式中,所述化疗剂是顺铂。
在本文所述的任何方面或实施方式中,所述受试者是人。
在本文所述的任何方面或实施方式中,所述组合物采取适于静脉注射的形式。
在本文所述的任何方面或实施方式中,所述组合物是单次剂量形式。
在另一方面,本说明书提供了一种组合物,该组合物含有有效量的用于在增强近端小管上皮(PTE)膜修复的方法中使用的Mitsugumin 53(MG53)多肽,该方法包括使用该组合物处理具有损伤的细胞膜的PTE细胞,其中,该组合物在增强PTE细胞膜修复中是有效的。
在本文所述的任何方面或实施方式中,PTE细胞膜损伤是药物或毒素诱导的或缺血/再灌注诱导的。
这些化合物的毒性和治疗功效可以通过细胞培养物或实验动物中例如用于测定LD50(使50%群体致死的剂量)和ED50(在50%群体中治疗有效的剂量)的标准制药程序来确定。毒性和治疗效果之间的剂量比是治疗指数,其可以表示为LD50/ED50的比。优选表现出较大治疗指数的化合物。尽管可以使用表现出毒性副作用的化合物,但应注意设计将这些化合物靶向于受影响组织位点的递送系统,以便将对未感染细胞的潜在损伤降到最小,从而减少副作用。从细胞培养测定和动物研究获得的数据可用于配制一定范围的用于人的剂量。这些化合物的剂量优选在包括具有很少或没有毒性的ED50的循环浓度的范围内。剂量可以在该范围内变化,这取决于所用的剂型和所采用的给药途径。对于本发明方法中使用的任何化合物,最初可以由细胞培养测定法评估治疗有效剂量。可以在动物模型中配制剂量,以达到循环血浆浓度范围,其包括如在细胞培养物中测定的IC50(即达到症状的半数最大抑制的检测化合物的浓度)。这些信息可用于更精确地测定人体中的有用剂量。血浆中的水平可以例如通过高效液相色谱来测定。
在某些方面,本说明书涉及用作治疗和预防与细胞和/或组织损伤相关的疾病和病症的治疗剂的组合物。本发明的治疗组合物含有MG53多肽和编码MG53多肽的核酸(例如SEQ ID NO:1的蛋白和MG53多肽突变体、同系物、片段、截短体、假肽、肽类似物和模拟肽)以及可调节MG5活性的化合物。
在一种示例性的实施方式中,本说明书提供了用于治疗肾损伤、疾病或病症的药物组合物,其含有一定量的具有足以治疗或改善肾损伤、疾病或病症的的症状的MG53样活性的重组MG53多肽或其片段,以及药学上可接受的载体。在某些实施方式中,肾损伤、疾病或病症是急性肾损伤(AKI)。在某些另外的实施方式中,该药物组合物采取适于静脉注射的形式。在某些实施方式中,该组合物可以是单次剂量形式或者包括大约整天、周或月的剂量。
在本文所述的任何方法中,本发明的核酸或多肽可以以任何药学上可接受的形式和以如下文进一步详细描述的任何药物可接受的途径递送或给药。例如,含有本发明的核酸和/或多肽的组合物可以全身递送或直接给药至细胞或组织以用于治疗和/或预防细胞膜损伤。在某些另外的实施方式中,本发明的核酸和/或多肽包括载体部分,该载体部分可以改善生物利用度、增加药物半衰期、将治疗剂靶向于特定细胞或组织类型或其组合。
在另一方面,本发明涉及组合物,该组合物含有有效量的本发明的多肽和载体,并且任选地,与至少一种其它试剂(例如,协同调节的生物活性剂或试剂)结合,MG53。在某些实施方式中,试剂通过与本发明的多肽的直接或间接相互协同作用,以促进细胞膜修复。例如,如磷脂酰丝氨酸、锌、氧化剂和植物提取物的试剂可调节本发明的多肽的膜修复活性。因此,在另外的实施方式中,本发明包含的任何含有膜修复多肽的组合物还可以含有,以组合的形式,有效量的磷脂、含锌剂、氧化剂、植物提取物或其组合中的至少一种。在某些实施方式中,磷脂是磷脂酰丝氨酸。在另外的实施方式中,含锌剂是锌离子载体,例如,Zn-1-羟基吡啶-2-硫酮(Zn-HPT)。在其它实施方式中,氧化剂是硫柳汞。在另外的实施方式中,植物提取物是三七提取物。
在某些另外的方面中,本发明涉及含有与药学上可接受的载体组合的分离的或重组的MG53多肽的组合物。本发明还涉及令人惊奇的且意想不到的发现,即本发明的多肽可以在许多不同的细胞类型和组织中修补膜。不受任何特定理论的束缚,可以认为修复机制通过蛋白中的卷曲螺旋结构域形成多肽寡聚体(例如二聚体)来介导,该多肽寡聚体包括亮氨酸拉链蛋白-蛋白相互作用基序。
在某些另外的实施方式中,本发明的治疗组合物进一步含有与本发明的膜修复多肽组合的一种或多种另外的组分,包括磷脂、含锌剂、氧化剂、植物提取物或其组合,其对本发明的多肽的膜修复具有协同作用。在另外的实施方式中,本发明的治疗剂可以含有一种或多种生物活性组分,例如,镇痛药、抗酸剂、抗焦虑药物、抗心律失常药、抗菌药、抗生素、抗凝剂和抗凝血剂、抗惊厥药、抗抑郁药、止泻药、止吐药、抗真菌药、抗组胺剂、抗高血压药、抗炎药、抗肿瘤药、抗精神病药、解热药、抗病毒药、巴比妥类药物、β-阻滞剂、支气管扩张剂、冷固化剂、皮质类固醇、止咳剂、细胞毒素、减充血剂、利尿剂、祛痰药、激素、降糖药(口服)、免疫抑制剂、泻药、肌肉松弛剂、镇静剂、性激素、安眠药、镇定药、维生素或其组合。
本发明还包括基本上纯化的膜修复多肽,例如,MG53多肽(SEQ ID NOS:1、3、5、7、8和9-15)。在某些实施方式中,膜修复多肽,如MG53多肽,包括与人MG53多肽(SEQ ID NO.:1)的氨基酸序列基本相同的氨基酸序列。
另一方面,本发明包括药物组合物,该药物组合物包括治疗或预防有效量的治疗剂和药学上可接受的载体。治疗剂可以是核酸,例如,MG53核酸(如肽核酸)、cDNA或RNA(如抑制性小RNA);膜修复多肽(如MG53)或对MG53多肽具有特异性的抗体。在另一方面,本发明包括在一个或多个容器中的治疗或预防有效量的该药物组合物。
在另一方面,本发明包括通过培养细胞来生产多肽的方法,该细胞包括内源或外源表达的核酸,该核酸在允许表达由DNA编码的多肽的条件下,编码膜修复多肽(如MG53核酸)。如果需要,该多肽随后可以被回收。
在某些实施方式中,本发明的治疗组合物含有,例如,MG53多肽、基于其的肽类似物、假肽或模拟肽;膜修复多肽的小分子调节剂、MG53或膜修复多肽或MG53蛋白-蛋白相互作用;或MG53特异性抗体或其生物活性衍生物或其片段。如本文所述,MG53介导对细胞膜的损伤的修复。因此,靶向作用于这些核酸、多肽及其同系物的表达和/或活性将产生与组织修复有关的各种急性和慢性疾病和病症的新疗法。
本发明还包括所述化合物的药学上可接受的制剂。这些制剂包括上述化合物的盐,例如,酸加成盐,如盐酸、氢溴酸、乙酸和苯磺酸的盐。
本发明的另一个目的是提供一种试剂盒,该试剂盒包括合适的容器、排列在其中的药学上可接受形式的本发明的治疗剂及其使用的说明书。
如下面详细描述的并且如本领域技术人员将容易理解的,重组膜修复多肽可以在原核细胞或真核细胞(例如哺乳动物细胞)中产生,然后通过蛋白工程改造法(一种可以产生大量功能蛋白的方法)分泌到细胞外溶液中。
术语“宿主细胞”包括可用于携带异源核酸或表达由异源核酸编码的肽或蛋白的细胞。宿主细胞可以含有在天然(非重组)形式的细胞中未发现的基因、在天然形式的细胞中发现的基因(其中,该基因通过人工方式被修饰并重新引入细胞)或已经人工修饰而不从细胞中除去核酸的细胞的内源的核酸。宿主细胞可以是真核的或原核的。细菌培养所需的一般生长条件可以参见BERGEY'S MANUAL OF SYSTEMATIC BACTERIOLOGY,第1卷,N.R.Krieg,编辑,Williams and Wilkins,Baltimore/London(1984)的文本。“宿主细胞”也可以是其中内源基因或启动子或两者已被修饰以产生本发明复合物的一种或多种多肽组分的宿主细胞。
“衍生物”是由天然化合物通过修饰直接或通过部分替代形成的组合物。
“类似物”是具有与天然化合物相似但不相同的结构的核酸序列或氨基酸序列。
此外,普通技术人员将认识到,“保守突变”还包括在编码序列中改变、添加或删除单个氨基酸或少量氨基酸的核酸的替代、缺失或添加,其中,核酸改变引致化学上相似的氨基酸的替代。可用作相互间保守替代的氨基酸包括以下:碱性:精氨酸(R)、赖氨酸(K)、组氨酸(H);酸性:天冬氨酸(D)、谷氨酸(E)、天冬酰胺(N)、谷氨酰胺(Q);亲水性:甘氨酸(G)、丙氨酸(A)、缬氨酸(V)、亮氨酸(L)、异亮氨酸(I);疏水性:苯丙氨酸(F)、酪氨酸(Y)、色氨酸(W);含硫:甲硫氨酸(M)、半胱氨酸(C)。此外,通过保守变异而产生差异的序列通常是同源的。
对本发明的实践有用的分子生物学技术(包括诱变、PCR、克隆等)的描述包括:Berger和Kimmel,GUIDE TO MOLECULAR CLONING TECHNIQUES,METHODS IN ENZYMOLOGY,第152卷,Academic Press,Inc.,San Diego,Calif.(Berger));Sambrook等人,MOLECULARCLONING--A LABORATORY MANUAL(第二版),第1-3卷,Cold Spring Harbor Laboratory,Cold Spring Harbor,纽约,1989和CURRENT PROTOCOLS IN MOLECULAR BIOLOGY,F.M.Ausubel等人编辑,Current Protocols,一家Greene Publishing Associates,Inc.和John Wiley&Sons,Inc.的合资公司;Berger,Sambrook和Ausubel以及Mullis等人,美国专利号4,683,202(1987);PCR PROTOCOLS A GUIDE TO METHODS AND APPLICATIONS(Innis等人编辑),Academic Press,Inc.,San Diego,Calif.(1990)(Innis);Arnheim&Levinson(1990年10月1日)C&EN 36-47。
在另一种实施方式中,使用哺乳动物表达载体在哺乳动物细胞中表达本发明的核酸。对于原核和真核细胞的合适的表达系统,参见例如,Sambrook等人,MOLECULARCLONING:A LABORATORY MANUAL.第二版,Cold Spring Harbor Laboratory,Cold SpringHarbor Laboratory Press,Cold Spring Harbor,N.Y.,1989的第16和17章。
多核苷酸可以是DNA分子、cDNA分子、基因组DNA分子或RNA分子。作为DNA或RNA的多核苷酸可以包括其中T(胸苷)也可以是U(尿嘧啶)的序列。如果多核苷酸的某个位置的核苷酸能够形成与反向平行DNA或RNA链中相同位置的核苷酸呈Watson-Crick配对,则该多核苷酸和DNA或RNA分子在该位置彼此互补。当每个分子中足够数量的相应位置被可以彼此杂交的核苷酸占据以实现期望的过程时,多核苷酸和DNA或RNA分子基本彼此互补。
用重组DNA转化宿主细胞可以通过本领域技术人员熟知的常规技术进行。“转化”是指在掺入新DNA(即外源于细胞的DNA)后在细胞中诱导的永久的或瞬时的基因变化。
在另一种实施方式中,重组哺乳动物表达载体能够指导核酸优选在特定的细胞类型中表达(例如,将组织特异性调控元件用于表达核酸)。组织特异性调控元件是本领域已知的。合适的组织特异性启动子的非限制性实例包括白蛋白启动子(肝特异性;Pinkert等人,1987年.Genes Dev.1:268-277)、淋巴特异性启动子(Calame和Eaton,1988.Adv.Immunol.43:235-275)、特别适用于T细胞受体的启动子(Winoto和Baltimore,1989.EMBO J.8:729-733)和免疫球蛋白(Banerji等人,1983.Cell 33:729-740;Queen和Baltimore,1983.Cell 33:741-748)、神经元特异性启动子(例如,神经丝启动子;Byrne和Ruddle,1989.Proc.Natl.Acad.Sci.USA 86:5473-5477)、胰腺特异性启动子(Edlund等人,1985.Science 230:912-916)和乳腺特异性启动子(例如,乳清启动子;美国专利号4,873,316和欧洲申请公开号264,166)。还包括调节发育的启动子,例如,鼠同源盒蛋白启动子(murine hox promoters)(Kessel和Gruss,1990.Science 249:374-379)和甲胎蛋白启动子(alpha-fetoprotein promoter)(Campes和Tilghman,1989.Genes Dev.3:537-546)。
在任何实施方式中,编码膜修复多肽、MG53、膜修复多肽结合蛋白、MG53结合蛋白、膜修复多肽受体和/或MG53受体的核酸可以以下列物质存在:一种或多种裸DNA;一种或多种排列在合适的表达载体中并游离地保持的核酸;一种或多种掺入宿主细胞基因组中的核酸;编码复合物组分的内源基因的修饰型;与一种或多种调节性核酸序列结合的一种或多种核酸;或其组合。核酸可以任选地包括连接肽或融合蛋白组分,例如,在5'端、3'端或ORF内的任何位置的His-标签(His-Tag)、FLAG-标签(FLAG-Tag)、麦芽糖结合蛋白(MBP)-标签(Tag)、荧光蛋白、GST、TAT、抗体部分和信号肽等。
在宿主是原核的(如大肠杆菌)情况下,能够导入DNA的感受态细胞可以从指数生长期后收集的细胞制备,并随后通过本领域熟知的方法用CaCl2方法处理。或者,可以使用MgCl2、RbCl、脂质体或脂质体-蛋白交联物。也可以在形成宿主细胞的原生质体后或通过电穿孔进行转化。这些实例不限制本发明;存在用于转染本领域技术人员熟知的并且被认为在本发明的范围内的宿主细胞的许多技术。
当宿主是真核生物时,这种用DNA转染的方法包括磷酸钙共沉淀,常规的机械方法,如显微注射、电穿孔、包被在脂质体中质粒的插入或病毒载体以及本领域已知的其它方式。真核细胞可以是酵母细胞(例如,酿酒酵母),或者可以是包括人细胞的哺乳动物细胞。对于长期高产量的重组蛋白的生产,优选稳定表达。
制剂
药物组合物或制剂是指具有适合于给药至(例如全身给药)细胞或受试者(优选人)的形式的组合物或制剂。“全身给药”是指血流中药物的体内系统吸收或累积,随后于全身分布。合适的形式部分取决于使用或进入途径,例如口服、透皮或注射。这种形式不应阻止组合物或制剂到达靶细胞(即,预期被递送至的带负电荷的聚合物)。例如,注射到血流中的药物组合物应该是可溶的。其他因素是本领域已知的,并且包括考虑因素,如阻止组合物或制剂发挥其作用的毒性和形式。
在本发明的任何方面,本发明的治疗组合物可以是任何药学上可接受的形式并且通过任何药学上可接受的途径给药,例如,治疗组合物可以按照口服剂量给药,单日剂量或单次剂量形式。通过药学上可接受的制剂是指允许本发明的核酸分子在最适合于其预期活性的体内部位有效分布的组合物或制剂。
适合与如本文所述的MG53分子进行制剂的试剂的非限制性实例包括:PEG交联的抑制剂、磷脂交联的抑制剂、亲脂部分抑制剂、硫代磷酸酯抑制剂、P-糖蛋白抑制剂(如Pluronic P85),上述抑制剂可以增强药物进入各种组织,例如,CNS(Jolliet-Riant和Tillement,1999,Fundam.Clin.Pharmacol.,13,16-26)、可生物降解的聚合物(如用于植入后持续释放递送的聚(DL-丙交酯-共-乙交酯)微球体(Emerich,DF等人,1999,CellTransplant,8,47-58)Alkermes,Inc.Cambridge,Mass.)和负载的纳米颗粒(如由聚氰基丙烯酸丁酯制成的纳米颗粒),其可以通过血脑屏障递送药物并且可以改变神经元摄取机制(Prog Neuropsychopharmacol Biol Psychiatry,23,941-949,1999)。包括核酸分子的CNS递送的递送策略的其它非限制性实例包括以下中所述的材料:Boado等人,1998,J.Pharm.Sci.,87,1308-1315;Tyler等人,1999,FEBS Lett.,421,280-284;Pardridge等人,1995,PNAS USA.,92,5592-5596;Boado,1995,Adv.Drug Delivery Rev.,15,73-107;Aldrian-Herrada等人,1998,Nucleic Acids Res.,26,4910-4916;和Tyler等人,1999,PNAS USA.,96,7053-7058。所有这些参考文献都特此通过引用并入本文。药学上可接受的载体和赋形剂以及给药方法对于本领域技术人员将是显而易见的,并且包括在通过引用整体并入本文的USP-NF 2008(美国药典/国家处方集)中描述的组合物和方法。
术语“药学上或药理学上可接受的”是指当适当地给药至动物或人时不产生不利的、过敏的或其他不良的反应的分子实体和组合物。如本文所用,“药学上可接受的载体”包括任何和所有溶剂、分散介质、包衣、抗菌和抗真菌剂、等渗剂和吸收延迟剂等。这种用于药物活性物质的介质和试剂的使用是本领域熟知的。除了任何常规介质或试剂与活性组分不相容的情况之外,还应考虑其在治疗组合物中的用途。补充的活性组分也可以并入组合物中。
导致全身吸收的给药途径包括但不限于:静脉内、皮下、腹腔、吸入、口服、肺内和肌肉内。药物进入循环系统中的速度已被证明是分子量或大小的函数。使用含有本发明化合物的脂质体或其它药物载体可以潜在地定位药物,例如,在某些组织类型(如网状内皮系统(RES)的组织)中。可以促进药物与细胞(如淋巴细胞和巨噬细胞)的表面结合的脂质体制剂也是有用的。
活性化合物通常将被配制用于肠胃外给药,例如,配制用于通过静脉内、心室内、鞘内、肌内、皮下、病灶内或甚至腹腔途径注射。鉴于本公开,含有癌症标志物抗体、交联物、抑制剂或其它作为活性组分或成分的试剂的水性组合物的制备将是本领域技术人员已知的。通常,这样的组合物可以被制备为液体溶液或悬浮液的注射剂;还可以制备适于在注射之前在加入液体时用来制备溶液或悬浮液的固体形式;且制剂也可以被乳化。
本发明的特征还在于含有包含聚(乙二醇)脂质(PEG-修饰的或长循环脂质体或隐形脂质体)的表面改性脂质体的组合物的用途。本发明的核酸分子还可以包括各种分子量的共价连接的PEG分子。这些制剂提供了用于增加药物在靶组织中累积的方法。这类药物载体耐受单核吞噬系统(MPS或RES)的调理和消除,从而能够延长胶囊化药物的血液循环时间和增强其组织暴露(Lasic等人.Chem.Rev.1995,95,2601-2627;Ishiwata等人,Chem.Pharm.Bull.,1995,43,1005-1011)。基于它们能够避免在代谢侵袭性MPS组织(如肝和脾)中累积,长循环脂质体与阳离子脂质体相比,还可能更大程度地保护药物免于核酸酶降解。所有这些参考文献都通过引用并入本文。
本发明还包括制备用于储存或给药的组合物,该组合物包括在药学上可接受的载体或稀释剂中的药学有效量的所需化合物。用于治疗用途的可接受载体或稀释剂在制药领域中是众所周知的,并且例如在Remington's Pharmaceutical Sciences,MackPublishing Co.(A.R.Gennaro编辑1985)中进行描述,其特此通过引用并入本文。例如,可以提供防腐剂、稳定剂、染料和调味剂。这些包括苯甲酸钠、山梨酸和对羟基苯甲酸的酯。此外,可以使用抗氧化剂和悬浮剂。
可以制备缓释制剂。缓释制剂的合适实例包括含有MG53的固体疏水性聚合物的半渗透的基质,该基质采取成形制品(例如薄膜或微胶囊)的形式。缓释基质的实例包括聚酯、水凝胶(例如,聚(2-羟乙基-甲基丙烯酸酯)或聚(乙烯醇))、聚交酯(美国专利号3,773,919)、L-谷氨酸和γ-乙基-L-谷氨酸盐的共聚物、不可降解的乙烯-乙酸乙烯酯、可降解的乳酸-乙醇酸共聚物如LUPRON DEPOTTM(由乳酸-乙醇酸共聚物和醋酸亮丙瑞林组成的可注射微球)、以及聚-D-(-)-3-羟基丁酸。虽然聚合物如乙烯-乙酸乙烯酯和乳酸-乙醇酸能够释放分子超过100天,但某些水凝胶释放蛋白的时间段较短。
用于本发明的治疗剂给药的制剂包括无菌水性溶液或非水性溶液、悬浮液和乳液。非水性溶剂的实例是丙二醇、聚乙二醇、植物油(如橄榄油)以及可注射的有机酯(如油酸乙酯)。水性载体包括水、醇/水性溶液、乳液或悬浮液,包括生理盐水和缓冲介质。载体包括氯化钠溶液、林格氏葡萄糖(Ringer's dextrose)、葡萄糖和氯化钠、乳酸林格氏静脉内载体(包括液体和营养补充剂)、电解质补充剂等。可以添加防腐剂和其它添加剂,例如,抗微生物剂、抗氧化剂、螯合剂和惰性气体等。
本发明的化合物、核酸分子、多肽和抗体(本文中也称为“活性化合物”)及其衍生物、片段、类似物和同系物可掺入适于给药的药物组合物中。这样的组合物通常含有核酸分子、蛋白或抗体和药学上可接受的载体。如本文所用,“药学上可接受的载体”旨在包括与药物给药相容的任何和所有溶剂、分散介质、包衣、抗细菌剂和抗真菌剂、等渗剂和吸收延迟剂等。最新版本的Remington's Pharmaceutical Sciences(本领域的标准参考文献文本)中描述了合适的载体,其通过引用并入本文。这种载体或稀释剂的优选实例包括但不限于水、生理盐水、林格氏溶液(finger’s solution)、葡萄糖溶液和5%人血清白蛋白。还可以使用脂质体和非水性载体如固定油。这种用于药物活性物质的介质和试剂的使用是本领域众所公知的。除了任何常规介质或试剂与活性化合物不相容之外,应考虑其在组合物中的用途。补充的活性化合物也可以并入该组合物中。
将本发明的药物组合物配制成与其预期的给药途径相容。给药途径的实例包括肠胃外给药,例如,静脉内给药、皮内给药、皮下给药、口服(例如吸入)给药、透皮(即局部)给药、经粘膜给药、腹膜内给药和直肠给药。用于胃肠外施用、皮内施用或皮下施用的溶液或悬浮液可以包括以下组分:无菌稀释剂,如注射用水、生理盐水溶液、固定油、聚乙二醇、甘油、丙二醇或其它合成溶剂;抗菌剂,如苯甲醇或对羟基苯甲酸甲酯;抗氧化剂,如抗坏血酸或亚硫酸氢钠;螯合剂,如乙二胺四乙酸(EDTA);缓冲剂,如乙酸盐、柠檬酸盐或磷酸盐,以及用于调节渗透压的试剂如氯化钠或葡萄糖。pH可以用酸或碱调节,如盐酸或氢氧化钠。肠胃外制剂可以包封在由玻璃或塑料制成的安瓿、一次性注射器或多剂量小瓶中。
适用于可注射使用的药物组合物包括无菌水性溶液(其中为水溶性)或分散体、以及用于临时制备无菌可注射溶液或分散体的无菌粉末。对于静脉内给药,合适的载体包括生理盐水、抑菌水、CremophorTM.(BASF,Parsippany,N.J.)或磷酸盐缓冲盐水(PBS)。在所有情况下,组合物必须是无菌的,并且应该是达到具有易于可注射性的程度的流体。其在制造和储存的条件下必须是稳定的,并且必须防止微生物(如细菌和真菌等)的污染作用。载体可以含有溶剂或分散介质,例如,水、乙醇、多元醇(例如,甘油、丙二醇和液体聚乙二醇等)及其合适的混合物。例如,通过使用包衣(如卵磷脂)、通过在分散的情况下保持所需粒度和通过使用表面活性剂可以保持适当的流动性。防止微生物的作用可以通过各种抗细菌和抗真菌剂来实现,例如,对羟基苯甲酸酯、氯丁醇、苯酚、抗坏血酸和硫柳汞等。在许多情况下,优选在组合物中包括等渗剂,例如,糖、多元醇(如甘露糖醇、山梨糖醇)、氯化钠。可以通过在组合物中包括延迟吸收的试剂(如单硬脂酸铝和明胶)来实现可注射组合物的延长吸收。
对于口服给药,药物组合物可以采取例如通过常规方法制备的具有药学上可接受的赋形剂的片剂或胶囊的形式,该赋形剂如粘合剂(例如,预胶化的玉米淀粉、聚乙烯吡咯烷酮或羟丙基甲基纤维素);填充剂(例如,乳糖、微晶纤维素或磷酸氢钙);润滑剂(例如,硬脂酸镁、滑石或二氧化硅);崩解剂(例如,马铃薯淀粉或淀粉羟乙酸钠);或润湿剂(例如,十二烷基硫酸钠)。片剂可以通过本领域熟知的方法进行包衣。用于口服给药的液体制剂可以采用例如溶液、糖浆或悬浮液的形式,或者它们可以作为干燥产品呈现,在使用前用水或其它合适的溶剂构成。这种液体制剂可以通过常规方法用药学上可接受的添加剂制备,该添加剂如悬浮剂(例如,山梨醇糖浆、纤维素衍生物或氢化食用脂肪);乳化剂(例如,卵磷脂或阿拉伯树胶);非水性载体(例如,杏仁油、油性酯、乙醇或分馏的植物油);和防腐剂(例如,对羟基苯甲酸甲酯或丙酯或山梨酸)。该制剂还可以适当地含有缓冲盐、调味剂、着色剂和甜味剂。口服给药的制剂可以适当配制,以控制地释放活性化合物。对于口腔给药,组合物可以采取以常规方式配制的片剂或锭剂的形式。对于通过吸入给药,根据本发明使用的化合物通过使用合适的推进剂以加压包装或喷雾器的气溶胶喷雾呈现的形式方便地递送,该推进剂例如二氯二氟甲烷、三氯氟甲烷、二氯四氟乙烷、二氧化碳或其他合适的气体。在加压气雾剂的情况下,剂量单位可以通过提供用于递送计量的量的阀而确定。例如,用于吸入器或吹药器的明胶的胶囊和药筒可以配制成含有化合物和合适的粉末基质(如乳糖或淀粉)的粉末混合物。可以通过注射(例如,通过推注或连续输注)将化合物配制成肠胃外给药。用于注射的制剂可以例如在安瓿或多剂量容器中通过加入防腐剂以单位剂量形式存在。该组合物在油性或水性溶剂中可以采取如悬浮液、溶液或乳液的形式,并且可以含有配制剂(如悬浮剂、稳定剂和/或分散剂)。或者,活性组分可以是粉末形式,用于在使用之前用合适的溶剂如无菌无热原的水构成。该化合物也可以在直肠组合物(如栓剂或保留灌肠剂)中配制,该直肠组合物例如含有常规栓剂基质(如可可脂或其它甘油酯)。除了前述制剂之外,该化合物也可以配制成贮库制剂。这种长效制剂可以通过植入(例如,皮下或肌肉内)或通过肌内注射给药。因此,例如,该化合物可以用合适的聚合物或疏水材料(例如,作为在可接受的油中的乳液)或离子交换树脂,或作为微溶衍生物(例如,作为微溶盐)配制。
在一种实施方式中,活性化合物通过载体制备,该载体将保护化合物免于快速从身体排出,如控释制剂,包括植入物和微胶囊递送系统。可以使用可生物降解的生物相容性聚合物,如乙烯乙酸乙烯酯、聚酐、聚乙醇酸、胶原、聚原酸酯和聚乳酸。制备这些制剂的方法对于本领域技术人员是显而易见的。这些材料也可以从Alza Corporation和NovaPharmaceuticals Inc.商购获得。脂质体悬浮液(包括靶向于具有针对病毒抗原的单克隆抗体的感染细胞的脂质体)也可以用作药学上可接受的载体。这些都可以根据本领域技术人员已知的方法制备,例如,如在美国专利号4,522,811中所述的那样。
以剂量单位形式配制口服或肠胃外组合物是特别有利的,因为其便于给药和具有剂量均匀性。本文所使用的剂量单位形式指的是适用于待治疗的受试者的单次剂量的机体内离散的单位,每个单位都含有预定量的活性化合物,计算该活性化合物的预定量以得到与所需药物载体相关的预期治疗效果。本发明的剂量单位形式的说明书决定于并直接取决于活性化合物的独特特性和欲实现的特定治疗效果,以及将这种活性化合物复合用于个体治疗的本领域内固有的限制。
根据本发明还公开了使用本文所述的方法、选择策略、材料或组件中的任何一种的试剂盒或系统。根据本公开的示例性试剂盒将任选地另外包括用于操作方法或测定,包装材料,含有试样、装置或系统组件等的一个或多个容器的说明书。
根据优选实施方式的当前描述和实施例,本领域普通技术人员将会理解本发明的其它目的和优点,并且本发明的其它目的和优点明确地包括在本发明的范围内。
实施例
MG53,一种肌肉特异性TRIM家族蛋白的发现。使用先前建立的免疫蛋白组学方法分离MG53,该方法允许鉴定参与肌肉发生、Ca2+信号传导和维持横纹肌细胞中膜完整性的新蛋白。简而言之,该方法使用含有~6500个克隆的单克隆抗体文库,该抗体文库是使用来自兔骨骼肌的富含三联体的膜免疫小鼠产生的。基于在免疫荧光显微镜下观察到的横纹肌切片的z线染色图案选择感兴趣的抗体。通过抗体亲和柱纯化靶蛋白,得到纯化蛋白的部分氨基酸序列。基于该部分氨基酸序列,从骨骼肌cDNA文库中分离编码靶基因的完整cDNA。然后使用同源基因筛选来搜索已鉴定的基因在其他兴奋性组织中不同亚型的存在。最后,产生转基因或敲除小鼠模型以研究感兴趣基因的体内生理功能。
该免疫蛋白组学文库中的肌肉特异性蛋白的筛选实现通过mAb5259识别的分子大小为53千道尔顿(kDa)的抗原的鉴定,特别是横纹肌组织(图3B)。通过mAb5259免疫亲和柱从兔骨骼肌部分纯化蛋白“MG53”,并进行氨基酸测序。骨骼肌cDNA文库筛选和基因组数据库检索在人16p11.2基因座上鉴定出预测的MG53氨基酸序列和相应的mg53基因。mg53 mRNA的Nothern印迹证实了骨骼肌和心肌的特异性表达(图3C)。结构域同源性分析表明,MG53含有原型三联体基序(其包括Ring(环)、B-盒和卷曲螺旋(RBCC)部分),以及羧基末端的SPRY结构域(图1、2和3A)。该SPRY结构域是在兴奋性细胞的肌质网中的兰诺定受体(ryanodinereceptor)Ca2+释放通道中首先观察到的保守序列。迄今为止在各种哺乳动物基因组中鉴定的约60个TRIM家族成员中,15个成员在RBCC结构域之后携带相似的SPRY结构域,并且MG53表现出具有这些TRIM亚家族蛋白的保守一级结构。
MG53介导肌肉细胞中的囊泡运输。虽然在其一级结构中没有跨膜段或脂质修饰基序,但MG53似乎主要受限于骨骼肌中的膜结构。免疫组织化学分析表明在肌纤维膜和细胞内囊泡中MG53的特异性标记(图3D)。MG53是含有TRIM和SPRY基序的肌肉特异性蛋白。在以前的研究中,我们已经建立了靶向于与骨骼肌中三联体连接(triad junction)相关的蛋白的单克隆抗体(mAb)文库。在该免疫蛋白组学文库中筛选肌肉特异性蛋白鉴定出分子大小为53千道尔顿(kDa)的命名为MG53的抗原,其被mAb5259识别。MG53通过与mAb5259交联的免疫亲和柱从兔骨骼肌被部分纯化,并进行氨基酸测序。基于所获得的部分氨基酸序列,从兔和小鼠骨骼肌文库中分离编码MG53的cDNA。基因组文库检索在人16p11.2基因座上鉴定出相应的MG53基因。MG53在几种物种中的预测氨基酸序列如图1所示。
结构域同源性分析表明MG53含有RBCC中的原型TRIM特征序列以及羧基末端的SPRY结构域,因此其属于TRIM/RBCC家族(图1)。迄今为止在哺乳动物基因组中鉴定的大约60个TRIM家族成员中,15个成员在RBCC结构域之后携带相似的SPRY结构域,并且MG53表现出具有这些TRIM亚家族蛋白的保守一级结构(图2)。然而,令人惊讶和意想不到的是,我们的研究表明,MG53是图2中唯一表现出膜修复功能的TRIM家族蛋白。
蛋白印迹分析证实了MG53在小鼠组织中的肌肉特异性表达(图3B)。虽然在其一级结构中没有跨膜段或脂质修饰基序,但MG53似乎主要受限于骨骼肌中的膜结构。mAb5259的免疫组织化学分析显示骨骼肌纤维的横断面中肌纤维膜和TT膜中MG53的特异性标记(图3C)。此外,横断面表明MG53在肌纤维膜附近局部富集,具有比通常对肌纤维膜的整体膜蛋白观察到的更广泛的染色图案。因此,MG53是肌肉特异性TRIM家族蛋白,其显示出TRIM家族蛋白所具有的独特的亚细胞分布模式。
MG53介导细胞损伤后介导骨骼肌纤维中的急性膜修复。为了进一步确定MG53在肌肉膜修复中的生理功能,产生了MG53无效的小鼠模型。mg53-/-小鼠在无应激条件下存活达11个月龄。体内应激检测表明mg53-/-肌肉的膜修复功能存在严重缺陷。如图4C所示,下坡运动诱导的膜损伤表明来自mg53-/-小鼠的比目鱼肌的收缩功能受到严重影响。与野生型(wt)对照相比(未示出),在未进行剧烈运动的情况下,mg53-/-比目鱼肌在体外疲劳刺激后恢复收缩功能方面显示出一定的困难。8-10月龄时,这些差异在运动诱导的损伤后可以被显著增大。显然,可以发现mg53-/-肌肉中存在更严重的损伤,与wt肌肉相比,可观察到较弱和波动的收缩功能(图4D)。
将伊文思蓝色染料注射入小鼠的腹膜内间隙,直接监测小坡运动诱导的肌肉损伤后的肌纤维膜完整性。如图4E所示,从mg53-/-小鼠分离的肌纤维显示出比wt肌肉明显较多的伊文思蓝染色,表明了重度程度的运动诱导的肌肉损伤。这可以通过H/E染色证实,该H/E染色说明与年轻的mg53-/-小鼠相比,老龄的mg53-/-小鼠中的mg53-/-肌肉营养不良增加(图4A)。从肌束提取的伊文思蓝的总吸光度的定量测定为下坡跑动后mg53-/-小鼠的肌肉损伤的增加提供了直接证据(图4F)。
与MG53在膜修复中的作用一致,通过对在分离过程中受损的单个趾短屈肌(FDB)肌纤维进行免疫染色,在损伤位点观察到MG53的浓度升高(图5a)。这些膜片通常与dysferlin染色共定位。我们通过测量激光诱导膜损伤后FM-143荧光染料进入单个FDB肌纤维而直接评估MG53介导的膜修复功能。wt肌纤维具有固有的膜修复功能,并且对激光诱导的肌纤维膜损伤具有相当的抵抗力,因为它们显示出有效排除FM-143荧光染料(图5b)。在激光诱导的损伤后,可以观察到FM-143荧光染料显著进入mg53-/-FDB肌纤维内(图5c)。激光损伤肌纤维膜后,FM-143在FDB肌纤维内的时间依赖性累积可提供对mg53-/-肌肉的缺陷性膜修复功能的直接证据(图5d)。
MG53的表达对于保持正常的心肌膜完整性是必需的。mg53-/-小鼠的缺陷不限于骨骼肌纤维。在注射伊文思蓝染料的过程中,与无注射的野生型动物相比,~50%的mg53-/-小鼠在注射的16小时内死亡。mg53-/-心脏的尸检检查表明,即使在没有运动应激的情况下,也可以用伊文思蓝对心肌纤维进行广泛的标记(图6)。我们还发现,运动会大大加重在mg53-/-心脏中伊文思蓝染色的程度。
MG53的丧失增加了心肌缺血再灌注损伤的易感性(图7)。从野生型(WT)和mg53-/-(mg53KO)小鼠分离心脏,并在Langendorff装置上灌注。通过停止灌洗液流动诱导全身缺血30分钟。通过对(a)肌酸激酶(CK)或(b)乳酸脱氢酶(LDH)的酶测定来测量在恢复灌洗液流动之后(时间0)心脏产生的损伤。来自mg53-/-小鼠的心脏(虚线)表现出比WT(实线)更多的损伤。对于每个列出的时间点,数据均以平均值±S.D.表示。
囊泡与质膜的融合对于膜修复是必需的,并且以前的研究表明dysferlin在维持 骨骼肌膜完整性方面的作用。我们的研究结果表明,MG53能够驱动囊泡运输至质膜,该过程可能介导膜破裂后的修复过程。利用微电极通过质膜的物理性穿透产生的急性细胞损伤导致GFP-MG53囊泡向损伤位点的快速募集(图8a)。当发生引起细胞破裂的更严重损伤时,修复位点用GFP-MG53密集标记(图8b)。此外,在成熟的C2C12肌管中也观察到这种急性膜修复。该数据表明MG53介导的囊泡运输在细胞膜的急性修复中发挥积极作用。
MG53的功能似乎对于实现损伤后的膜修补和肌肉细胞的存活是必需的。当成肌细胞从野生型和mg53敲除(mg53-/-)小鼠分离并分化形成肌管时,mg53-/-肌管无法从微电极穿透诱导的机械损伤中恢复(图8)。这表明MG53对于肌肉中膜重封和细胞存活是必需的,因为野生型肌管可以重封其膜并从损伤中存活,而mg53-/-肌管则不能(图8c)。这证实了MG53在膜重封中的功能作用,并且表明MG53对横纹肌中的膜重封是必需的。
TRIM和SPRY基序在MG53功能中的作用。MG53的结构域的结构/功能评估(图9)表明了在MG53的细胞内分布中GFP融合对MG53的显著极性。特别地,GFP与MG53的羧基末端的融合改变了MG53至囊泡室的分配以及靶向于肌纤维膜的能力。为了进一步检测TRIM和SPRY结构域在促进MG53的膜融合功能方面的作用,产生了与GFP偶联的一系列缺失突变体(图9a)。
为了分析MG53的这些突变体构建体的亚细胞定位,将共聚焦显微镜成像应用于瞬时表达后的C2C12成肌细胞。如图9b(右图)所示,GFP-TRIM或TRIM-GFP主要定位于胞内囊泡,而无明显的肌纤维膜标记。该结果表明,SPRY结构域(其从GFP-TRIM或TRIM-GFP中缺失)对于使MG53靶向于肌纤维膜是必需的。MG53-GFP表现出主要的胞质分布的事实(图9b,左图)进一步支持SPRY在使MG53靶向于细胞表面膜中的作用。
有趣的是,尽管GFP-SPRY或SPRY-GFP显示出主要的胞质分布模式,但是很明显它们从细胞内囊泡中被排除(图9b,中图)。胞质分布模式以及排除GFP-SPRY和SPRY-GFP在细胞内囊泡的定位很可能反映了TRIM的作用。据推测,TRIM基序可以介导MG53对胞内囊泡的粘附(图9c,右图)。SPRY结构域本身不足以靶向于肌纤维膜,因此TRIM结构域必须与SPRY结构域以串联的形式存在,才能将MG53适当地运输至肌纤维膜。
MG53腔室与小窝蛋白-3(Cav-3)相互作用。此外,我们的免疫共沉淀数据显示,小窝蛋白-3与MG53的TRIM基序相互作用(图9c)。因此,MG53和小窝蛋白-3之间的功能相互作用可能构成促进C2C12成肌细胞中GFP-SPRY和SPRY-GFP的扩散模式的一些细胞因子的基础。总的来说,MG53对细胞表面和细胞内室的调节分布可能是由TRIM和SPRY结构域之间的协调作用引起的。这种为了适当的MG53亚细胞定位而对TRIM和SPRY两者的需求还具有明显的功能意义,因为这些缺失突变体都没有表现出线足(丝状伪足,filapodia)样结构域或从全长MG53的过表达所观察到的加强的囊泡出芽事件。
MG53可以在非肌肉细胞类型中完全发挥作用。分析肌原C2C12细胞和分离的骨骼肌纤维中的MG53功能表明了MG53在横纹肌中的囊泡运输和膜修复中的重要作用。考虑到膜修复对于维持细胞稳态是必需的,其他非肌肉细胞类型的类似修复机制很可能可以使用类似的分子机制来促进这一过程。为了检测这种可能性,使用非肌肉中国仓鼠卵巢(CHO)细胞重复进行了几个之前的使用C2C12肌原细胞进行的实验。在这些细胞中,发现了与C2C12细胞中观察到的非常相似的表型。首先,GFP-MG53可以产生质膜的丝状伪足状突起并定位于细胞内的囊泡和质膜。其次,MG53缺失蛋白以在C2C12细胞中观察到的相似的方式表现。最后,小窝蛋白-3还可以控制CHO细胞中表达的MG53的活性。因此,这些研究表明,MG53通过存在于肌肉以外的其它细胞类型中的保守分子机制发挥作用。
MG53可以在非肌肉细胞类型中完全发挥作用。分析肌原C2C12细胞和分离的骨骼肌纤维中的MG53功能表明了MG53在横纹肌中的囊泡运输和膜修复中的重要作用。考虑到膜修复对于维持细胞稳态是必需的,其他非肌肉细胞类型的类似修复机制很可能可以使用类似的分子机制来促进这一过程。为了检测这种可能性,使用非肌肉中国仓鼠卵巢(CHO)细胞重复进行了几个之前的使用C2C12肌原细胞进行的实验。在这些细胞中,发现了与C2C12细胞中观察到的非常相似的表型。首先,GFP-MG53可以产生质膜的丝状伪足状突起并定位于细胞内的囊泡和质膜(图10)。其次,MG53缺失蛋白以在C2C12细胞中观察到的相似的方式表现。最后,小窝蛋白-3还可以控制CHO细胞中表达的MG53的活性(图10)。因此,这些研究表明,MG53通过存在于肌肉以外的其它细胞类型中的保守分子机制发挥作用。
MG53可以与驱动蛋白家族成员11(Kif11)相互作用。从稳定表达RFP(mRFP)、RFP-MG53(MG53)或C29L突变型RFP-MG53(C29L)的FLAG标签型的HEK293细胞中分离细胞裂解物。将提取物与抗FLAG抗体进行免疫共沉淀,随后在SDS-PAGE凝胶上电泳。考马斯染色表明我们通过这种方法co-IP得到特异性条带。一个突出的条带是对于Kif11(箭头)(图11a)。使用质谱鉴定这些凝胶的特定条带。这种代表性的质谱示踪显示MG53可以从细胞裂解物中沉降Kif11(图11b)。
MG53可以与COP9复合物同系物亚基6(CSN6)相互作用。用HA标签的人MG53和myc标签的CSN6瞬时转染HEK293细胞,随后使用针对重组标签的抗体进行免疫共沉淀(IP)(图12)。使用蛋白免疫印迹(IB)证实沉降后蛋白的存在。在某些情况下,还加入蛋白酶体抑制剂MG132,以维持蛋白过表达过程中的蛋白稳定性。我们发现MG53可以沉降CSN6,CSN6也可以沉降MG53。这为这两种蛋白可以在细胞内相互作用提供了证据。泳道1=HA-hMG53+hCSN6+DMSO,泳道2=HA-hMG53+hCSN6+MG132,泳道3=HA-mMG53+hCSN6+DMSO,泳道4=HA-mMG53+hCSN6+MG132。
MG53可以与髓鞘碱性蛋白或轴周蛋白相互作用。用于从野生型(WT)或mg53-/-(KO)骨骼肌生化分离囊泡片段的方法的示意图(图13a)。使用a所示方法分离的片段通过15%(左)的梯度(右)SDS-PAGE凝胶进行电泳。亮蓝(CBB)染色表明了差异地存在于WT或KO肌肉中的特异性条带(图13b)。通过质谱鉴定,两条突出的条带为髓鞘碱性蛋白或轴周蛋白(箭头)。
MG53通过与磷脂酰丝氨酸结合与细胞膜相互作用以介导囊泡运输。当GFP-MG53在这些mg53(-/-)肌管中表达时,该蛋白将适当地定位于质膜和细胞内囊泡(图14A,上图)。当这些mg53(-/-)肌管受伤时,GFP-MG53可以定位于损伤位点(图14A,下图)。脂质分析(22)表明,纯化的重组MG53可以与磷脂酰丝氨酸(PS)、优先出现在质膜内叶(inner leaflet)和细胞内囊泡的胞浆面的脂质相互作用。PIP2-Strip(条带)脂质点印迹分析表明,重组MG53(1μg/ml)特异性地结合磷脂酰丝氨酸(PS)而不是其它膜脂质,包括鞘氨醇-1-P、磷脂酸、磷脂酰胆碱、磷脂酰乙醇胺和各种磷酸肌醇代谢物(图14B)。使用Annexin-V-GFP,我们观察到Annexin-V-GFP在C2C12成肌细胞损伤位点快速标记。转染入C2C12成肌细胞中的Annexin-V-GFP(一种具有明确的结合PS的能力的分子)显示使用微电极(左)造成细胞创伤后的易位最小,而Annexin-V-GFP与RFP-MG53的共表达(右)引起Annexin-V-GFP的加速累积(图14C)。通过RFP-MG53的共表达加速了Annexin-V-GFP的累积(0.93±0.21△F/F0对照;2.9±0.63△F/F0+MG53),与MG53在介导损伤位点的修复复合体形成中的作用一致。细胞外Ca2+通过受损质膜内流使得Annexin-V与PS结合,导致其从细胞损伤之前的可溶性模式转变至质膜和细胞内囊泡的独特定位(图14D)。细胞外溶液中Ca2+的去除阻断了在损伤位点PS被Annexin-V-GFP标记,维持RFP-MG53向损伤位点的易位(图14E)。
Cys242使MG53作为细胞氧化还原状态的传感器并重封细胞膜。硫柳汞氧化半胱氨酸残基的巯基,提供了诱变靶点以鉴定构成MG53的氧化介导的寡聚化的特异性氨基酸。多个保守的半胱氨酸残基突变为丙氨酸。一个特定的突变C242A引致MG53寡聚化特性的完全丧失(图15A)。该突变保持膜靶向,但完全破坏其促进膜修复过程的能力(图15E);即在损伤位点没有观察到C242A的累积。相应的保守半胱氨酸突变体C313A在氧化条件下保持寡聚化模式,并表现出与野生型GFP-MG53相似的易位和膜修复功能(图16)。在还原性细胞外环境(+DTT)下,GFP-MG53向损伤位点的易位受到很大程度的破坏。将氧化剂(硫柳汞)加入至细胞外溶液中导致GFP-MG53向细胞膜上的损伤位点的易位增加。这些实验在C2C12细胞中进行。具有C242A突变(GFP-C242A)的MG53不能易位至质膜上的损伤位点。由于不同的保守性半胱氨酸突变体C313A在氧化条件下保持寡聚化模式,并表现出与野生型GFP-MG53相似的易位和膜修复功能。因此,Cys242的氧化可能诱导MG53的寡聚化,为损伤位点的修复复合体形成提供成核位点。这些实验用C2C12细胞进行。细胞外氧化还原状态的调节可以影响分离的肌肉纤维膜的重封,因为向细胞外溶液中加入DTT可阻碍膜重封,如通过细胞外施用的FM-143染料内流的增加所测量的那样。因此,Cys242的氧化可能诱导MG53的寡聚化,为损伤位点的修复复合体形成提供成核位点。
MG53介导的修复复合体形成和急性肌纤维膜损伤的恢复如图17所示。在用GFP-MG53和GFP-C242A转染的mg53-/-肌管中,使用FM4-64(FM1-43的红移变体)的内流作为膜修复能力的指标。在UV脱除绿色荧光后,在损伤位点发生GFP-MG53的快速易位,而GFP-C242A由于其有缺陷的寡聚特性而保持静止(图16E,17A)。与GFP-C242A相比,在用GFP-MG53转染的细胞中观察到FM4-64的内流显著减少,表明该突变体在损伤后不能恢复膜完整性(图17B)。该数据对MG53易位至损伤位点引致膜重封提供了直接支持。MG53的寡聚化似乎是修复复合体形成中的重要步骤,因为在wt骨骼肌中表达的GFP-C242A突变体显示出优于天然MG53的显性负性作用(图17C)。与GFP-MG53相比,GFP-C242A在成年wt肌纤维中的过表达抑制了肌纤维膜修复功能(图17C)。
已证明含有保守Ring(环)指基序的具有不同细胞功能的几种TRIM家族蛋白均表 现出E3连接酶活性。为了检测MG53是否可以催化体外泛素化,我们制备了重组麦芽糖结合蛋白(MBP)与MG53的融合蛋白。将MBP-MG53与ATP、泛素、E1和E2酶共孵育,并用抗MBP抗体进行免疫印迹。当MBP-MG53与作为E2的Ubc4或UbcH5共孵育时,观察到源自泛素化的高分子量梯形条带(图18a和未显示的数据)。从测定中排除泛素、E1或E2(UbcH5)消除了该梯形条带的出现,证实了MBP-MG53获得的修饰确实是自泛素化。当MG53的Ring指基序中的保守性半胱氨酸残基(Cys-29)被亮氨酸(C29L)替代时,MG53的固有E3连接酶活性显著降低(图18b)。因此,MG53是与Ubc4/5亚家族的E2酶偶联的Ring指型泛素连接酶。
为了检测C29L突变在MG53中的功能性作用,我们比较了在C2C12肌管中表达的GFP-MG53和GFP-C29L的亚细胞分布。令人吃惊的是,在GFP-C29L中GFP-MG53的独特的膜分配和囊泡圈合(tethering)丧失,突变蛋白在C2C12肌管中主要显示出胞浆模式(图18d,左)。蛋白印迹证实,全长GFP-MG53和GFP-C29L蛋白存在于分化的C2C12肌管中(图18c),因此这些融合蛋白的降解不太可能有助于在图18d中观察到的GFP-C29L和GFP-MG53的差异亚细胞分布。此外,利用这些融合蛋白在源自mg53-/-新生鼠的原代培养的骨骼肌管中的瞬时表达可观察到类似现象,其中,对于GFP-C29L突变体,GFP-MG53至肌纤维膜和细胞内囊泡的靶向性减弱(图18d,右)。与显示有缺陷的膜修复功能(如前所示)的成年mg53-/-肌纤维相似,与wt对照相比,原代培养的mg53-/-肌管在膜修复中也有缺陷,从而提供用于检测MG53的细胞功能的同源性重建系统。
进一步的研究显示,GFP-C29L的膜转运和膜运输特性的改变导致MG53的膜修复功能缺陷。在急性膜损伤后,可观察到GFP-MG53在C2C12成肌细胞中快速累积,而GFP-C29L似乎在膜损伤的修复中是固定的和无效的(图18e,左)。在C2C12肌管中也观察到与GFP-C29L类似的缺陷(图18e,中)。此外,虽然损伤后在原代培养的mg53-/-肌管中GFP-MG53可能易位至质膜,但在这些细胞中表达的GFP-C29L通常对急性细胞损伤保持无反应(图18e,右)。综上,这些结果表明与C29L突变相关的E3连接酶活性的丧失可能引起MG53运输的缺陷,从而造成MG53膜修复功能缺陷。
MG53的Ring结构域还含有锌指基序,已知其结合Zn以促进在多种蛋白中的酶促作 。为了检测锌是否可以促进MG53在膜修复中的功能,我们检测了在损伤表达GFP-MG53的C2C12成肌细胞之前从细胞外溶液中除去锌的效果。我们发现用N,N,N,N-四(2-吡啶基-甲基)乙二胺(TPEN)螯合Zn可以防止GFP-MG53易位至微电极穿透位点(图19A),表明Zn对于MG53的功能是必需的。添加Zn离子载体Zn-1-羟基吡啶-2-硫酮(Zn-HPT)可以诱导C2C12细胞中GFP-MG53的易位(图19B),表明额外的Zn可诱导MG53功能的增强。该观察结果在野生型FDB肌肉纤维中得到了证实,因为将Zn-HPT加入至这些细胞中可以减少由UV激光诱导的损伤后可以内流入肌纤维的FM-1-43染料的量(图19C)。这些结果表明Zn的存在对于MG53的功能是至关重要的,并且表明提供额外的Zn可以增强MG53在膜重封中的功能。这些结果的意义在于,可以通过将Zn加入至MG53蛋白的制剂中而增强用于治疗应用的重组MG53蛋白的功能。
在mg53-/-骨骼肌中锌对膜修复的保护作用丧失。为了获得膜修复能力,从野生型(WT)小鼠(3-6个月)分离出单个趾短屈肌(FDB)肌纤维(图20a)。将引起肌肉局部损伤的强UV激光应用于FDB纤维(箭头)。将FM1-43荧光染料(2.5μM)的内流用作测量膜修复能力的指示剂。在UV照射后200s拍摄图像(对照)。2μM锌离子载体(1-羟基吡啶-2-硫酮)(+Zn-HPT)的应用导致膜修复能力增加,如通过UV-损伤后FM1-43染料的内流量减少所反映的。加入40μM的TPEN(四-2-吡啶基亚甲基二胺),一种用于锌离子的特异性缓冲液,导致膜修复能力受损,如通过UV-损伤(+TPEN)后FM1-43染料内流的显著增加所反映的。从mg53-/-小鼠(3-6个月)分离的FDB肌纤维表现出有缺陷的膜修复功能,如通过相同的UV-损伤处理后FM1-43染料的内流量增加所示(对照)(图20b)。与WT肌纤维不同,用mg53-/-肌纤维观察到的膜修复能力未表现出锌跨质膜移动变化的依赖性,例如,Zn-HPT的加入对膜修复(+Zn-HPT)未产生保护作用,并且具有TPEN的细胞外锌的缓冲在UV-损伤(+TPEN)后未产生更多的FM1-43染料的内流。图a和b的总结数据(图20c)。使用Ca-EDTA(100μM)(一种缓冲锌而不改变细胞外Ca浓度的试剂)的附加数据也引起WT肌肉中膜修复能力受损(左)。用Ca-EDTA进行处理未引起mg53-/-肌肉中膜修复能力产生任何显著变化。总体而言,这些数据表明锌跨质膜内流在急性UV激光诱导的WT骨骼肌损伤的修复中发挥重要作用。锌对于膜修复的保护作用在mg53-/-肌纤维中丧失,表明在急性膜修复过程中MG53可能作为锌的受体或靶标发挥作用。MG53中锌结合基序的示意图。MG53的氨基末端含有两个公认的锌结合基序:一个位于RING基序(a.a.1-56,人cDNA),并且另一个位于B-盒基序(a.a.86-117,人cDNA)。显示了参与锌结合的特定氨基酸(图20d)。
细胞外锌内流对于MG53介导的囊泡易位至急性膜损伤位点是必需的。为了追踪与修复急性膜损伤相关的细胞内囊泡易位的过程,GFP-MG53融合蛋白在C2C12成肌细胞中被表达(图21a)。GFP-MG53在静息条件下显示定位于细胞内囊泡和质膜(左)。通过微电极穿透产生的细胞的急性损伤引起在损伤位点处含MG53的囊泡的快速易位(箭头,右图)。将40μM的Ca-EDTA与C2C12细胞共孵育以防止在急性损伤位点含有GFP-MG53的囊泡的易位(图21b)。向细胞外溶液中加入20μM的TPEN也完全消除了含有GFP-MG53的囊泡向机械损伤位点的易位(图21c)。将用GFP-MG53瞬时转染的C2C12细胞与20μM的Zn-HPT共孵育。在对照条件(0min)下,GFP-MG53分布于胞质以及细胞内囊泡中(图21d)。延长与Zn-HPT的孵育,引起GFP-MG53向细胞表面膜和细胞内膜区室的重分布(15min)。Ca-EDTA和TPEN对C2C12成肌细胞中GFP-MG53介导的膜修复影响的总结数据(图21e)。结果显示,用Ca-EDTA或TPEN螯合细胞外锌在修复细胞的急性损伤方面产生了显著的缺陷。
Zn结合于MG53的RING基序和B-盒基序对于膜修复是关键的。为了理解锌结合于MG53在修复细胞膜的急性损伤中的作用的分子机制,我们在MG53的RING和B-盒基序中产生了几个位点特异性突变。将这些突变构建体在C2C12成肌细胞中瞬时表达(图22)。转染后24小时,收集细胞,且用抗MG53的特异性抗体通过蛋白印迹法测定各种GFP-MG53突变体的表达。在没有DTT的情况下(左图),除了C242A突变体外,所有其他构建体均表现出寡聚化模式(标记的二聚体),表明用这些突变构建体维持MG53的二硫键。通过加入10mM的DTT,所有突变构建体均表现为~75kD(GFP-MG53的预测分子大小)的单体形式。
在含有标称游离锌的细胞外溶液中,C2C12细胞中表达的GFP-C29L突变体表现为至急性损伤位点的有缺陷的移动(图50a)。加入2μm的Zn-HPT(其作为锌跨质膜内流的离子载体)可以部分地恢复GFP-C29L向急性损伤位点的移动。在含有标称游离锌的细胞外溶液中,C2C12细胞中表达的GFP-C105S突变体在微电极穿透后不能移动至急性损伤位点。与GFP-C29L相似,加入2μm的Zn-HPT可以导致GFP-C105S突变体的膜修复能力的部分恢复(例如,向损伤位点移动(图50b,右图)。在标称游离锌的条件下或在加入2μm的Zn-HPT后,C2C12细胞中表达的GFP-C29L/C105S双突变体完全丧失了急性膜损伤的修复能力(图50c)。RING基序(C29L)或B-盒基序(C105S)的单突变导致在具有标称游离锌的细胞外溶液中的膜修复能力表现出显著缺陷(图51)。加入Zn-HPT离子载体可以部分恢复这些单半胱氨酸突变体的膜修复能力。C29L/C105S双突变体的膜修复功能完全丧失,并且不依赖于锌跨质膜的移动。MG53的其他突变体的数据在表1中总结。总之,这些结果表明,锌结合于MG53的RING基序和B-盒基序在与膜损伤的修复相关的细胞内囊泡易位过程中发挥重要作用。
表1:MG53突变体的特性
MG53可以通过RING基序结合Zn。MG53包含含有Zn结合基序(Ring)和B盒基序的标准TRIM结构域(图23a)。细菌培养物通过超声处理被裂解、离心并在4度下与含有10uM锌的柱缓冲液中的直链淀粉树脂结合过夜(图23b)。然后在通过含0.3mM麦芽糖的50ml的无锌柱缓冲液后,通过无锌柱缓冲液洗涤树脂。如所示出的,通过SDS-PAGE凝胶确认蛋白水平和稳定性。泳道1(标志物)、泳道2(mMG53)、泳道3(mC29L-MG53突变体)、泳道4(mC29L/C105S双突变体DM克隆1)、泳道5(mC29L/C105S双突变体DM克隆2)、泳道6(10mg/ml BSA)、泳道7(5mg/ml BSA)、泳道8(2.5mg/ml BSA)、泳道9(1mg/ml BSA)。首先检测珠上的蛋白是否存在溶液中的游离锌(根据制剂,0.01至0.1μm或ND)(图23c)。珠(等分试样)用锌特异性探针TSQ染色,且在荧光显微镜下并采用相对荧光强度观察荧光。然后将蛋白在56℃下变性5min、涡旋、离心,并从溶液中再次进行测量。该检测使用TSQ(Mol探针)和锌(Sigma)的原子标准溶液进行校准。图表明了与重组野生型(WT)MG53、C29L突变体(C29L)和双突变体(DM)结合的Zn的量。两个突变体均位于TRIM结构域的Ring基序中。数据表示为平均值±S.D.。与wt相比,*P<0.05,**P<0.001;n=4~5。
锌结合于MG53的破坏与MG53介导的急性膜损伤的修复中的缺陷相关。为了直接监测锌在膜修复中的参与,将从野生型小鼠分离的FDB肌纤维负载2μM的TSQ,TSQ是一种在细胞内液中锌的特异性荧光指示剂(下图)(图24)。使用强UV激光以引起对FDB肌纤维的局部损伤,如通过FM4-64荧光染料在局部损伤位点的累积所反映的(上图)。请注意,在急性损伤位点观察到TSQ荧光的显著升高(因此,锌较多)。
通过从培养细胞分泌生产重组MG53蛋白。我们以前的方法是使用大肠杆菌在用于实验用途的水平下生产重组蛋白。这些实验台水平的(bench-level)制剂为我们的生化和体外细胞培养测定提供了初始试剂。为了提高hMG53制剂的产量和纯度,我们计划通过在涉及免疫亲和层析的Ni柱中添加额外的步骤来优化纯化方案。由于我们最初针对兔MG53蛋白产生的单克隆抗体不与人MG53结合,所以我们最近生产了针对hMG53而产生mAb的杂交瘤。该单克隆抗体(mAb 4A3F6F2)在蛋白印迹上检测人(和小鼠)MG53蛋白是非常有效的(图25)。该抗体在产生免疫亲和柱以改善我们的蛋白纯化方面应该是非常有用的。从大肠杆菌中纯化的蛋白有两个潜在的缺点,一个是细菌内毒素污染的可能性,另一个是缺乏翻译后修饰的机会,例如,在原核生物中的糖基化和磷酸化可能会阻止重组蛋白完全起作用。因此,我们已经研发了用于从培养的哺乳动物细胞生产重组MG53的另外的方法。为了实现这一点,我们还调整了用于生产其他商业蛋白治疗剂的方法,如用于癌症治疗的人源化单克隆抗体,其涉及从来自工程改造的CHO细胞的培养基中分泌的蛋白的纯化。hGM53的氨基末端的信号肽使得重组MG53作为分泌蛋白输出。蛋白印迹表明,可以从工程改造的hMG53cDNA瞬时转染的CHO细胞的条件培养基中纯化出大量的MG53蛋白。这种方法被FDA普遍接受。我们正在建立表达MG53作为分泌产物的稳定的CHO细胞系的过程中,以产生广泛用于治疗的重组MG53,以保护皮肤、心脏和肌肉细胞免受损伤。
重组MG53的表达可以在真核细胞或原核细胞中进行。图26说明重组MG53可以在真核或原核系统中表达。简而言之,重组MG53作为含有TAT肽部分和6个组氨酸标签(6-HIS标签)的融合蛋白在Sf9细胞中表达。该组氨酸标签可使用本领域熟知的过滤色谱技术分离和纯化重组蛋白。图(A)显示了使用Ni-NTA柱从Sf9细胞分离的重组人MG53蛋白(箭头)片段的考马斯蓝染色凝胶。输入=细胞提取物,FT=流出液,M=标志物,E=洗脱次数。(B)从Sf9细胞分离的重组人TAT-MG53(箭头)的考马斯蓝染色凝胶。(C)中的考马斯蓝染色凝胶表示从大肠杆菌中表达和分离的重组小鼠TAT-MG53(箭头)。
图27示出了hMG53的氨基末端的信号肽使得重组MG53作为分泌蛋白输出。蛋白印迹显示,可从经工程改造的hMG53cDNA瞬时转染CHO细胞的条件培养基中纯化出大量的MG53蛋白。
在用Flag-MG53融合蛋白构建体和一系列HA-MG53融合蛋白突变体转染的HEK293 细胞中进行的免疫共沉淀(Co-IP)实验。用抗Flag抗体在全细胞提取物上进行Co-IP,随后用抗HA抗体进行蛋白印迹(图28a)。抗Flag抗体可以沉降野生型MG53和用HA标签的所有保守性半胱氨酸残基MG53突变体,表明MG53蛋白结合以形成二聚体,并且该结合不依赖于半胱氨酸残基的氧化。Co-IP实验显示MG53二聚体的形成需要卷曲螺旋结构域的存在(图28a)。HEK293细胞与HA-MG53融合蛋白构建体和一系列GFP-MG53融合蛋白突变体进行共转染,包括仅含有与GFP连接的MG53的卷曲螺旋结构域(GFP-CC)的构建体。将抗HA抗体用于从全细胞提取物中进行Co-IP,并通过蛋白印迹用抗GFP抗体分析得到的蛋白。
MG53在人细胞系中的异源表达对急性损伤产生膜修复。图29证明重组MG53可以在异源表达系统中表达,并在无另外的蛋白表达的情况下保持其修复细胞膜损伤的能力。特别地,将MG53克隆到作为具有红色荧光蛋白(RFP)的融合蛋白的表达载体中。将融合蛋白在人胚胎肾细胞系(HEK293成纤维细胞系)中表达,并将细胞修复膜损伤的能力与仅表达RFP的细胞进行比较。图(a)证明稳定表达RFP(红色荧光蛋白)对照蛋白的细胞系表现出胞质表达模式。然而,在仅表达RFP的HEK293细胞中(图29a),用微电极损伤未引起RFP易位至损伤位点(箭头)。细胞外缓冲液(*)的过度内流会发生FRP荧光的部分脱除。相比之下,稳定表达RFP-MG53的HEK293细胞(图29c)显示定位于细胞内囊泡。表达RFP-MG53的HEK293细胞的微电极损伤(图29d)导致MG53在不到90秒内大量易位至损伤位点(箭头)。该结果证明重组MG53可用于修复任何细胞环境中的细胞和/或组织损伤。尽管重组MG53在异源系统中表达时能够修复对细胞膜的损伤,但本发明并不限于此。在某些实施方式中,本发明包括共表达MG53和小窝蛋白-3以促进膜修复从而治疗或预防组织损伤的方法。在另一种实施方式中,本发明涉及一种治疗组合物,该治疗组合物含有TAT-MG53多肽和TAT-小窝蛋白-3多肽;或具有或不具有连接于两种蛋白之一的另外的蛋白标签的MG53和小窝蛋白-3多肽。
三七的活性组分可以促进MG53-膜修复功能。GFP-MG53在C2C12细胞中表达,然后用三七的醇提取物对这些细胞进行灌流。如在图30中可以看出,这种活性组分的应用在灌流后2分钟内可以快速诱导MG53易位至质膜。用载体对照未观察到这种快速反应,表明三七能够潜在地加强MG53膜修复功能。基于这一观察,我们推断,MG53和三七的组合疗法可以提供预防细胞炎症和膜损伤的附加保护作用,并且因此当与重组MG53蛋白联合应用或当单独用作药物补充剂时,可以改善MG53的功能。
三七(Panax notoginseng)是广泛用于治疗多种不同疾病的传统中草药的重要组分。这种草药经常使用在果实成熟后收获的植物根。这种草药的天然产地在西南亚,主要在中国云南省。李时珍(公元1518-1593年)在本草纲目(Materia Medica)中强调了三七在传统药物中的重要性,称其“比黄金更有价值”。三七以治疗剂量使用的悠久历史强调了这种草药化合物已证实的安全性和有效性。
由于其具有能够控制内出血和外出血的能力,三七在创伤治疗中特别受到重视(JNat Med.2006 60:135)。与安慰剂对照相比,三七提取物可以缩短出血时间且更有效地改善止血。其他研究已表明通过降低血压、改善血液供给和提供防止休克的保护而对心血管系统显示有益的作用。许多研究还表明,三七作为许多组织中广泛的炎症抑制剂使用。由于这些发现,三七越来越成为补充和替代医学(CAM)研究的重点。我们已经检测了三七对MG53的膜修复功能的影响。在C2C12细胞中表达GFP-MG53,随后用三七醇提取物灌流这些细胞。如图30中可以看出,这种活性组分的应用在灌流后2分钟内可以快速诱导MG53易位至质膜。用载体对照没有观察到这种快速反应,表明三七能够潜在地加强MG53膜修复功能。基于这一观察,我们推断,MG53和三七的组合疗法可以提供预防细胞炎症和膜损伤的附加保护作用,并且因此当与重组MG53蛋白联合应用或当单独用作药物补充剂时,可以改善MG53的功能。
通过外部施用MG53来修补质膜。图31中示出了重组MG53作为组织修复试剂的治疗用途。我们以前的实验显示,在细胞内表达的MG53可以增加对细胞损伤的抗性,但是我们尚未证实外部施用的蛋白可以在损伤后重封质膜。为了证实这是否是事实,我们分离了在HEK293细胞中表达的RFP-MG53(含有红色荧光蛋白的MG53融合蛋白),并将该蛋白提取物施用于正在培养的C2C12成肌细胞周围的外部培养基。用微电极造成细胞机械性创伤,同时通过共聚焦显微镜观察融合蛋白的定位。RFP-MG53在发生重封的损伤位点有明显的累积(图31)。这些结果表明,MG53蛋白可以外部施用于细胞,并在重封受损膜方面保持有效。该发现对MG53作为治疗性蛋白的应用具有重要的影响。通过在损伤时仅在细胞外提供该蛋白,MG53可以促进膜的重封并防止细胞损伤。这种方法将显著简化MG53的制剂成为有效的治疗化合物。
MG53的基因过表达可以防止膜损伤。用RFP-MG53或RFP转染人胚胎肾(HEK293)细胞,然后用不同强度的电场进行电穿孔(图32)。通过评估乳酸脱氢酶(LDH)从由电穿孔而产生的质膜中的孔渗漏出至细胞外培养基中的量来测量膜损伤的量。膜发生损伤越严重,LDH测定的读数将越高。我们观察到用RFP-MG53转染的HEK293细胞可以在电穿孔后更有效地重封其膜,并防止LDH渗漏到细胞外溶液。因此,外源性MG53在非肌肉细胞中的表达可以增加这种非肌肉细胞中细胞膜修复的能力。
荧光染料内流可用于测量电穿孔后的膜损伤。将人胚胎腭间充质(HEPM)细胞(1×106)置于PTI荧光系统的旋转比色皿中(图33)。将FM1-43染料添加至细胞外,并用479nm的激发光和598nm的发射光显示最小的荧光。当细胞以50V/cm或100V/cm的电场强度进行电穿孔时,检测出荧光呈剂量依赖性增加。电穿孔在不存在染料的细胞中未产生自发荧光(对照)。
荧光染料内流可用于测量机械损伤后的膜损伤。将人胚胎腭间充质(HEPM)细胞(1×106)置于PTI荧光系统的旋转比色皿中(图34)。将FM1-43染料添加至细胞外,并用479nm的激发光和598nm的发射光显示最小的荧光。将细胞从比色皿中取出(倾倒,Pour),用28号针头对其进行剪切(Shear),导致FM1-43荧光增加。机械剪切应力在不存在染料的细胞中未产生自发荧光(对照)。
重组MG53可以保护肾细胞免受细胞膜损伤。(a)用10μg/mL重组人MG53或溶剂对照处理HEK293细胞(8×104),然后以各种场强进行电穿孔(图35)。细胞外重组MG53可以防止电穿孔损伤。(b)将MG53或溶剂对照加入至重组LDH中以产生LDH活性的标准曲线。由于MG53不影响LDH反应,所以LDH测定对于在这些条件下测量膜损伤是有效的。
重组MG53可以保护龈衬里细胞免受细胞膜损伤。(a)用10μg/mL重组人MG53或溶剂对照处理HEPM细胞(5×104),然后以各种场强进行电穿孔(图36)。细胞外重组MG53可以防止电穿孔损伤。(b)将MG53或溶剂对照加入至重组LDH中以产生LDH活性的标准曲线。由于MG53不影响LDH反应,所以LDH测定对于在这些条件下测量膜损伤是有效的。
重组MG53可以保护肾细胞免受机械细胞膜损伤。用玻璃微珠处理HEK293细胞(8×104)以诱导机械损伤(图37)。当将玻璃微珠加入到培养基中时,将不同剂量的重组人MG53或溶剂对照应用于样品。将细胞在轨道振荡器上旋转,然后分析上清液的LDH水平。我们发现MG53可以防止机械性膜损伤,并且10ug/mL可能是该蛋白的饱和剂量。
MG53的作用特异于蛋白的功能。MG53被证明在重封由于暴露于玻璃珠而产生的Hela宫颈上皮细胞的损伤时是有效的(图38)。当重组蛋白被煮沸时,该蛋白不能再促进膜重封。这表明重封活性对MG53蛋白的功能是特异性的,这依赖于蛋白的适当构象。
氮芥诱导的对人角质细胞的膜损伤可以通过MG53进行预防。各种剂量的氮芥(皮肤起泡剂)可以从原代人角质细胞产生LDH释放(图39)。这种损伤部分可通过在暴露后施加重组蛋白并去除氮芥而避免。插图示出了暴露于皮肤起泡剂的效果。
外部施加的重组MG53需要磷脂酰丝氨酸(PS)结合以重封受损膜。用重组人MG53或溶剂处理HEK293细胞,并在玻璃微珠(黑色柱)的存在下通过振荡损伤细胞(图40)。通过在488nm下记录的比色测定记录的细胞的LDH释放来测量膜损伤。用磷脂酰丝氨酸(PS)同时处理细胞可以防止质膜的重封。因此,MG53必须能够在损伤的细胞上结合暴露的PS,以便促进膜修复。*p<0.05。
与另一种磷脂酰丝氨酸(PS)结合蛋白的竞争表明,外部施加的重组MG53需要PS结合以重封损伤的膜。用重组人MG53或溶剂处理HEK293细胞,并在玻璃微珠(黑色柱)的存在下通过振荡损伤细胞(图41)。通过在488nm下记录的比色测定记录的细胞的LDH释放来测量膜损伤。用过量(5:1)的磷脂酰丝氨酸(PS)结合蛋白(Annexin V)同时处理细胞可以阻止质膜的重封。因此,MG53必须能够结合受损细胞上暴露的PS,以便促进膜修复。*p<0.05。
MG53可以在多种不同的人细胞类型中修补质膜,并防止细胞死亡。为了检测外源性MG53是否可以重现非肌肉细胞类型中的膜重封功能,我们使用腺病毒或基于脂质体的转染方法以在多种不同细胞类型中表达GFP-MG53。在所有检测的细胞类型中,MG53以如肌肉细胞中所见的相似的方式起作用。在此,我们在无限繁殖的人细胞系,包括HEK293(未示出)和人胚胎腭间充质(HEPM)牙细胞(图43)以及原代人角质细胞培养物(图42)中阐释了这些作用。GFP-MG53不仅在这些细胞类型中适当地定位,还可以在通过微电极的物理穿透或用皂角苷去垢剂进行处理造成的膜损伤后有效地易位至质膜。MG53的功能似乎对于膜修补和损伤后肌细胞的存活是必要的。因此,在不同细胞类型中提供MG53可以重现MG53在膜重封中的功能,表明MG53对除了肌肉骨骼和心血管系统之外的多种不同组织均具有治疗潜能。
脂多糖可诱导HEPM细胞中的膜损伤,其可以通过暴露于MG53而避免。当用LPS(1mg/mL)处理HEPM细胞24小时后,可以观察到LDH释放,表明膜损伤已经发生(图44)。MG53的施加可以阻止正常水平的LDH从HEPM细胞中释放,而与LPS和MG53共孵育则表现为LDH从细胞中的正常释放。这表明MG53可以避免由LPS产生的HEPM细胞的损伤。
MG53可以易位至胃细胞中的膜修复位点。用GFP-MG53转染人胃腺癌(AGS)细胞,然后通过微电极针穿刺(上图)或用0.005%皂角苷处理以使膜透化(下图)从而造成机械膜损伤(图45)。通过活细胞共聚焦显微镜监测GFP-MG53向损伤位点(箭头)的易位。在这两种情况下,细胞膜损伤均引起MG53易位至质膜。
MG53可以易位至神经细胞中的膜修复位点。用GFP-MG53转染小鼠原代星形胶质细胞,然后通过微电极针穿刺(上图)或用0.005%皂角苷处理以使膜透化(下图)从而造成机械膜损伤(图46)。通过活细胞共聚焦显微镜监测GFP-MG53向损伤位点(箭头)的易位。在这两种情况下,细胞膜损伤均引起MG53易位至质膜。
MG53可以易位至气道上皮细胞中的膜修复位点。用GFP-MG53转染的人C38气道上皮细胞,然后通过微电极针穿刺(上图)或用0.005%皂角苷处理以使膜透化(下图)从而造成机械膜损伤(图47)。通过活细胞共聚焦显微镜监测GFP-MG53向损伤位点(箭头)的易位。在这两种情况下,细胞膜损伤均引起MG53易位至质膜。
外部MG53可以重封气道上皮细胞中的膜损伤。人IB3气道上皮细胞用外部重组人MG53或溶剂对照进行处理,然后暴露于由玻璃珠引起的机械性膜损伤。(图48)。通过在488nm下记录的比色测定记录的细胞的LDH释放来测量膜损伤。MG53可以防止由于机械损伤引起的细胞膜损伤。*p<0.05。
MG53可以易位至免疫细胞中的膜修复位点。用GFP-MG53转染小鼠白血病单核细胞巨噬细胞(RAW 264.7)细胞,然后通过微电极针穿刺(上图)或用0.005%皂角苷处理以使膜透化(下图)从而造成机械膜损伤(图49)。通过活细胞共聚焦显微镜监测GFP-MG53向损伤位点的易位(箭头)。在这两种情况下,细胞膜损伤均引起MG53易位至质膜。
图50示出了本发明人目前关于对MG53介导的膜修复机制的假设。虽然不限于任何特定的理论,但实验证据表明,MG53可能由于其与含磷脂酰丝氨酸的囊泡的结合而定位于质膜的内表面。在正常条件下,MG53很可能是单体,并由于与其他蛋白结合而在邻近膜表面被螯合。细胞膜MG53损伤后,通常处于其还原形式的MG53暴露于局部氧化环境,其触发形成二硫键和分子间MG53寡聚化。MG53的寡聚化使含磷脂酰丝氨酸的囊泡于损伤位点聚集。
这些研究证明,MG53是细胞膜修复机制的关键组分,如通过mg53-/-肌肉的膜修复功能中的显著缺陷所示。MG53介导的膜修补反应在损伤后大约几秒钟内迅速发生,因此MG53似乎介导急性修复过程。为了使MG53在膜修复中发挥作用,MG53必须寡聚化,该过程依赖于蛋白的氧化而不是细胞外Ca2+的内流。细胞外Ca2+可能在囊泡已经通过氧化激活的MG53易位而移至质膜后以促进囊泡融合。通过与PS的相互作用,MG53寡聚化提供了将细胞内囊泡募集至损伤位点的成核位点(图50)。这两步过程对于保持细胞完整性至关重要。因此,调节细胞周围的胞外氧化状态或用于膜重封的Ca2+将有可能构成用于改善细胞膜修复能力的方法。
MG53敲除小鼠表现出肾病理表型。尽管Mg53-/-小鼠在年轻时(直至10周)存活并表现正常,但出生后20周观察到蛋白尿(图53a)。在基础条件下,与野生型(wt)同窝出生的小鼠相比,Mg53-/-小鼠显示出更高的尿蛋白与肌酐比(Up/Uc)(图53b)。此外,在Mg53-/-小鼠中血清肌酐(SCr)水平显著升高(图53c)。我们还筛选了Mg53-/-小鼠的尿,未发现明显的血尿、白细胞尿、糖尿和蛋白尿。这些数据表明,Mg53-/-小鼠没有显示典型的范科尼(Fanconi)综合征(22)。
与wt肾相比,Mg53-/-肾的内皮层显示出病理学症状,具有明显的空泡化和无组织的潴泡(图53d)。苏木精-曙红(H&E)染色显示Mg53-/-肾中的间质隔室扩大(图53e)。平均来说,Mg53-/-肾中的管间间隔比wt肾中的大~2.5倍(图53g)。透射电子显微照片表明了源自Mg53-/-肾的PTE细胞的顶面处的无组织的微绒毛和刷状缘(图53f),表明PTE细胞可能存在缺陷。
在内皮层和外髓质之间的连接区域中观察到显著的病理学发现,其中PTE细胞显示出无组织的线粒体、异常出现的刷状缘以及在基底膜附近频繁出现的空泡(参见补充图60)。从Mg53-/-小鼠检测的~20%的PTE细胞中观察到这些缺陷性结构,但在wt小鼠的肾中很少见。在对Mg53-/-肾小球进行超结构分析后,发现足细胞如足突融合或肾小球基底膜脱离中无缺陷(图60)。因此,Mg53的基因消融导致肾小管间质缺陷,但不影响肾小球。
MG53在近端小管细胞中表达并介导膜修复。由Mg53-/-小鼠表现出的肾病理学症状引导我们考察MG53是否在肾中表达。我们进行定量免疫印迹并且发现MG53以在肌肉组织中大体上~1/40的表达水平存在于wt小鼠的肾裂解物中,但不存在于Mg53-/-小鼠的肾裂解物中(图54a)。进一步的组织分离显示,内皮层是MG53表达的主要位点,因为MG53在髓质区域几乎不可检测(图54a)。使用源自小鼠的原代培养的PTE细胞和来自大鼠的分离的肾小球和PTE,我们发现MG53在PTE细胞中但不在肾小球中特异性地表达(图54b)。MG53的细胞型特异性表达通过使用作为PTE标志物的E-钙粘蛋白和作为肾小球细胞标志物的肾升压素的免疫印迹来证实。我们还用人组织进行了蛋白印迹,并且发现MG53可以在肾中检测到,但不能在膀胱中检测到(图54c)。
用GFP-MG53转染源自Mg53-/-新生鼠的PTE细胞,具有绿色荧光蛋白(GFP)的融合构建体被加入到MG53的氨基末端,以考察MG53参与修复膜损伤的程度。如图54d所示,PTE细胞中的GFP-MG53定位于胞质、细胞内囊泡和质膜,亚细胞分布与在横纹肌中观察到的类似(C.Cai等人,MG53 nucleates assembly of cell membrane repair machinery.Nat CellBiol 11,56-64(2009))。为了应对由微电极穿透质膜引起的损伤,GFP-MG53快速易位至急性损伤位点(图54d)。这种GFP-MG53易位至PTE细胞中的膜损伤位点与在C2C12、HEK293和其他细胞类型中观察到的类似(C.Cai等人,MG53 nucleates assembly of cell membranerepair machinery.Nat Cell Biol 11,56-64(2009);N.Weisleder等人,RecombinantMG53 protein modulates therapeutic cell membrane repair in treatment ofmuscular dystrophy.Sci Transl Med 4,139ra185(2012))。
在人PTE细胞中重现MG53易位至细胞膜损伤的位点。HKC-8细胞是由Racusen等人(L.C.Racusen等人,Cell lines with extended in vitro growth potential fromhuman renal proximal tubule:characterization,response to inducers,andcomparison with established cell lines.J Lab Clin Med 129,318-329(1997))构建的无限繁殖的人肾近端小管细胞系,并被广泛用作肾研究的示范系统。使用HKC-8细胞,我们发现GFP-MG53移动至由质膜的机械扰动诱导的急性损伤的位点(参见图61)。此外,转染的GFP-C242A,MG53的突变形式不能针对急性细胞损伤后的环境氧化还原变化而寡聚化(C.Cai等人,MG53 nucleates assembly of cell membrane repair machinery.Nat CellBiol 11,56-64(2009)),无法在机械损伤的HKC-8细胞中形成修复膜片。这些研究表明,MG53促进膜修复机制以氧化还原依赖性方式在人肾细胞中的急性细胞损伤位点成核,这与我们对小鼠肾小管细胞所显示的类似。
当比较源自wt和Mg53-/-小鼠的PTE细胞对机械损伤的敏感性时,观察到惊人的现象。如图54e所示,wt PTE细胞能够在微电极穿透过程中存活(上图),而Mg53-/-PTE细胞在损伤的10秒内总是死亡(下图)。平均而言,~93%的wt细胞存活,但大部分的Mg53-/-细胞迅速死亡。该结果反映了膜修复能力的缺陷,因为通过基因转染恢复MG53可增加Mg53-/-PTE细胞的存活(图54f)。
另一个有趣的观察结果与扫描电子显微镜下检查的Mg53-/-PTE细胞的形态变化有关。如补充图62所示,源自wt小鼠的PTE细胞在顶面显示出特征性的微绒毛和从质膜延伸出的丝状伪足(图62a和b),而Mg53-/-PTE细胞则显示出显著较少的微绒毛和无组织的丝状伪足结构(图62c和d)。
在缺血/再灌注下,Mg53-/-小鼠表现出加重的肾损伤。为了检测MG53介导的PTE细胞的损伤修复是否有助于维持生理和病理生理条件下的肾功能,我们比较了Mg53-/-小鼠和wt同窝出生小鼠对缺血/再灌注(I/R)诱导的AKI的反应(图55)。H&E和PAS染色表明,Mg53-/-小鼠在基础条件下发生肾病理学症状(对11周龄小鼠进行假手术)(图55b)。经历I/R肾损伤(25分钟缺血)的动物显示出夸张的管状损伤,如管腔内的透明管型的增加和核丢失表明的急性管坏死(ATN)(图55b)。I/R肾损伤后在每个时间点Mg53-/-小鼠中的Up/Uc显著增加(图55c),并且SCr测量显示I/R损伤后5天肾功能受损(图55d)。总之,在基础条件(假手术)下,Mg53-/-肾显示管间间隔扩大,并且I/R治疗导致ATN表型显著升高。这些数据显示,MG53缺乏导致I/R诱导的AKI的恶化。
rhMG53蛋白识别PTE细胞上的损伤位点以促进肾保护。我们以前表明,当应用于细胞外环境时,rhMG53蛋白保护各种细胞类型免受细胞膜破坏(N.Weisleder等人,Recombinant MG53 protein modulates therapeutic cell membrane repair intreatment of muscular dystrophy.Sci Transl Med 4,139ra185(2012))。此外,rhMG53的给药提供了对肌肉细胞损伤的剂量依赖性保护,并且改善了与肌营养不良相关的病理学症状(N.Weisleder等人,Recombinant MG53 protein modulates therapeutic cellmembrane repair in treatment of muscular dystrophy.Sci Transl Med 4,139ra185(2012))。rhMG53与膜破坏位点的结合需要识别基于脂质的信号,并且我们以前的发现表明,MG53可以结合磷脂酰丝氨酸(PS)(N.Weisleder等人,Recombinant MG53 proteinmodulates therapeutic cell membrane repair in treatment of musculardystrophy.Sci Transl Med 4,139ra185(2012)),其是通常被隔离在损伤后可能暴露于细胞外环境的质膜的内叶中的磷脂。因此,rhMG53与在组织损伤位点暴露的PS的结合可能为rhMG53的组织保护功能提供了锚定机制。
当将rhMG53应用于培养的肾上皮细胞时,其靶向于细胞膜上的急性损伤位点,并促进对缺氧-复氧反应导致的膜损伤的修复。如图56所示,在缺氧/复氧(A/R)损伤后观察到PTE细胞的质膜处rhMG53和Annexin V的共定位(图56,底图)。未损伤的PTE细胞对于用rhMG53或Annexin V染色显阴性(图56,顶图)。作为对照,与BSA培养的PTE细胞既不显示质膜靶向性也不显示BSA的细胞内定位(图56,中图)。
rhMG53保护缺血/再灌注(I/R)诱导的AKI。基于对培养的肾上皮细胞的研究,我们检测了rhMG53是否对动物模型中I/R诱导的AKI具有有效的保护作用。我们首先用半定量免疫印迹法考察了rhMG53在健康Sprague-Dawley大鼠中达到PTE细胞的肾小球通透性(图63a)。通过尾静脉注射将多种剂量的rhMG53给药至大鼠,并在静脉内(i.v.)给药后1.5-6小时测量rhMG53向尿中的排泄。显然,在尿中可以检测到rhMG53,这表明rhMG53可渗透过健康的肾小球。对于I/R诱导的AKI,使用非闭塞血管夹钳将大鼠的肾蒂夹闭以及对侧肾切除术造成左肾缺血35分钟。rhMG53(2mg/kg)静脉注射给药两次,一次在肾动脉夹闭之前,并且一次在肾动脉夹闭恢复之后。通过免疫组织化学(IHC),抗MG53抗体在I/R诱导的肾损伤后2小时检测到rhMG53呈离散的围腔管状模式分布(图63b)。来自BSA治疗或假手术的大鼠的肾中未检测到rhMG53染色。各种肾隔室的扩展研究表明,rhMG53主要集中在近端小管中具有丰富分布的内皮层和外髓质的交界处,并且在肾小球中未检测到rhMG53。这些结果表明I/R诱导rhMG53募集至损伤的肾上皮细胞。
当与I/R损伤后不同时间的溶剂处理组相比时,在rhMG53处理的大鼠中观察到减少的白蛋白尿(Ualb/Uc)(图57a)。在接受rhMG53治疗的大鼠中也观察到SCr水平的显著降低(图57b)。肾损伤分子-1(KIM-1)是在肾PTE细胞上表达的磷脂酰丝氨酸(PS)受体,该受体已被广泛用作肾损伤的生物标志物(T.Ichimura等人,Kidney injury molecule-1is aphosphatidylserine receptor that confers a phagocytic phenotype on epithelialcells.J Clin Invest 118,1657-1668(2008);Q.Lin等人,Kidney injury molecule-1expression in IgA nephropathy and its correlation with hypoxia andtubulointerstitial inflammation.Am J Physiol Renal Physiol 306,F885-895(2014))。KIM-1的IHC染色表明,当与溶剂对照相比时,在I/R诱导的肾损伤后5天,rhMG53的静脉注射给药导致KIM-1阳性PTE细胞的减少(图57c)。在H&E染色的组织病理学分析中,rhMG53介导的肾脏病理学改善也是明显的(图57d)。基于KIM-1染色(图57c),我们量化了图57e中的管状损伤程度。显然,rhMG53的给药改善了I/R诱导的大鼠AKI。如假手术组大鼠的健康肾所显示的,rhMG53无明显毒性(图57c,57d)。这些结果共同证明了rhMG53对I/R诱导的AKI的发展具有肾保护作用。
rhMG53保护顺铂诱导的AKI而不影响其肿瘤抑制功能。为了检测rhMG53-PS相互作用是否有助于MG53在AKI中的肾保护作用,我们使用肾毒素诱导的AKI作为另一种动物模型。顺铂是广泛用于治疗癌症的化疗剂,并且也被称为肾毒素,因为它对癌症患者的肾功能有不利影响(R.Safirstein等人,Cisplatin nephrotoxicity.Am J Kidney Dis 8,356-367(1986);K.U.Wensing等人,Saving ears and kidneys from cisplatin.AnticancerRes 33,4183-4188(2013))。虽然顺铂在肿瘤抑制中的作用机制涉及DNA合成活性的插入和破坏(R.P.Miller等人,Mechanisms of Cisplatin nephrotoxicity.Toxins(Basel)2,2490-2518(2010);U.M.Ohndorf等人,Basis for recognition of cisplatinmodifiedDNA by high-mobility-group proteins.Nature 399,708-712(1999)),但还有几项研究表明,PS和顺铂之间的高亲和力相互作用似乎有助于其肾毒性的某些方面(G.Speelmans等人,Cisplatin complexes with phosphatidylserine in membranes.Biochemistry 36,10545-10550(1997);M.Jensen等人,Cisplatin interaction with phosphatidylserinebilayer studied by solid-state NMR spectroscopy.J Biol Inorg Chem 15,213-223(2010))。
顺铂诱导的PS分布的变化可能与I/R诱导的细胞膜损伤具有一些共同的特征,其中增加的氧化应激和脂质过氧化可能导致质膜的分解和PS在细胞外空间出现(J.H.Kramer等人,Lipid peroxidation-derived free radical production and postischemicmyocardial reperfusion injury.Ann N Y Acad Sci 723,180-196(1994))。使用培养的PTE细胞,我们发现顺铂处理导致PS在细胞表面膜的暴露,如通过用FITC-Annexin V的免疫染色所证明的那样。此外,在PTE细胞上的顺铂诱导的损伤位点可以观察到rhMG53和Annexin V的共定位(图58)。虽然对照PTE细胞对rhMG53或Annexin V染色显示阴性(图58,顶图),但是暴露于顺铂的细胞显示rhMG53和Annexin V的阳性染色(图58,底图)。除了在质膜定位(与Annexin V的重合模式),rhMG53在暴露于顺铂之后也进入PTE细胞。用BSA培养的细胞在对照条件下或顺铂处理后均未显示质膜靶向性和BSA的细胞内定位(图58,中图)。这些数据为PS功能作为rhMG53的组织保护功能的重要脂质信号的概念提供支持。
按照已建立的鼠肾毒素诱导的AKI(32)方案,我们通过腹腔(i.p.)注射使用30mg/kg顺铂处理C57BL/6小鼠。该处理导致AKI发生,如在顺铂处理的动物中出现ATN的病理特征所证明的那样(图59a)。为了检测rhMG53是否可以对顺铂诱导的AKI产生保护作用,在腹腔注射顺铂之前10min通过静脉注射rhMG53治疗动物。如图59b和59c所示,在接受rhMG53治疗的动物中观察到Up/Uc和SCr的显著改善,表明rhMG53有效预防顺铂的肾毒性作用。这些结果为靶向修复PTE损伤作为缓解顺铂的肾毒性作用的潜在机制提供支持。
为了评估rhMG53是否干扰顺铂诱导癌细胞死亡的功效,进行以下两项研究。使用培养的鼠胰腺肿瘤细胞(KPC-Brca1)(R.Shakya等人,Hypomethylating therapy in anaggressive stroma-rich model of pancreatic carcinoma.Cancer Res 73,885-896(2013);R.Shakya等人,BRCA1tumor suppression depends on BRCT phosphoproteinbinding,but not its E3ligase activity.Science 334,525-528(2011))在MTT测定中,我们发现与50μg/ml rhMG53共孵育不影响药物处理后48小时顺铂诱导的癌细胞死亡的IC50(图59d)。然后,我们使用胰腺癌同种异体移植模型检测共注射rhMG53是否改变顺铂的肿瘤抑制功能。如图59e所示,顺铂(6mg/kg,腹腔注射)有效地抑制接种至裸鼠的KPC-Brca1肿瘤细胞的生长。在接受rhMG53和顺铂共同治疗的动物中,肿瘤生长模式没有差异。因此,rhMG53的肾保护功能似乎并没有干扰顺铂治疗肿瘤细胞的功效。
示例性方法
MG53的鉴定和克隆-之前已经描述了用于兔骨骼肌的微粒体蛋白的mAb文库的制备和筛选。mAb5259(IgG1亚类)的制备和免疫亲和纯化如前所述(21)并实施。将已纯化的MG53进行氨基酸序列分析,测定的全部序列均编码于兔MG53cDNA中(数据未示出)。使用兔的部分氨基酸序列在数据库中的同源性搜索发现小鼠和人MG53。从小鼠基因组DNA扩增小鼠MG53基因的外显子区,并且使用32P标记的外显子片段筛选兔和小鼠骨骼肌文库,以得到全长cDNA。
免疫组织化学和免疫染色分析-如前所述,使用mAb5259进行免疫化学分析。如前所述,使用结合有15nm金颗粒二抗的免疫电子显微镜进行检查。
细胞培养-用于所有研究的C2C12鼠成肌细胞细胞系购自美国典型培养物保藏中心(American Type Culture Collection)(Manassas,VA)。细胞在37℃和5%CO2的潮湿环境中,在补充有10%胎牛血清、100单位/ml青霉素和100μg/ml链霉素的CHO细胞的C2C12的DMEM培养基中或Ham's F12培养基中生长。为了诱导肌管分化,将C2C12成肌细胞生长至汇合,并将培养基切换为含有2%马血清、青霉素(100U/ml)和链霉素(100μg/ml)的DMEM。对于瞬时转染,将C2C12成肌细胞或CHO细胞以70%汇合率接种于玻璃底培养皿中。24小时后,使用GeneJammer试剂(Stratagene)用上述质粒转染细胞。细胞在转染后24-48小时或在指定的时间(对于单次实验而言)通过活细胞共聚焦成像观察。在一些实验中,可在观察前的指定时间使C2C12成肌细胞分化为肌管。
质粒构建-通过PCR产生全长小鼠MG53cDNA和相关的截短突变体。为了构建pCMS-MG53,经适当的限制酶消化后,将PCR扩增的cDNA插入到Nhe I/Xba I位点的pCMS-EGFP载体(Invitrogen)中。为了构建GFP-MG53、GFP-TRIM、GFP-SPRY、MG53-GFP、TRIM-GFP和SPRY-GFP,将PCR产物插入到XhoI/XbaI位点的pEGFP-C1中或XhoI/KpnI位点的pEGFP-N1中。
活细胞成像-为了监测GFP-MG53的细胞内运输,在玻璃底培养皿(BioptechsInc.)中培养CHO或C2C12细胞,并用上述质粒转染。使用具有63X 1.3NA油浸物镜的BioRad2100辐射激光扫描共聚焦显微镜,以3.18s/帧捕获荧光图像(512x512)。
RNAi测定-,用于MG53的shRNA敲除的靶序列位于小鼠MG53cDNA中的位点622-642(GAG CTG TCA AGC CTG AAC TCT)。对于小窝蛋白-3,靶序列位于位点363-380(GAC ATTCAC TGC AAG GAG ATA)。合成互补的正义和反义寡核苷酸。为了构建MG53 shRNA和对照质粒,将退火的寡核苷酸在Acc65I/Hind III限制酶位点处插入psiRNA-hH1GFPzeo G2(InvivoGene)中。对于小窝蛋白-3 shRNA和对照质粒,将退火的寡核苷酸在EcoR I/BamH I限制酶位点处插入pRNAiDsRed载体(BD Biosciences)。每个载体都具有独立的荧光蛋白表达盒(绿色或红色)用作细胞转染的标记。用侧翼引物通过直接测序确认所有质粒,并通过蛋白印迹分析来检测MG53和小窝蛋白-3蛋白表达的下调。
蛋白印迹和免疫共沉淀-免疫印迹使用标准技术。简单而言,在蛋白酶抑制剂(Sigma)的混合物存在下,收集C2C12或CHO细胞并用冰冷的改良RIPA缓冲液(150mM NaCl、5mM EDTA、1%NP40、20mM Tris-HCl,pH7.5)裂解。在4-12%SDS-聚丙烯酰胺凝胶上分离20μg的总蛋白。按照标准规程进行MG53和相互作用蛋白如小窝蛋白-3的免疫共沉淀研究。简单而言,将骨骼肌组织或C2C12肌管在0.5ml改良RIPA缓冲液中裂解。将全细胞裂解物(500μg)与5μg多克隆抗MG53(多克隆抗体)或抗小窝蛋白-3抗体(mAb)孵育过夜。作为阴性对照,将500μg全细胞裂解物与5μg正常兔和小鼠IgG共孵育,并如上所述进行处理。通过孵育2小时,在蛋白G-琼脂糖珠上收集免疫复合物,并用RIPA缓冲液洗涤4次。
试剂、人组织标本和细胞-重组人MG53(rhMG53)蛋白按照我们公开的方案从大肠杆菌中纯化(N.Weisleder等人,Recombinant MG53 protein modulates therapeuticcell membrane repair in treatment of muscular dystrophy.Sci Transl Med 4,139ra185(2012))。rhMG53以冻干粉储存,在使用前溶解于生理盐水溶液中。抗E-钙粘蛋白抗体购自Proteintech Group(Chicago,IL),抗KIM-1抗体从R&D Systems(Minneapolis,MN)获得,抗-肾素抗体来自Santa Cruz Biotechnology(Dallas,TX),抗-β-肌动蛋白来自Sigma。FITC-Annexin V购自BD Bioscience。人肾和膀胱组织从National DiseaseResearch Interchange Biospecimen(NDRI)获得。如前所述从WKY大鼠培养的无限繁殖的PTE细胞(C.Zeng等人,Activation of D3dopamine receptor decreases angiotensin IItype 1receptor expression in rat renal proximal tubule cells.Circ Res 99,494-500(2006);A.Parenti等人,Activation of MAPKs in proximal tubule cells fromspontaneously hypertensive and control Wistar-Kyoto rats.Hypertension 35,1160-1166(2000))。
动物饲养和规程-根据俄亥俄州立大学(The Ohio State University)的机构动物饲养和使用委员会(Institutional Animal Care and Use Committee)(IACUC)批准的规程进行动物处理和外科手术,并符合美国实验动物护理认证协会(AmericanAssociation for the Accreditation of Laboratory Animal Care)的指导方针。将MG53敲除小鼠(Mg53-/-)及其野生型对照小鼠按照如前所述进行繁殖并饲养(C.Cai等人,MG53nucleates assembly of cell membrane repair machinery.Nat Cell Biol 11,56-64(2009))。Sprague-Dawley大鼠(250-300克重)购自Charles River。NCR裸鼠(3-5周龄)购自Taconic Farms(Albany,NY)。
缺血/再灌注(I/R)诱导的小鼠AKI模型-将小鼠(10至14周龄)用异氟烷麻醉。使用背侧切口切开术暴露左肾蒂,并且左肾动脉在室温下进行单侧非闭塞夹闭25min,随后再灌注,通过肾的目视检查来确保。假手术的动物具有切口加30min的等待时间而不夹闭。在缺血或假手术后,缝合侧腹肌和皮层,并在闭合切口之前立即皮下给药1ml预温的0.9%生理盐水溶液以防止脱水。
I/R诱导的AKI大鼠模型-通过腹侧中线切口接近大鼠肾。左肾蒂被非闭塞性血管夹夹闭,随后实施对侧肾切除术。35min缺血后左肾动脉被释放用于再灌注,并且目视检查肾颜色变化。假手术大鼠接受腹侧中线切口和缝合,而无肾的缺血-再灌注。为了检测rhMG53是否能够防止大鼠模型中的I/R诱导的AKI,在缺血前10min和再灌注前5min,尾静脉注射给予rhMG53(2mg/kg)。对照动物在I/R操作期间接受等体积的生理盐水溶液。
顺铂诱导的AKI小鼠模型-通过单次腹腔注射给予小鼠30mg顺铂/kg体重(1.0mg/ml无菌0.9%生理盐水溶液)或溶剂(0.9%生理盐水)。顺铂给药后,将小鼠置于代谢笼中连续3天,收集尿样。在顺铂给药(i.p.)之前10min,通过尾静脉注射给予rhMG53(2mg/kg)。在收集尿完成时取肾,将其平分并固定在10%中性缓冲福尔马林中,用于免疫组织化学。
肾功能的测量-通过将动物置于代谢笼中18-20小时,自由获取水和食物来收集尿样品。为了检测可能的血尿、白细胞尿和糖尿,将尿样品点样至10SG尿试剂条(McKessonMedical-Surgical,Richmond,VA)上,并在西门子尿液状态分析仪(Siemens ClinitekStatus Analyzer)(Siemens Healthcare Diagnostics,Tarrytown,NY)上读数。尿液分析仪在使用前进行校准,并在读取每个尿样之前进行自检。所有尿在同一天被同一操作者读数以保证一致性。对组中每只小鼠的半定量尿参数(蛋白质、pH、比重和葡萄糖)进行平均,随后测定野生型和Mg53-/-小鼠的组平均值。对尿白细胞没有一个小鼠检测为阳性,并且只有一只突变体小鼠和一只野生型小鼠在尿中有血,但这两只小鼠在几天后收集的每个尿样中均没有血。通过Bradford方法使用BioRad Dc蛋白测定试剂盒(BioRad,Hercules,CA)和SDS-PAGE来测量尿蛋白排泄,随后进行胶体蓝染色。通过Jaffe方法使用BioQuant试剂盒(BQ Kits Inc,San Diego,CA)测量尿肌酐(Uc)。使用ELISA试剂盒(Bethyl Laboratory,Montgomery,TX)定量尿白蛋白浓度。
血液化学-通过隐静脉穿刺以及当小鼠被处死时获得血液样品。通过基于HPLC的方法在耶鲁大学小鼠代谢表型分析中心(Yale University Mouse MetabolicPhenotyping Center Analytic Core)测量血清肌酐(SCr)水平。
免疫印迹-来自小鼠肾的解剖皮层或髓质区的粗提取物用冰冷的PBS洗涤两次,并在RIPA缓冲液(10mM Tris-HCl,pH7.2,150mM NaCl,1%NP-40,0.5%SDS和0.5%脱氧乙酸酯)中裂解,并用蛋白酶抑制剂(Sigma,St.Louis,MO,USA)和磷酸酶抑制剂(ThermoScientific,USA)的混合物进行补充。通过10%SDS-PAGE分离50μg的肾裂解物并将其转移到聚偏二氟乙烯膜(PVDF)(Millipore)上。用Tris缓冲盐水Tween-20(TBST)洗涤印迹,用溶于TBST的5%牛奶封闭1小时,并用特定的单克隆抗MG53抗体培养。用ECL加试剂盒(Pierce)显现免疫印迹。
为了测定肾中MG53的细胞型特异性表达,使用差异筛选方法从成年大鼠肾分离近端小管上皮细胞(PTE)和肾小球(H.M.Wilson和K.N.Stewart,Glomerular epithelial andmesangial cell culture and characterization.Methods Mol Biol 806,187-201(2012))。用作为PTE细胞标志物的E-钙粘蛋白以及作为肾小球细胞标志物的肾上腺素来证实细胞来源的鉴定。
分离自小鼠新生鼠的原代PTE细胞-使用稍微改良后的Lieberthal等人的方案,从2日龄的Mg53-/-新生鼠和wt同窝出生鼠的肾中分离原代PTE细胞(W.Lieberthal等人,Rapamycin impairs recovery from acute renal failure:role of cell-cycle arrestand apoptosis of tubular cells.Am J Physiol Renal Physiol 281,F693-706(2001))。
简而言之,在解剖显微镜下取回来自小鼠的肾皮层,剪碎并在37℃下用胶原酶消化30min,并且通过70μm筛子在含有补充有转铁蛋白(5μg/ml)、胰岛素(5μg/ml)和氢化可的松(50μM)的DMEM和HamF12(1:1比例)的培养基的50ml锥形管上过滤。将经过滤的细胞离心并铺在基质胶包被的培养板(BD Bioscience,San Jose,CA)上,并在实验前培养3天。细胞的等分试样用菜豆红细胞凝集素(PHA-L)(Sigma Aldrich,St.Louis,MO)染色以确认PTE的同一性。
使用Lipofectamine LTX试剂(Life Technologies)根据制造商的说明书将GFP-MG53转染到源自Mg53-/-新生鼠的PTE细胞中。如前所述,表达GFP-MG53的PTE细胞经微电极穿透诱导的质膜急性损伤(C.Cai等人,MG53nucleates assembly of cell membranerepair machinery.Nat Cell Biol 11,56-64(2009))。
电子显微镜检查-电子显微镜检查由俄亥俄州立大学校园显微镜检查和成像小组(Ohio State University Campus Microscopy and Imaging Facility)(CMIF)进行。将肾组织按1mm立方体的块切片,并在室温下用含有2.5%戊二醛、1%甲醛和100mM磷酸钠(pH7.2)的固定溶液进行固定。将这些切片用0.1M二甲胂酸钠(pH7.4)冲洗并在2%四氧化锇中后固定1小时。脱水后,将样品包埋在环氧树脂中,并且用乙酸双氧铀和柠檬酸铅复染超薄切片(60nm)。透射电子显微镜检查图像用装备有微距单色逐行扫描CCD相机(Optronics,Goleta,CA)的FEI Tecnai G2Spirit透射电子显微镜(FEI Hillsboro,Oregon)获得。分析PTE和肾小球病理的切片。
使用PTE细胞的扫描电子显微镜图像分析源自野生型和Mg53-/-小鼠的细胞的形态学变化。在基质胶玻璃盖玻片上生长的细胞在溶于0.1M二甲胂酸钠的2%多聚甲醛和2.5%戊二醛中固定,随后在1%四氧化锇中后固定1小时。脱水后,将细胞用钯溅射涂覆,并在FEI Nova NanoSEM 400扫描电子显微镜(FEI,Hillsboro,Oregon)下观察。
组织病理学和免疫组织化学染色-实验动物在尾静脉注射rhMG53后2小时处死。立即使用肝素补充的PBS(pH7.4,200ml)对动物进行全身灌流,随后用蠕动输液泵(50ml/min)泵入溶于200ml PBS中的2%多聚甲醛。将肾取出、包埋在OCT-Tissue Tek介质(Sakura,Northbrook,IL)中,并通过将其浸入异戊烷浴中在-80℃下快速冷冻。将六微米厚的冷冻切片装入Superfrost Plus显微镜载玻片(Fisher Scientific,Pittsburgh,PA)上,并在4℃下在新鲜制备的溶于PBS的4%多聚甲醛中固定。使用特定的兔抗人MG53抗体进行免疫染色。使用数字荧光显微镜,将Alexa 488-结合的绵羊抗兔IgG(Molecular Probes)用于标记rhMG53染色阳性的肾切片。
将4μm厚度的石蜡包埋的肾切片用于高碘酸-希夫(Periodic acid–Schiff)(PAS)和苏木精和曙红(H&E)染色。使用山羊抗大鼠KIM-1抗体的免疫组织化学(IHC)染色来定量I/R诱导的AKI后的管状损伤的程度,按照等人的方案(B.Schroppel等人,Tubular expression of KIM-1does not predict delayed function aftertransplantation.J Am Soc Nephrol 21,536-542(2010))。以双盲方式分析KIM-1染色阳性的管状区域的量。
大鼠PTE细胞培养和缺氧/复氧测定-来自WKY大鼠的无限繁殖的PTE细胞在37℃的95%O2和5%CO2中在DMEM/F-12中培养(C.Zeng等人,Activation of D3 dopaminereceptor decreases angiotensin II type 1 receptor expression in rat renalproximal tubule cells.Circ Res 99,494-500(2006);A.Parenti等人,Activation ofMAPKs in proximal tubule cells from spontaneously hypertensive and controlWistar-Kyoto rats.Hypertension 35,1160-1166(2000))。为了诱导缺氧,将在盖玻片上生长的细胞在37℃下置于具有1%氧气、5%CO2和平衡N2的缺氧室中2小时,随后再复氧2小时。通过染料标记试剂盒(G-Biosciences,St Louis,US.)将外源性rhMG53或BSA与罗丹明结合,并在缺氧后立即应用于细胞。在复氧后,将细胞用于FITC-Annexin V(BDBiosciences)染色,并用4%多聚甲醛固定(30min)。用LSM 780(Carl Zeiss)共聚焦显微镜获得免疫荧光图像。
MTT细胞活力测定-KPC-Brca1胰腺癌细胞按照Shakya等人(R.Shakya等人,BRCA1tumor suppression depends on BRCT phosphoprotein binding,but not its E3ligaseactivity.Science 334,525-528(2011);M.Sekine等人,Selective depletion of mousekidney proximal straight tubule cells causes acute kidney injury.TransgenicRes 21,51-62(2012))保持培养。用MTT法测定顺铂诱导的细胞活力的变化。将细胞以每孔1000-1500个细胞接种在96孔板中,随后用指定量的顺铂处理48小时。然后加入20μl(PBS中5mg/ml)MTT[3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物](Sigma Chemical Co.,St.Louis,Mo.)到每个孔。4小时后,除去培养基,并加入150μL DMSO以溶解各孔中的甲臜晶体,并在570nm处记录吸光度。
同种异体移植模型-将2×106KPC-Brca1胰腺癌细胞皮下接种至5周龄的NCR裸鼠的双侧腋下。在肿瘤直径达到4至7mm(接种后5天)后,将小鼠分为3组,使得治疗前各组肿瘤直径的平均值和方差无显著差异。通过腹腔注射给药检测顺铂对诱导的肿瘤生长的抑制。刚好在顺铂给药之前,通过尾静脉注射给予2mg/kg的rhMG53(或等体积的生理盐水溶液作为对照)。使用以下公式从正交尺寸(长度,宽度)确定肿瘤体积:肿瘤体积=(宽度)2×长度×3.14/6。根据IACUC指南,当肿瘤直径达到1.5cm时,实验结束。在实验结束时,处死小鼠,并且取出并分析瘤块。
统计分析-所有数据均表示为平均值±SEM。当比较两个实验组时,通过学生t检验进行组内比较,并通过ANOVA进行重复测量比较。P<0.01的值被认为是显著的。
应当理解,本文所述的详细实施例和实施方式仅为了说明的目的通过实施例的方式给出,并且决不被认为是对本发明的限制。对于本领域技术人员将提出根据其的各种修改或改变,并且都包括在本申请的精神和范围内,并且被认为在所附权利要求的范围内。例如,可以改变组分的相对量以优化所需的效果,可以加入另外的组分,和/或可以用所述的一种或多种组分代替相似的组分。与本发明的系统、方法和过程相关的附加的有利特征和功能从所附权利要求将是显而易见的。
SEQUENCE LISTING
<110> 麻建杰(Ma, Jianjie)
<120> 预防和修复急性肾损伤的组合物和方法
<130> 97018WO(315474)
<140> TBD
<141> 2015-12-30
<150> 62/098,154
<151> 2014-12-30
<160> 16
<170> PatentIn version 3.5
<210> 1
<211> 477
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(477)
<223> Human MG53 Polypeptide
<400> 1
Met Ser Ala Ala Pro Gly Leu Leu His Gln Glu Leu Ser Cys Pro Leu
1 5 10 15
Cys Leu Gln Leu Phe Asp Ala Pro Val Thr Ala Glu Cys Gly His Ser
20 25 30
Phe Cys Arg Ala Cys Leu Gly Arg Val Ala Gly Glu Pro Ala Ala Asp
35 40 45
Gly Thr Val Leu Cys Pro Cys Cys Gln Ala Pro Thr Arg Pro Gln Ala
50 55 60
Leu Ser Thr Asn Leu Gln Leu Ala Arg Leu Val Glu Gly Leu Ala Gln
65 70 75 80
Val Pro Gln Gly His Cys Glu Glu His Leu Asp Pro Leu Ser Ile Tyr
85 90 95
Cys Glu Gln Asp Arg Ala Leu Val Cys Gly Val Cys Ala Ser Leu Gly
100 105 110
Ser His Arg Gly His Arg Leu Leu Pro Ala Ala Glu Ala His Ala Arg
115 120 125
Leu Lys Thr Gln Leu Pro Gln Gln Lys Leu Gln Leu Gln Glu Ala Cys
130 135 140
Met Arg Lys Glu Lys Ser Val Ala Val Leu Glu His Gln Leu Val Glu
145 150 155 160
Val Glu Glu Thr Val Arg Gln Phe Arg Gly Ala Val Gly Glu Gln Leu
165 170 175
Gly Lys Met Arg Val Phe Leu Ala Ala Leu Glu Gly Ser Leu Asp Cys
180 185 190
Glu Ala Glu Arg Val Arg Gly Glu Ala Gly Val Ala Leu Arg Arg Glu
195 200 205
Leu Gly Ser Leu Asn Ser Tyr Leu Glu Gln Leu Arg Gln Met Glu Lys
210 215 220
Val Leu Glu Glu Val Ala Asp Lys Pro Gln Thr Glu Phe Leu Met Lys
225 230 235 240
Tyr Cys Leu Val Thr Ser Arg Leu Gln Lys Ile Leu Ala Glu Ser Pro
245 250 255
Pro Pro Ala Arg Leu Asp Ile Gln Leu Pro Ile Ile Ser Asp Asp Phe
260 265 270
Lys Phe Gln Val Trp Arg Lys Met Phe Arg Ala Leu Met Pro Ala Leu
275 280 285
Glu Glu Leu Thr Phe Asp Pro Ser Ser Ala His Pro Ser Leu Val Val
290 295 300
Ser Ser Ser Gly Arg Arg Val Glu Cys Ser Glu Gln Lys Ala Pro Pro
305 310 315 320
Ala Gly Glu Asp Pro Arg Gln Phe Asp Lys Ala Val Ala Val Val Ala
325 330 335
His Gln Gln Leu Ser Glu Gly Glu His Tyr Trp Glu Val Asp Val Gly
340 345 350
Asp Lys Pro Arg Trp Ala Leu Gly Val Ile Ala Ala Glu Ala Pro Arg
355 360 365
Arg Gly Arg Leu His Ala Val Pro Ser Gln Gly Leu Trp Leu Leu Gly
370 375 380
Leu Arg Glu Gly Lys Ile Leu Glu Ala His Val Glu Ala Lys Glu Pro
385 390 395 400
Arg Ala Leu Arg Ser Pro Glu Arg Arg Pro Thr Arg Ile Gly Leu Tyr
405 410 415
Leu Ser Phe Gly Asp Gly Val Leu Ser Phe Tyr Asp Ala Ser Asp Ala
420 425 430
Asp Ala Leu Val Pro Leu Phe Ala Phe His Glu Arg Leu Pro Arg Pro
435 440 445
Val Tyr Pro Phe Phe Asp Val Cys Trp His Asp Lys Gly Lys Asn Ala
450 455 460
Gln Pro Leu Leu Leu Val Gly Pro Glu Gly Ala Glu Ala
465 470 475
<210> 2
<211> 1434
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(1434)
<223> Human MG53 cDNA
<400> 2
atgtcggctg cgcccggcct cctgcaccag gagctgtcct gcccgctgtg cctgcagctg 60
ttcgacgcgc ccgtgacagc cgagtgcggc cacagtttct gccgcgcctg cctaggccgc 120
gtggccgggg agccggcggc ggatggcacc gttctctgcc cctgctgcca ggcccccacg 180
cggccgcagg cactcagcac caacctgcag ctggcgcgcc tggtggaggg gctggcccag 240
gtgccgcagg gccactgcga ggagcacctg gacccgctga gcatctactg cgagcaggac 300
cgcgcgctgg tgtgcggagt gtgcgcctca ctcggctcgc accgcggtca tcgcctcctg 360
cctgccgccg aggcccacgc acgcctcaag acacagctgc cacagcagaa actgcagctg 420
caggaggcat gcatgcgtaa ggagaagagt gtggctgtgc tggagcatca gctggtggag 480
gtggaggaga cagtgcgtca gttccggggg gccgtggggg agcagctggg caagatgcgg 540
gtgttcctgg ctgcactgga gggctccttg gactgcgagg cagagcgtgt acggggtgag 600
gcaggggtcg ccttgcgccg ggagctgggg agcctgaact cttacctgga gcagctgcgg 660
cagatggaga aggtcctgga ggaggtggcg gacaagccgc agactgagtt cctcatgaaa 720
tactgcctgg tgaccagcag gctgcagaag atcctggcag agtctccccc acccgcccgt 780
ctggacatcc agctgccaat tatctcagat gacttcaaat tccaggtgtg gaggaagatg 840
ttccgggctc tgatgccagc gctggaggag ctgacctttg acccgagctc tgcgcacccg 900
agcctggtgg tgtcttcctc tggccgccgc gtggagtgct cggagcagaa ggcgccgccg 960
gccggggagg acccgcgcca gttcgacaag gcggtggcgg tggtggcgca ccagcagctc 1020
tccgagggcg agcactactg ggaggtggat gttggcgaca agccgcgctg ggcgctgggc 1080
gtgatcgcgg ccgaggcccc ccgccgcggg cgcctgcacg cggtgccctc gcagggcctg 1140
tggctgctgg ggctgcgcga gggcaagatc ctggaggcac acgtggaggc caaggagccg 1200
cgcgctctgc gcagccccga gaggcggccc acgcgcattg gcctttacct gagcttcggc 1260
gacggcgtcc tctccttcta cgatgccagc gacgccgacg cgctcgtgcc gctttttgcc 1320
ttccacgagc gcctgcccag gcccgtgtac cccttcttcg acgtgtgctg gcacgacaag 1380
ggcaagaatg cccagccgct gctgctcgtg ggtcccgaag gcgccgaggc ctga 1434
<210> 3
<211> 477
<212> PRT
<213> Mus musculus
<220>
<221> misc_feature
<222> (1)..(477)
<223> Mouse MG53
<400> 3
Met Ser Ala Ala Pro Gly Leu Leu Arg Gln Glu Leu Ser Cys Pro Leu
1 5 10 15
Cys Leu Gln Leu Phe Asp Ala Pro Val Thr Ala Glu Cys Gly His Ser
20 25 30
Phe Cys Arg Ala Cys Leu Ile Arg Val Ala Gly Glu Pro Ala Ala Asp
35 40 45
Gly Thr Val Ala Cys Pro Cys Cys Gln Ala Pro Thr Arg Pro Gln Ala
50 55 60
Leu Ser Thr Asn Leu Gln Leu Ser Arg Leu Val Glu Gly Leu Ala Gln
65 70 75 80
Val Pro Gln Gly His Cys Glu Glu His Leu Asp Pro Leu Ser Ile Tyr
85 90 95
Cys Glu Gln Asp Arg Thr Leu Val Cys Gly Val Cys Ala Ser Leu Gly
100 105 110
Ser His Arg Gly His Arg Leu Leu Pro Ala Ala Glu Ala Gln Ala Arg
115 120 125
Leu Lys Thr Gln Leu Pro Gln Gln Lys Met Gln Leu Gln Glu Ala Cys
130 135 140
Met Arg Lys Glu Lys Thr Val Ala Val Leu Glu His Gln Leu Val Glu
145 150 155 160
Val Glu Glu Thr Val Arg Gln Phe Arg Gly Ala Val Gly Glu Gln Leu
165 170 175
Gly Lys Met Arg Met Phe Leu Ala Ala Leu Glu Ser Ser Leu Asp Arg
180 185 190
Glu Ala Glu Arg Val Arg Gly Asp Ala Gly Val Ala Leu Arg Arg Glu
195 200 205
Leu Ser Ser Leu Asn Ser Tyr Leu Glu Gln Leu Arg Gln Met Glu Lys
210 215 220
Val Leu Glu Glu Val Ala Asp Lys Pro Gln Thr Glu Phe Leu Met Lys
225 230 235 240
Phe Cys Leu Val Thr Ser Arg Leu Gln Lys Ile Leu Ser Glu Ser Pro
245 250 255
Pro Pro Ala Arg Leu Asp Ile Gln Leu Pro Val Ile Ser Asp Asp Phe
260 265 270
Lys Phe Gln Val Trp Lys Lys Met Phe Arg Ala Leu Met Pro Ala Leu
275 280 285
Glu Glu Leu Thr Phe Asp Pro Ser Ser Ala His Pro Ser Leu Val Val
290 295 300
Ser Ser Ser Gly Arg Arg Val Glu Cys Ser Asp Gln Lys Ala Pro Pro
305 310 315 320
Ala Gly Glu Asp Thr Arg Gln Phe Asp Lys Ala Val Ala Val Val Ala
325 330 335
Gln Gln Leu Leu Ser Gln Gly Glu His Tyr Trp Glu Val Glu Val Gly
340 345 350
Asp Lys Pro Arg Trp Ala Leu Gly Val Met Ala Ala Asp Ala Ser Arg
355 360 365
Arg Gly Arg Leu His Ala Val Pro Ser Gln Gly Leu Trp Leu Leu Gly
370 375 380
Leu Arg Asp Gly Lys Ile Leu Glu Ala His Val Glu Ala Lys Glu Pro
385 390 395 400
Arg Ala Leu Arg Thr Pro Glu Arg Pro Pro Ala Arg Ile Gly Leu Tyr
405 410 415
Leu Ser Phe Ala Asp Gly Val Leu Ala Phe Tyr Asp Ala Ser Asn Pro
420 425 430
Asp Val Leu Thr Pro Ile Phe Ser Phe His Glu Arg Leu Pro Gly Pro
435 440 445
Val Tyr Pro Ile Phe Asp Val Cys Trp His Asp Lys Gly Lys Asn Ala
450 455 460
Gln Pro Leu Leu Leu Val Gly Pro Glu Gln Glu Gln Ala
465 470 475
<210> 4
<211> 1434
<212> DNA
<213> Mus musculus
<220>
<221> misc_feature
<222> (1)..(1434)
<223> Mouse MG53 cDNA
<400> 4
atgtcggctg cacccggcct tctgcgtcag gaactgtcct gcccactgtg cttgcagctg 60
ttcgatgcgc cagtgacggc tgagtgtggc cacagtttct gccgtgcctg cctgatccgg 120
gtggcagggg agcctgctgc ggacggcaca gttgcctgtc cctgttgtca ggcacctaca 180
cggccgcagg ctctaagcac taacctccag ttgtcacgcc ttgtggaggg tttggcgcaa 240
gtgccccaag gccactgcga ggaacacctg gatccactga gcatctactg cgagcaggac 300
cgcacacttg tgtgtggtgt gtgtgcctcg ctcggttctc accgtggtca tcgtctcctg 360
cctgccgctg aagcccaagc acgcctcaag acacagcttc cacagcagaa gatgcagctg 420
caggaggcat gcatgcgcaa ggagaagact gtagcggtgc tggagcatca gctggtggag 480
gtggaggaga cagtgcgcca gttccgggga gctgtcgggg agcagctggg gaagatgcgg 540
atgttcctgg ctgccctaga aagttctctg gaccgtgaag cagaaagggt tcggggtgat 600
gctggggttg ccttgcgtcg ggagctgtca agcctgaact cttacctaga gcaactgagg 660
cagatggaga aggtgctgga ggaggtggct gacaagccac agacagaatt cctcatgaaa 720
ttctgcctgg taaccagcag gctgcagaag atcctgtcag agtcaccacc accggcaagg 780
ctagatatcc agctgcctgt catctcagat gacttcaaat tccaggtgtg gaagaagatg 840
ttccgggctc tgatgccagc gctggaggaa ctgacttttg accccagctc tgcgcacccg 900
agcctggtgg tgtcctcctc tggtcgccga gtggagtgct cagaccagaa ggcgccgcca 960
gcgggagaag acacgcgtca gttcgacaag gcagtagcgg tggtggcgca gcagctgctg 1020
tcacagggcg agcactattg ggaggtggag gtgggcgaca aaccacgctg ggccctggga 1080
gtgatggcgg ctgacgcttc ccgccgtggc cggctgcacg cggtgccctc acaggggctg 1140
tggctgctgg gtctgcgcga tggcaagatc ctggaggcgc acgtggaggc caaggagccg 1200
cgggcactgc gcaccccaga gaggcctccg gcgcgcattg gcctctacct aagcttcgca 1260
gatggcgtcc tggctttcta tgatgcgagc aaccccgacg tacttacgcc aatcttttct 1320
ttccacgagc gtctgcccgg gccggtgtac cccatctttg acgtgtgctg gcacgacaag 1380
ggcaagaatg cccagcccct gctgcttgtg gggccggagc aggaacaggc ctga 1434
<210> 5
<211> 477
<212> PRT
<213> Oryctolagus cuniculus
<220>
<221> misc_feature
<222> (1)..(477)
<223> Rabbit MG53
<400> 5
Met Ser Ala Ala Pro Gly Leu Leu His Gln Glu Leu Ser Cys Pro Leu
1 5 10 15
Cys Leu Gln Leu Phe Asp Ala Pro Val Thr Ala Glu Cys Gly His Ser
20 25 30
Phe Cys Arg Ala Cys Leu Ser Arg Val Ala Gly Glu Pro Ala Ala Asp
35 40 45
Gly Thr Val Asn Cys Pro Cys Cys Gln Ala Pro Thr Arg Pro Gln Ala
50 55 60
Leu Ser Thr Asn Leu Gln Leu Ala Arg Leu Val Glu Gly Leu Ala Gln
65 70 75 80
Val Pro Gln Gly His Cys Glu Glu His Leu Asp Pro Leu Ser Ile Tyr
85 90 95
Cys Glu Gln Asp Arg Val Leu Val Cys Gly Val Cys Ala Ser Leu Gly
100 105 110
Ser His Arg Gly His Arg Leu Leu Pro Ala Ala Glu Ala His Ser Arg
115 120 125
Leu Lys Thr Gln Leu Pro Gln Gln Lys Leu Gln Leu Gln Glu Ala Ser
130 135 140
Met Arg Lys Glu Lys Ser Val Ala Val Leu Glu His Gln Leu Thr Glu
145 150 155 160
Val Glu Glu Thr Val Arg Gln Phe Arg Gly Ala Val Gly Glu Gln Leu
165 170 175
Gly Lys Met Arg Val Phe Leu Ala Ala Leu Glu Gly Ser Leu Asp Arg
180 185 190
Glu Ala Glu Arg Val Arg Ser Glu Ala Gly Val Ala Leu Arg Arg Glu
195 200 205
Leu Gly Gly Leu His Ser Tyr Leu Glu Gln Leu Arg Gln Met Glu Lys
210 215 220
Val Leu Glu Glu Val Ala Asp Lys Pro Gln Thr Glu Phe Leu Met Lys
225 230 235 240
Tyr Cys Leu Val Thr Ser Arg Leu Gln Lys Ile Leu Ala Glu Ser Pro
245 250 255
Pro Pro Ala Arg Leu Asp Ile Gln Leu Pro Ile Ile Ser Asp Asp Phe
260 265 270
Lys Phe Gln Val Trp Arg Lys Met Phe Arg Ala Leu Met Pro Ala Leu
275 280 285
Glu Glu Leu Thr Phe Asp Pro Ser Ser Ala His Pro Ser Leu Val Val
290 295 300
Ser Pro Thr Gly Arg Arg Val Glu Cys Ser Glu Gln Lys Ala Pro Pro
305 310 315 320
Ala Gly Asp Asp Ala Arg Gln Phe Asp Lys Ala Val Ala Val Val Ala
325 330 335
Gln Gln Leu Leu Ser Asp Gly Glu His Tyr Trp Glu Val Glu Val Gly
340 345 350
Asp Lys Pro Arg Trp Ala Leu Gly Val Met Ala Ser Glu Ala Ser Arg
355 360 365
Arg Gly Arg Leu His Ala Val Pro Ser Gln Gly Leu Trp Leu Leu Gly
370 375 380
Leu Arg Asp Gly Lys Thr Leu Glu Ala His Val Glu Ala Lys Glu Pro
385 390 395 400
Arg Ala Leu Arg Thr Pro Glu Arg Arg Pro Thr Arg Leu Gly Leu Tyr
405 410 415
Leu Ser Phe Gly Asp Gly Val Leu Ala Phe Tyr Asp Ala Ser Asp Ala
420 425 430
Asp Ala Leu Glu Leu Leu Phe Ala Phe Arg Glu Arg Leu Pro Gly Pro
435 440 445
Val Tyr Pro Phe Phe Asp Val Cys Trp His Asp Lys Gly Lys Asn Ala
450 455 460
Gln Pro Leu Leu Leu Val Gly Pro Asp Gly Gln Glu Ala
465 470 475
<210> 6
<211> 1434
<212> DNA
<213> Oryctolagus cuniculus
<220>
<221> misc_feature
<222> (1)..(1434)
<223> Rabbit MG53 cDNA
<400> 6
atgtcggccg cgcccggcct cctgcaccag gagctgtctt gcccgctgtg cctgcagctg 60
ttcgacgcgc ccgtgacagc cgagtgcggc cacagtttct gccgcgcctg cctgagccgc 120
gtggcggggg agccggcggc cgatggcacc gtgaactgcc cgtgctgcca ggcgcccacg 180
cggccgcagg cgctcagcac caacctgcag ctggcgcgcc tggtggaggg gctggcgcag 240
gtgccgcagg gccactgcga ggagcacctg gacccgctga gcatctactg cgagcaggac 300
cgcgttctcg tgtgcggcgt gtgcgcctcg ctcggctcgc accgcggcca ccgcctgctg 360
cccgccgccg aggcccactc gcgtctcaag acgcagctgc cccagcagaa gctgcagctg 420
caggaggcga gcatgcgcaa ggagaagagc gtggccgtgc tggagcacca gctcacggag 480
gtggaggaga cagtgcgtca gttccggggg gcagtggggg agcagctggg caagatgcgg 540
gtgttcctgg ccgccctgga gggctccctg gaccgcgagg cagaacgtgt gcggagcgag 600
gcgggggtgg ccttgcggcg ggagctgggg ggcctccact cgtacctgga gcagctgcgg 660
cagatggaga aggtgttgga ggaggtggct gacaagccac agaccgagtt ccttatgaaa 720
tattgcctgg tgaccagcag gctgcagaag atcctggcgg agtcgccacc acctgctcgt 780
ctggacatcc agctgcccat catttcagat gacttcaaat tccaggtgtg gaggaagatg 840
ttccgggctc tgatgccagc gctggaggag ctgacctttg acccgagctc cgcgcacccg 900
agcctcgtgg tgtcacccac gggccgccga gtggagtgct cggagcagaa ggcgccgccc 960
gccggggacg acgcgcgcca gttcgacaag gctgtggccg tggtggcgca gcagctgctg 1020
tccgacggcg agcactactg ggaggtggag gtgggcgaca agccgcgctg ggcgctgggc 1080
gtgatggcct ccgaggcgag ccgccgtggc cggctgcacg ccgtgccctc acagggtttg 1140
tggctgctgg ggctgcgcga cggcaagacc ctggaggcgc acgtggaggc caaggagccg 1200
cgcgcgctgc gcaccccgga gcggcggccc acgcgcctcg gcctctacct cagcttcggc 1260
gatggcgtgc tcgccttcta cgacgccagc gacgccgacg cgctcgagct gctgtttgct 1320
ttccgcgagc gcctgcccgg gcccgtgtac cccttcttcg acgtgtgctg gcatgacaag 1380
ggcaagaatg cgcagccgct gctgctcgtg gggccggatg gccaggaggc ctga 1434
<210> 7
<211> 477
<212> PRT
<213> Homo sapiens
<220>
<221> MUTAGEN
<222> (29)..(29)
<223> C29L/C242A
<220>
<221> MUTAGEN
<222> (242)..(242)
<223> C29L/C242A
<400> 7
Met Ser Ala Ala Pro Gly Leu Leu His Gln Glu Leu Ser Cys Pro Leu
1 5 10 15
Cys Leu Gln Leu Phe Asp Ala Pro Val Thr Ala Glu Leu Gly His Ser
20 25 30
Phe Cys Arg Ala Cys Leu Gly Arg Val Ala Gly Glu Pro Ala Ala Asp
35 40 45
Gly Thr Val Leu Cys Pro Cys Cys Gln Ala Pro Thr Arg Pro Gln Ala
50 55 60
Leu Ser Thr Asn Leu Gln Leu Ala Arg Leu Val Glu Gly Leu Ala Gln
65 70 75 80
Val Pro Gln Gly His Cys Glu Glu His Leu Asp Pro Leu Ser Ile Tyr
85 90 95
Cys Glu Gln Asp Arg Ala Leu Val Cys Gly Val Cys Ala Ser Leu Gly
100 105 110
Ser His Arg Gly His Arg Leu Leu Pro Ala Ala Glu Ala His Ala Arg
115 120 125
Leu Lys Thr Gln Leu Pro Gln Gln Lys Leu Gln Leu Gln Glu Ala Cys
130 135 140
Met Arg Lys Glu Lys Ser Val Ala Val Leu Glu His Gln Leu Val Glu
145 150 155 160
Val Glu Glu Thr Val Arg Gln Phe Arg Gly Ala Val Gly Glu Gln Leu
165 170 175
Gly Lys Met Arg Val Phe Leu Ala Ala Leu Glu Gly Ser Leu Asp Cys
180 185 190
Glu Ala Glu Arg Val Arg Gly Glu Ala Gly Val Ala Leu Arg Arg Glu
195 200 205
Leu Gly Ser Leu Asn Ser Tyr Leu Glu Gln Leu Arg Gln Met Glu Lys
210 215 220
Val Leu Glu Glu Val Ala Asp Lys Pro Gln Thr Glu Phe Leu Met Lys
225 230 235 240
Tyr Ala Leu Val Thr Ser Arg Leu Gln Lys Ile Leu Ala Glu Ser Pro
245 250 255
Pro Pro Ala Arg Leu Asp Ile Gln Leu Pro Ile Ile Ser Asp Asp Phe
260 265 270
Lys Phe Gln Val Trp Arg Lys Met Phe Arg Ala Leu Met Pro Ala Leu
275 280 285
Glu Glu Leu Thr Phe Asp Pro Ser Ser Ala His Pro Ser Leu Val Val
290 295 300
Ser Ser Ser Gly Arg Arg Val Glu Cys Ser Glu Gln Lys Ala Pro Pro
305 310 315 320
Ala Gly Glu Asp Pro Arg Gln Phe Asp Lys Ala Val Ala Val Val Ala
325 330 335
His Gln Gln Leu Ser Glu Gly Glu His Tyr Trp Glu Val Asp Val Gly
340 345 350
Asp Lys Pro Arg Trp Ala Leu Gly Val Ile Ala Ala Glu Ala Pro Arg
355 360 365
Arg Gly Arg Leu His Ala Val Pro Ser Gln Gly Leu Trp Leu Leu Gly
370 375 380
Leu Arg Glu Gly Lys Ile Leu Glu Ala His Val Glu Ala Lys Glu Pro
385 390 395 400
Arg Ala Leu Arg Ser Pro Glu Arg Arg Pro Thr Arg Ile Gly Leu Tyr
405 410 415
Leu Ser Phe Gly Asp Gly Val Leu Ser Phe Tyr Asp Ala Ser Asp Ala
420 425 430
Asp Ala Leu Val Pro Leu Phe Ala Phe His Glu Arg Leu Pro Arg Pro
435 440 445
Val Tyr Pro Phe Phe Asp Val Cys Trp His Asp Lys Gly Lys Asn Ala
450 455 460
Gln Pro Leu Leu Leu Val Gly Pro Glu Gly Ala Glu Ala
465 470 475
<210> 8
<211> 477
<212> PRT
<213> Didelphis sp.
<220>
<221> PEPTIDE
<222> (1)..(477)
<223> Opossum MG53
<400> 8
Met Ser Gly Ala Pro Ala Leu Met Gln Gly Met Tyr Gln Asp Leu Ser
1 5 10 15
Cys Pro Leu Cys Leu Lys Leu Phe Asp Ala Pro Ile Thr Ala Glu Cys
20 25 30
Gly His Ser Phe Cys Arg Asn Cys Leu Leu Arg Leu Ala Pro Asp Pro
35 40 45
Gln Ala Gly Thr Val Leu Cys Pro Ser Cys Gln Ala Pro Thr Lys Pro
50 55 60
Asp Gly Leu Asn Thr Asn Gln Gln Leu Ala Arg Leu Val Glu Ser Leu
65 70 75 80
Ala Gln Val Pro Gln Gly His Cys Glu Glu His Leu Asp Pro Leu Ser
85 90 95
Val Tyr Cys Glu Gln Asp Arg Ala Leu Ile Cys Gly Val Cys Ala Ser
100 105 110
Leu Gly Lys His Arg Gly His Ser Val Val Thr Ala Ala Glu Ala His
115 120 125
Gln Arg Met Lys Lys Gln Leu Pro Gln Gln Arg Leu Gln Leu Gln Glu
130 135 140
Ala Cys Met Arg Lys Glu Lys Thr Val Ala Leu Leu Asp Arg Gln Leu
145 150 155 160
Ala Glu Val Glu Glu Thr Val Arg Gln Phe Gln Arg Ala Val Gly Glu
165 170 175
Gln Leu Gly Val Met Arg Ala Phe Leu Ala Ala Leu Glu Ser Ser Leu
180 185 190
Gly Lys Glu Ala Glu Arg Val Thr Gly Glu Ala Gly Thr Ala Leu Lys
195 200 205
Ala Glu Arg Arg Ile Val Thr Ser Tyr Leu Asp Gln Leu Gln Gln Met
210 215 220
Glu Lys Val Leu Asp Glu Val Thr Asp Gln Pro Gln Thr Glu Phe Leu
225 230 235 240
Arg Lys Tyr Cys Leu Val Ile Ser Arg Leu Gln Lys Ile Leu Ala Glu
245 250 255
Ser Pro Pro Ala Ala Arg Leu Asp Ile Gln Leu Pro Ile Ile Ser Asp
260 265 270
Asp Phe Lys Phe Gln Val Trp Arg Lys Met Phe Arg Ala Leu Met Pro
275 280 285
Gly Met Glu Val Leu Thr Phe Asp Pro Ala Ser Ala His Pro Ser Leu
290 295 300
Leu Val Ser Pro Ser Gly Arg Arg Val Glu Cys Val Glu Gln Lys Ala
305 310 315 320
Pro Pro Ala Gly Asp Asp Pro Gln Gln Phe Asp Lys Ala Val Ala Leu
325 330 335
Val Ala Lys Gln Gln Leu Ser Glu Gly Glu His Tyr Trp Glu Val Glu
340 345 350
Val Gly Asp Lys Pro Arg Trp Gly Leu Gly Leu Ile Ser Ala Asp Val
355 360 365
Ser Arg Arg Gly Lys Leu His Pro Thr Pro Ser Gln Gly Phe Trp Met
370 375 380
Leu Gly Leu Arg Glu Gly Lys Val Tyr Glu Ala His Val Glu Ser Lys
385 390 395 400
Glu Pro Lys Val Leu Lys Val Asp Gly Arg Pro Ser Arg Ile Gly Leu
405 410 415
Tyr Leu Ser Phe Arg Asp Gly Val Leu Ser Phe Tyr Asp Ala Ser Asp
420 425 430
Leu Asp Asn Leu Leu Pro Leu Tyr Ala Phe His Glu Arg Leu Pro Gly
435 440 445
Pro Val Tyr Pro Phe Phe Asp Val Cys Trp His Asp Lys Gly Lys Asn
450 455 460
Ala Gln Pro Leu Leu Leu Leu Gly Pro Asp Gly Glu Gln
465 470 475
<210> 9
<211> 477
<212> PRT
<213> Canis sp.
<220>
<221> PEPTIDE
<222> (1)..(477)
<223> Dog MG53
<400> 9
Met Ser Ala Ala Pro Gly Leu Leu His Gln Glu Leu Ser Cys Pro Leu
1 5 10 15
Cys Leu Gln Leu Phe Asp Ala Pro Val Thr Ala Glu Cys Gly His Ser
20 25 30
Phe Cys Arg Ala Cys Leu Ser Arg Val Ala Gly Glu Pro Ala Ala Asp
35 40 45
Gly Thr Val Pro Cys Pro Cys Cys Gln Ala Leu Thr Arg Pro Gln Ala
50 55 60
Leu Ser Thr Asn Gln Gln Leu Ala Arg Leu Val Glu Gly Leu Ala Gln
65 70 75 80
Val Pro Gln Gly His Cys Glu Glu His Leu Asp Pro Leu Ser Ile Tyr
85 90 95
Cys Glu Gln Asp Arg Ala Leu Val Cys Gly Val Cys Ala Ser Leu Gly
100 105 110
Ser His Arg Gly His Arg Leu Leu Pro Ala Ala Glu Ala His Ala Arg
115 120 125
Leu Lys Thr Gln Leu Pro Gln Gln Lys Leu Gln Leu Gln Glu Ala Cys
130 135 140
Met Arg Lys Glu Lys Ser Val Ala Leu Leu Glu His Gln Leu Met Glu
145 150 155 160
Val Glu Glu Met Val Arg Gln Phe Arg Gly Ala Val Gly Glu Gln Leu
165 170 175
Gly Lys Met Arg Val Phe Leu Ala Ala Leu Glu Gly Ser Leu Asp Arg
180 185 190
Glu Ala Glu Arg Val Arg Gly Glu Ala Gly Val Ala Leu Arg Arg Glu
195 200 205
Leu Gly Ser Leu Asn Ser Tyr Leu Glu Gln Leu Arg Gln Met Glu Lys
210 215 220
Val Leu Glu Glu Val Ala Asp Lys Pro Gln Thr Glu Phe Leu Met Lys
225 230 235 240
Tyr Cys Leu Val Thr Ser Arg Leu Gln Lys Ile Leu Ala Glu Ser Pro
245 250 255
Pro Pro Ala Arg Leu Asp Ile Gln Leu Pro Val Ile Ser Asp Asp Phe
260 265 270
Lys Phe Gln Val Trp Arg Lys Met Phe Arg Ala Leu Met Pro Val Thr
275 280 285
Lys Glu Leu Thr Phe Asp Pro Ser Ser Ala His Pro Ser Leu Val Leu
290 295 300
Ser Pro Ser Gly Arg Arg Val Glu Cys Ser Asp Gln Lys Ala Pro Pro
305 310 315 320
Ala Gly Glu Asp Pro Cys Gln Phe Asp Lys Ala Val Ala Val Val Ala
325 330 335
Gln Gln Val Leu Ser Asp Gly Glu His Tyr Trp Glu Val Gln Val Gly
340 345 350
Glu Lys Pro Arg Trp Ala Leu Gly Val Ile Ala Ala Gln Ala Ser Arg
355 360 365
Arg Gly Arg Leu His Ala Val Pro Ser Gln Gly Leu Trp Leu Leu Gly
370 375 380
Leu Arg Asp Gly Lys Ile Leu Glu Ala His Val Glu Ala Lys Glu Pro
385 390 395 400
Arg Ala Leu Arg Thr Pro Glu Arg Arg Pro Thr Arg Ile Gly Ile Tyr
405 410 415
Leu Ser Phe Gly Asp Gly Val Leu Ser Phe Tyr Asp Ala Ser Asp Pro
420 425 430
Asp Ala Leu Glu Leu Leu Phe Ala Phe His Glu Arg Leu Pro Gly Pro
435 440 445
Val Tyr Pro Phe Phe Asp Val Cys Trp His Asp Lys Gly Lys Asn Ala
450 455 460
Gln Pro Leu Leu Leu Val Gly Pro Asp Gly Glu Glu Ala
465 470 475
<210> 10
<211> 477
<212> PRT
<213> Pan troglodytes
<220>
<221> PEPTIDE
<222> (1)..(477)
<223> Chimpanzee MG53
<400> 10
Met Ser Ala Ala Pro Gly Leu Leu His Gln Glu Leu Ser Cys Pro Leu
1 5 10 15
Cys Leu Gln Leu Phe Asp Ala Pro Val Thr Ala Glu Cys Gly His Ser
20 25 30
Phe Cys Arg Ala Cys Leu Gly Arg Val Ala Gly Glu Pro Ala Ala Asp
35 40 45
Gly Thr Val Leu Cys Pro Cys Cys Gln Ala Pro Thr Arg Pro Gln Ala
50 55 60
Leu Ser Thr Asn Leu Gln Leu Ala Arg Leu Val Glu Gly Leu Ala Gln
65 70 75 80
Val Pro Gln Gly His Cys Glu Glu His Leu Asp Pro Leu Ser Ile Tyr
85 90 95
Cys Glu Gln Asp Arg Ala Leu Val Cys Gly Val Cys Ala Ser Leu Gly
100 105 110
Ser His Arg Gly His Arg Leu Leu Pro Ala Ala Glu Ala His Ala Arg
115 120 125
Leu Lys Thr Gln Leu Pro Gln Gln Lys Leu Gln Leu Gln Glu Ala Cys
130 135 140
Met Arg Lys Glu Lys Ser Val Ala Val Leu Glu His Gln Leu Val Glu
145 150 155 160
Val Glu Glu Thr Val Arg Gln Phe Arg Gly Ala Val Gly Glu Gln Leu
165 170 175
Gly Lys Met Arg Val Phe Leu Ala Ala Leu Glu Gly Ser Leu Asp Arg
180 185 190
Glu Ala Glu Arg Val Arg Gly Glu Ala Gly Val Ala Leu Arg Arg Glu
195 200 205
Leu Gly Ser Leu Asn Ser Tyr Leu Glu Gln Leu Arg Gln Met Glu Lys
210 215 220
Val Leu Glu Glu Val Ala Asp Lys Pro Gln Thr Glu Phe Leu Met Lys
225 230 235 240
Tyr Cys Leu Val Thr Ser Arg Leu Gln Lys Ile Leu Ala Glu Ser Pro
245 250 255
Pro Pro Ala Arg Leu Asp Ile Gln Leu Pro Ile Ile Ser Asp Asp Phe
260 265 270
Lys Phe Gln Val Trp Arg Lys Met Phe Arg Ala Leu Met Pro Ala Leu
275 280 285
Glu Glu Leu Thr Phe Asp Pro Ser Ser Ala His Pro Ser Leu Val Val
290 295 300
Ser Ser Ser Gly Arg Arg Val Glu Cys Ser Glu Gln Lys Ala Pro Pro
305 310 315 320
Ala Gly Glu Asp Pro Arg Gln Phe Asp Lys Ala Val Ala Val Val Ala
325 330 335
His Gln Gln Leu Ser Glu Gly Glu His Tyr Trp Glu Val Asp Val Gly
340 345 350
Asp Lys Pro Arg Trp Ala Leu Gly Val Ile Ala Ala Glu Ala Pro Arg
355 360 365
Arg Gly Arg Leu His Ala Val Pro Ser Gln Gly Leu Trp Leu Leu Gly
370 375 380
Leu Arg Glu Gly Lys Ile Leu Glu Ala His Val Glu Ala Lys Glu Pro
385 390 395 400
Arg Ala Leu Arg Ser Pro Glu Arg Arg Pro Thr Arg Ile Gly Leu Tyr
405 410 415
Leu Ser Phe Gly Asp Gly Val Leu Ser Phe Tyr Asp Ala Ser Asp Ala
420 425 430
Asp Ala Leu Val Pro Leu Phe Ala Phe His Glu Arg Leu Pro Arg Pro
435 440 445
Val Tyr Pro Phe Phe Asp Val Cys Trp His Asp Lys Gly Lys Asn Ala
450 455 460
Gln Pro Leu Leu Leu Val Gly Pro Glu Gly Ala Glu Ala
465 470 475
<210> 11
<211> 477
<212> PRT
<213> Macaca mulatta
<220>
<221> PEPTIDE
<222> (1)..(477)
<223> Rhesus Monkey MG53
<400> 11
Met Ser Ala Ala Pro Gly Leu Leu His Gln Glu Leu Ser Cys Pro Leu
1 5 10 15
Cys Leu Gln Leu Phe Asp Ala Pro Val Thr Ala Glu Cys Gly His Ser
20 25 30
Phe Cys Arg Ala Cys Leu Gly Arg Val Ala Gly Glu Pro Ala Ala Asp
35 40 45
Gly Thr Val Leu Cys Pro Cys Cys Gln Ala Pro Thr Arg Pro Gln Ala
50 55 60
Leu Ser Thr Asn Leu Gln Leu Ala Arg Leu Val Glu Gly Leu Ala Gln
65 70 75 80
Val Pro Gln Gly His Cys Glu Glu His Leu Asp Pro Leu Ser Ile Tyr
85 90 95
Cys Glu Gln Asp Arg Ala Leu Val Cys Gly Val Cys Ala Ser Leu Gly
100 105 110
Ser His Arg Gly His Arg Leu Leu Pro Ala Ala Glu Ala His Ala Arg
115 120 125
Leu Lys Thr Gln Leu Pro Gln Gln Lys Leu Gln Leu Gln Glu Ala Cys
130 135 140
Met Arg Lys Glu Lys Ser Val Ala Val Leu Glu His Gln Leu Val Glu
145 150 155 160
Val Glu Glu Thr Val Arg Gln Phe Arg Gly Ala Val Gly Glu Gln Leu
165 170 175
Gly Lys Met Arg Val Phe Leu Ala Ala Leu Glu Gly Ser Leu Asp Arg
180 185 190
Glu Ala Glu Arg Val Arg Gly Glu Ala Gly Val Ala Leu Arg Arg Glu
195 200 205
Leu Gly Ser Leu Asn Ser Tyr Leu Glu Gln Leu Arg Gln Met Glu Lys
210 215 220
Val Leu Glu Glu Val Ala Asp Lys Pro Gln Thr Glu Phe Leu Met Lys
225 230 235 240
Tyr Cys Leu Val Thr Ser Arg Leu Gln Lys Ile Leu Ala Glu Ser Pro
245 250 255
Pro Pro Ala Arg Leu Asp Ile Gln Leu Pro Ile Ile Ser Asp Asp Phe
260 265 270
Lys Phe Gln Val Trp Arg Lys Met Phe Arg Ala Leu Met Pro Ala Leu
275 280 285
Glu Glu Leu Thr Phe Asp Pro Ser Ser Ala His Pro Ser Leu Val Val
290 295 300
Ser Ser Ser Gly Arg Arg Val Glu Cys Ser Glu Gln Lys Ala Pro Pro
305 310 315 320
Ala Gly Glu Asp Pro Arg Gln Phe Asp Lys Ala Val Ala Val Val Ala
325 330 335
His Gln Gln Leu Ser Glu Gly Glu His Tyr Trp Glu Val Glu Val Gly
340 345 350
Asp Lys Pro Arg Trp Ala Leu Gly Val Ile Ala Ala Glu Gly Pro Arg
355 360 365
Arg Gly Arg Leu His Ala Val Pro Ser Gln Gly Leu Trp Leu Leu Gly
370 375 380
Leu Arg Glu Gly Lys Ile Leu Glu Ala His Val Glu Ala Lys Glu Pro
385 390 395 400
Arg Ala Leu Arg Ser Pro Glu Arg Arg Pro Thr Arg Ile Gly Leu Tyr
405 410 415
Leu Ser Phe Gly Asp Gly Val Leu Ser Phe Tyr Asp Ala Ser Asp Ala
420 425 430
Asp Ala Leu Val Pro Leu Phe Ala Phe His Glu Arg Leu Pro Gly Pro
435 440 445
Val Tyr Pro Phe Phe Asp Val Cys Trp His Asp Lys Gly Lys Asn Ser
450 455 460
Gln Pro Leu Leu Leu Val Gly Ser Glu Gly Ala Glu Ala
465 470 475
<210> 12
<211> 482
<212> PRT
<213> Bos sp.
<220>
<221> PEPTIDE
<222> (1)..(482)
<223> Bovine MG53
<400> 12
Met Ser Ala Ala Pro Gly Leu Leu His Gln Glu Leu Ser Cys Pro Leu
1 5 10 15
Cys Leu Gln Leu Phe Asp Ala Pro Val Thr Ala Glu Cys Gly His Ser
20 25 30
Phe Cys Arg Ala Cys Leu Ser Arg Val Ala Gly Glu Pro Ala Ala Asp
35 40 45
Gly Thr Val Leu Cys Pro Ser Cys Gln Ala Pro Thr Arg Pro Gln Ala
50 55 60
Leu Ser Thr Asn Leu Gln Leu Ala Arg Leu Val Glu Gly Leu Ala Gln
65 70 75 80
Val Pro Gln Gly His Cys Glu Glu His Leu Asp Pro Leu Ser Ile Tyr
85 90 95
Cys Glu Gln Asp Arg Ala Leu Val Cys Gly Val Cys Ala Ser Leu Gly
100 105 110
Ser His Arg Gly His Arg Leu Leu Pro Ala Ala Glu Ala His Ala Arg
115 120 125
Leu Lys Thr Gln Leu Pro Gln Gln Lys Met Gln Leu Gln Glu Ala Cys
130 135 140
Met Arg Lys Glu Lys Ser Val Ala Leu Leu Glu His Gln Leu Leu Glu
145 150 155 160
Val Glu Glu Thr Val Arg Gln Phe Arg Gly Ala Val Gly Glu Gln Leu
165 170 175
Gly Lys Met Arg Leu Phe Leu Ala Ala Leu Glu Gly Ser Leu Asp Arg
180 185 190
Glu Ala Glu Arg Val Arg Gly Glu Ala Gly Val Ala Leu Arg Arg Glu
195 200 205
Leu Gly Ser Leu Asn Ser Tyr Leu Glu Gln Leu Arg Gln Met Glu Lys
210 215 220
Val Leu Glu Glu Val Ala Asp Lys Pro Gln Thr Glu Phe Leu Met Lys
225 230 235 240
Tyr Cys Leu Val Thr Ser Arg Leu Gln Lys Ile Leu Ala Glu Ser Pro
245 250 255
Pro Pro Ala Arg Leu Asp Ile Gln Leu Pro Ile Ile Ser Asp Asp Phe
260 265 270
Lys Phe Gln Val Trp Arg Lys Met Phe Arg Ala Leu Met Pro Ala Arg
275 280 285
Gln Glu Leu Thr Phe Asp Pro Ser Thr Ala His Pro Ser Leu Val Leu
290 295 300
Ser Asn Ser Gly Arg Cys Val Glu Cys Ser Glu Gln Lys Ala Pro Pro
305 310 315 320
Ala Gly Glu Asp Pro Arg Gln Phe Asp Lys Ala Val Ala Val Val Thr
325 330 335
His Gln Leu Leu Ser Glu Gly Glu His Tyr Trp Glu Val Glu Val Gly
340 345 350
Asp Lys Pro Arg Trp Ala Leu Gly Val Ile Gly Ala Gln Ala Gly Arg
355 360 365
Arg Gly Arg Leu His Ala Val Pro Ser Gln Gly Leu Trp Leu Leu Gly
370 375 380
Leu Arg Asp Gly Lys Ile Leu Glu Ala His Val Glu Ala Lys Glu Pro
385 390 395 400
Arg Ala Leu Arg Thr Pro Glu Arg Arg Pro Thr Arg Ile Gly Ile Tyr
405 410 415
Leu Ser Phe Gly Asp Gly Val Leu Ser Phe Tyr Asp Ala Ser Asp Pro
420 425 430
Asp Ala Leu Glu Leu Leu Phe Ala Phe His Glu Arg Leu Pro Gly Pro
435 440 445
Val Tyr Pro Phe Phe Asp Val Cys Trp His Asp Lys Gly Lys Asn Ala
450 455 460
Gln Pro Leu Leu Leu Val Gly Pro Glu Val Ser Gly Gly Ser Gly Ser
465 470 475 480
Glu Ala
<210> 13
<211> 477
<212> PRT
<213> Rattus sp.
<220>
<221> PEPTIDE
<222> (1)..(477)
<223> Rat MG53
<400> 13
Met Ser Thr Ala Pro Gly Leu Leu Arg Gln Glu Leu Ser Cys Pro Leu
1 5 10 15
Cys Leu Gln Leu Phe Asp Ala Pro Val Thr Ala Glu Cys Gly His Ser
20 25 30
Phe Cys Arg Ala Cys Leu Ile Arg Val Ala Gly Glu Pro Ala Asp Asp
35 40 45
Gly Thr Val Ala Cys Pro Cys Cys Gln Ala Ser Thr Arg Pro Gln Ala
50 55 60
Leu Ser Thr Asn Leu Gln Leu Ala Arg Leu Val Glu Gly Leu Ala Gln
65 70 75 80
Val Pro Gln Gly His Cys Glu Glu His Leu Asp Pro Leu Ser Ile Tyr
85 90 95
Cys Glu Gln Asp Arg Thr Leu Val Cys Gly Val Cys Ala Ser Leu Gly
100 105 110
Ser His Arg Gly His Arg Leu Leu Pro Ala Ala Glu Ala His Ala Arg
115 120 125
Leu Lys Thr Gln Leu Pro Gln Gln Lys Ala Gln Leu Gln Glu Ala Cys
130 135 140
Met Arg Lys Glu Lys Ser Val Ala Val Leu Glu His Gln Leu Val Glu
145 150 155 160
Val Glu Glu Thr Val Arg Gln Phe Arg Gly Ala Val Gly Glu Gln Leu
165 170 175
Gly Lys Met Arg Met Phe Leu Ala Ala Leu Glu Ser Ser Leu Asp Arg
180 185 190
Glu Ala Glu Arg Val Arg Gly Glu Ala Gly Val Ala Leu Arg Arg Glu
195 200 205
Leu Ser Ser Leu Asn Ser Tyr Leu Glu Gln Leu Arg Gln Met Glu Lys
210 215 220
Val Leu Glu Glu Val Ala Asp Lys Pro Gln Thr Glu Phe Leu Met Lys
225 230 235 240
Phe Cys Leu Val Thr Ser Arg Leu Gln Lys Ile Leu Ser Glu Ser Pro
245 250 255
Pro Pro Ala Arg Leu Asp Ile Gln Leu Pro Val Ile Ser Asp Asp Phe
260 265 270
Lys Phe Gln Val Trp Lys Lys Met Phe Arg Ala Leu Met Pro Glu Leu
275 280 285
Glu Glu Leu Thr Phe Asp Pro Ser Ser Ala His Pro Ser Leu Val Val
290 295 300
Ser Ala Ser Gly Arg Arg Val Glu Cys Ser Glu Gln Lys Ala Pro Pro
305 310 315 320
Ala Gly Glu Asp Thr Cys Gln Phe Asp Lys Thr Val Ala Val Val Ala
325 330 335
Lys Gln Leu Leu Ser Gln Gly Glu His Tyr Trp Glu Val Glu Val Gly
340 345 350
Asp Lys Pro Arg Trp Ala Leu Gly Val Met Ala Ala Asp Ala Ser Arg
355 360 365
Arg Gly Arg Leu His Ala Val Pro Ser Gln Gly Leu Trp Leu Leu Gly
370 375 380
Leu Arg Asp Gly Lys Ile Leu Glu Ala His Val Glu Ala Lys Glu Pro
385 390 395 400
Arg Ala Leu Arg Thr Pro Glu Arg Pro Pro Ala Arg Ile Gly Leu Tyr
405 410 415
Leu Ser Phe Ala Asp Gly Val Leu Thr Phe Tyr Asp Ala Ser Asn Thr
420 425 430
Asp Ala Leu Thr Pro Leu Phe Ser Phe His Glu Arg Leu Pro Gly Pro
435 440 445
Val Tyr Pro Met Phe Asp Val Cys Trp His Asp Lys Gly Lys Asn Ser
450 455 460
Gln Pro Leu Leu Leu Val Gly Pro Asp Ser Glu Gln Ala
465 470 475
<210> 14
<211> 477
<212> PRT
<213> Xenopus laevis
<220>
<221> PEPTIDE
<222> (1)..(477)
<223> Xenopus laevis
<400> 14
Met Ser Thr Pro Gln Leu Met Gln Gly Met Gln Lys Asp Leu Thr Cys
1 5 10 15
Gln Leu Cys Leu Glu Leu Phe Arg Ala Pro Val Thr Pro Glu Cys Gly
20 25 30
His Thr Phe Cys Gln Gly Cys Leu Thr Gly Val Pro Lys Asn Gln Asp
35 40 45
Gln Asn Gly Ser Thr Pro Cys Pro Thr Cys Gln Ser Pro Ser Arg Pro
50 55 60
Glu Thr Leu Gln Ile Asn Arg Gln Leu Glu His Leu Val Gln Ser Phe
65 70 75 80
Lys Gln Val Pro Gln Gly His Cys Leu Glu His Met Asp Pro Leu Ser
85 90 95
Val Tyr Cys Glu Gln Asp Lys Glu Leu Ile Cys Gly Val Cys Ala Ser
100 105 110
Leu Gly Lys His Lys Gly His Asn Ile Ile Thr Ala Ser Glu Ala Phe
115 120 125
Ala Lys Leu Lys Arg Gln Leu Pro Gln Gln Gln Val Ile Leu Gln Glu
130 135 140
Ala Arg Leu Lys Lys Glu Lys Thr Val Ala Val Leu Asp Arg Gln Val
145 150 155 160
Ala Glu Val Gln Asp Thr Val Ser Arg Phe Lys Gly Asn Val Lys His
165 170 175
Gln Leu Asn Ala Met Arg Ser Tyr Leu Asn Ile Met Glu Ala Ser Leu
180 185 190
Gly Lys Glu Ala Asp Lys Ala Glu Ser Ala Ala Thr Glu Ala Leu Leu
195 200 205
Val Glu Arg Lys Thr Met Gly His Tyr Leu Asp Gln Leu Arg Gln Met
210 215 220
Glu Gly Val Leu Lys Asp Val Glu Gly Gln Glu Gln Thr Glu Phe Leu
225 230 235 240
Arg Lys Tyr Cys Val Val Ala Ala Arg Leu Asn Lys Ile Leu Ser Glu
245 250 255
Ser Pro Pro Pro Gly Arg Leu Asp Ile Gln Leu Pro Ile Ile Ser Asp
260 265 270
Glu Phe Lys Phe Gln Val Trp Arg Lys Met Phe Arg Ala Leu Met Pro
275 280 285
Ala Leu Glu Asn Met Thr Phe Asp Pro Asp Thr Ala Gln Gln Tyr Leu
290 295 300
Val Val Ser Ser Glu Gly Lys Ser Val Glu Cys Ala Asp Gln Lys Gln
305 310 315 320
Ser Val Ser Asp Glu Pro Asn Arg Phe Asp Lys Ser Asn Cys Leu Val
325 330 335
Ser Lys Gln Ser Phe Thr Glu Gly Glu His Tyr Trp Glu Val Ile Val
340 345 350
Glu Asp Lys Pro Arg Trp Ala Leu Gly Ile Ile Ser Glu Thr Ala Asn
355 360 365
Arg Lys Gly Lys Leu His Ala Thr Pro Ser Asn Gly Phe Trp Ile Ile
370 375 380
Gly Cys Lys Glu Gly Lys Val Tyr Glu Ala His Thr Glu Gln Lys Glu
385 390 395 400
Pro Arg Val Leu Arg Val Glu Gly Arg Pro Glu Lys Ile Gly Val Tyr
405 410 415
Leu Ser Phe Ser Asp Gly Val Val Ser Phe Phe Asp Ser Ser Asp Glu
420 425 430
Asp Asn Leu Lys Leu Leu Tyr Thr Phe Asn Glu Arg Phe Ser Gly Arg
435 440 445
Leu His Pro Phe Phe Asp Val Cys Trp His Asp Lys Gly Lys Asn Ser
450 455 460
Gln Pro Leu Lys Ile Phe Tyr Pro Pro Ala Glu Gln Leu
465 470 475
<210> 15
<211> 477
<212> PRT
<213> Xenopus sp.
<220>
<221> PEPTIDE
<222> (1)..(477)
<223> Xenopus tropicalis MG53
<400> 15
Met Ser Thr Pro Gln Leu Met Gln Gly Met Gln Lys Asp Leu Thr Cys
1 5 10 15
Pro Leu Cys Leu Glu Leu Phe Arg Ala Pro Val Thr Pro Glu Cys Gly
20 25 30
His Thr Phe Cys Gln Gly Cys Leu Thr Gly Ala Pro Lys Asn Gln Asp
35 40 45
Gln Asn Gly Ser Thr Pro Cys Pro Thr Cys Gln Thr Pro Ser Arg Pro
50 55 60
Glu Thr Leu Gln Ile Asn Arg Gln Leu Glu His Leu Val Gln Ser Phe
65 70 75 80
Lys Gln Val Pro Lys Gly His Cys Leu Glu His Leu Asp Pro Leu Ser
85 90 95
Val Tyr Cys Glu Gln Asp Lys Glu Leu Ile Cys Gly Val Cys Ala Ser
100 105 110
Leu Gly Lys His Lys Gly His Asn Ile Ile Thr Ala Ala Glu Ala Tyr
115 120 125
Ala Lys Leu Lys Arg Gln Leu Pro Gln Gln Gln Val Ile Leu Gln Glu
130 135 140
Ala Arg Leu Lys Lys Glu Lys Thr Val Ala Val Leu Asp Arg Gln Val
145 150 155 160
Ala Glu Val Gln Asp Thr Val Ser Arg Phe Lys Gly Asn Val Lys His
165 170 175
Gln Leu Asn Ala Met Arg Ser Tyr Leu Ser Ile Met Glu Ala Ser Leu
180 185 190
Ser Lys Glu Ala Asp Asn Ala Glu His Thr Ala Thr Glu Ala Leu Leu
195 200 205
Val Glu Arg Lys Thr Met Gly His Tyr Leu Asp Gln Leu Arg Gln Met
210 215 220
Asp Gly Val Leu Lys Asp Val Glu Ser Gln Glu Gln Thr Glu Phe Leu
225 230 235 240
Arg Lys Tyr Cys Val Val Ala Ala Arg Leu Asn Lys Ile Leu Ala Glu
245 250 255
Ser Pro Pro Pro Gly Arg Leu Asp Ile Gln Leu Pro Ile Ile Ser Asp
260 265 270
Glu Phe Lys Phe Gln Val Trp Arg Lys Met Phe Arg Ala Leu Met Pro
275 280 285
Ala Leu Glu Asn Leu Thr Phe Asp Pro Asp Thr Ala Gln Gln Asn Leu
290 295 300
Val Val Phe Ser Asp Gly Lys Ser Val Glu Cys Ser Glu Gln Lys Gln
305 310 315 320
Ser Val Ser Asp Glu Pro Asn Arg Phe Asp Lys Ser Asn Cys Leu Val
325 330 335
Ser Lys Glu Ser Phe Thr Glu Gly Glu His Tyr Trp Glu Val Leu Val
340 345 350
Glu Asp Lys Pro Arg Trp Ala Leu Gly Val Ile Ser Glu Thr Ala Asn
355 360 365
Arg Lys Gly Lys Leu His Ala Ser Pro Ser Asn Gly Phe Trp Leu Ile
370 375 380
Gly Cys Lys Glu Gly Lys Val Tyr Glu Ala His Thr Glu Gln Lys Glu
385 390 395 400
Pro Arg Val Leu Arg Val Glu Gly Arg Pro Glu Lys Ile Gly Ile Tyr
405 410 415
Leu Ser Phe Ser Asp Gly Val Val Ser Phe Phe Asp Ser Ser Asp Glu
420 425 430
Asp Asn Ile Lys Leu Leu Tyr Thr Phe Asn Glu Arg Phe Ser Gly Arg
435 440 445
Leu His Pro Phe Phe Asp Val Cys Trp His Asp Lys Gly Lys Asn Ala
450 455 460
Gln Pro Leu Lys Ile Phe Tyr Pro Pro Ala Glu Gln Leu
465 470 475
<210> 16
<211> 101
<212> PRT
<213> Human immunodeficiency virus type 1
<220>
<221> PEPTIDE
<222> (1)..(101)
<223> HIV-1 TAT protein
<400> 16
Met Glu Pro Val Asp Pro Asn Leu Glu Pro Trp Lys His Pro Gly Ser
1 5 10 15
Gln Pro Pro Thr Ala Cys Ser Lys Cys Tyr Cys Lys Lys Cys Cys Trp
20 25 30
His Cys Gln Leu Cys Phe Leu Lys Lys Gly Leu Gly Ile Ser Tyr Gly
35 40 45
Arg Lys Lys Arg Lys His Arg Arg Gly Thr Pro Gln Ser Ser Lys Asp
50 55 60
His Gln Asn Pro Ile Pro Glu Gln Pro Leu Pro Ile Ile Arg Gly Asn
65 70 75 80
Gln Thr Gly Pro Lys Glu Gln Lys Lys Thr Val Ala Ser Lys Ala Glu
85 90 95
Arg Asp Leu Cys Ala
100

Claims (4)

1.一种组合物,该组合物含有有效量的Mitsugumin 53(MG53)多肽,所述组合物用于在治疗或预防肾损伤的方法中使用,所述方法包括将所述组合物给药至对其有需求的受试者,其中,所述组合物在改善肾损伤的影响或症状中是有效的。
2.根据权利要求1所述的组合物,其中,所述MG53多肽为具有近端小管上皮(PTE)膜修复活性的重组MG53多肽。
3.根据权利要求1或2所述的组合物,其中,所述MG53多肽为重组人MG53(rhMG53)多肽。
4.根据权利要求1-34中任意一项所述的组合物,其中,所述肾损伤为手术相关的肾损伤,造影剂诱导的急性肾损伤(AKI),药物或化疗诱导的AKI,毒素诱导的AKI,透析、缺血/再灌注诱导的AKI,脓毒症诱导的AKI或它们的组合中的至少一种。
CN201580072401.0A 2014-12-30 2015-12-30 预防和修复急性肾损伤的组合物和方法 Active CN107405381B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462098154P 2014-12-30 2014-12-30
US62/098,154 2014-12-30
PCT/US2015/068016 WO2016109638A1 (en) 2014-12-30 2015-12-30 Compositions and methods to prevent and repair acute kidney injury

Publications (2)

Publication Number Publication Date
CN107405381A true CN107405381A (zh) 2017-11-28
CN107405381B CN107405381B (zh) 2022-03-29

Family

ID=56285027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580072401.0A Active CN107405381B (zh) 2014-12-30 2015-12-30 预防和修复急性肾损伤的组合物和方法

Country Status (2)

Country Link
CN (1) CN107405381B (zh)
WO (1) WO2016109638A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108339111A (zh) * 2018-03-29 2018-07-31 中国人民解放军陆军军医大学第三附属医院(野战外科研究所) Mg53蛋白的医药用途
CN108721601A (zh) * 2018-07-26 2018-11-02 海南博芝康医疗科技有限公司 一种预防和/或治疗肾损伤和肾衰竭的组合物
CN108918571A (zh) * 2018-06-15 2018-11-30 山西大学 代谢标志物在制备肾病综合征病变进程诊断鉴别试剂中的应用
CN113347990A (zh) * 2018-12-21 2021-09-03 西北大学 膜联蛋白在预防和治疗肌膜损伤中的用途

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107987147A (zh) * 2016-10-26 2018-05-04 王惠琴 一种mg53多聚体制备方法及其用途
WO2018170796A1 (en) * 2017-03-22 2018-09-27 Tsinghua University Trim72 as potential therapeutic target for als through ubiquitinating mutant fus protein
EP3982999A4 (en) * 2019-06-17 2023-07-19 Trim-Edicine, Inc. COMPOSITION AND METHODS OF TREATMENT OF LIVER TISSUE DAMAGE
WO2021015894A1 (en) * 2019-07-25 2021-01-28 Trim-Edicine, Inc. Composition for and method of improving tissue performance
CN115835877A (zh) * 2020-04-14 2023-03-21 俄亥俄州立创新基金会 病毒感染引起的器官衰竭的预防和治疗
CN114886942B (zh) * 2022-05-19 2023-11-21 云南西草资源开发有限公司 一种止血组合物及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101511181A (zh) * 2006-07-11 2009-08-19 新泽西医科和牙科大学 蛋白、编码该蛋白的核酸和相关的应用方法
US20120309051A1 (en) * 2006-07-11 2012-12-06 University Of Medicine And Dentistry Of New Jersey Compositions and methods for preparing recombinant mg53 and methods for optimizing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142744A1 (en) * 2010-05-11 2011-11-17 University Of Medicine And Dentistry Of New Jersey Compositions and methods for the treatment and prevention of cardiac ischemic injury
US20120213737A1 (en) * 2011-02-18 2012-08-23 University Of Medicine And Dentistry Of New Jersey Compositions and methods for therapeutic membrane repair
WO2014200705A1 (en) * 2013-06-14 2014-12-18 Stc.Unm Treatment of autophagy-related disorders

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101511181A (zh) * 2006-07-11 2009-08-19 新泽西医科和牙科大学 蛋白、编码该蛋白的核酸和相关的应用方法
US20120309051A1 (en) * 2006-07-11 2012-12-06 University Of Medicine And Dentistry Of New Jersey Compositions and methods for preparing recombinant mg53 and methods for optimizing same
CN103275980A (zh) * 2006-07-11 2013-09-04 新泽西医科和牙科大学 抗体、融合蛋白以及组合物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HUA ZHU等: "Polymerase Transcriptase Release Factor (PTRF) Anchors MG53 Protein to Cell Injury Site for Initiation of Membrane Repair", 《J BIOL CHEM》 *
WEISLEDER N等: "Recombinant MG53 protein modulates therapeutic cell membrane repair in treatment of muscular dystrophy", 《SCI TRANSL MED》 *
YANJUN WU等: "Mitsugumin 53 protects the kidney from severe burn injury in mice", 《BURNS & TRAUMA》 *
武艳军: "MG53对重度烫伤小鼠肾脏保护作用的研究", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》 *
王共先等: "骨髓间充质干细胞移植修复肾损伤", 《中国组织工程研究》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108339111A (zh) * 2018-03-29 2018-07-31 中国人民解放军陆军军医大学第三附属医院(野战外科研究所) Mg53蛋白的医药用途
CN108918571A (zh) * 2018-06-15 2018-11-30 山西大学 代谢标志物在制备肾病综合征病变进程诊断鉴别试剂中的应用
CN108918571B (zh) * 2018-06-15 2021-02-02 山西大学 代谢标志物在制备肾病综合征病变进程诊断鉴别试剂中的应用
CN108721601A (zh) * 2018-07-26 2018-11-02 海南博芝康医疗科技有限公司 一种预防和/或治疗肾损伤和肾衰竭的组合物
CN113347990A (zh) * 2018-12-21 2021-09-03 西北大学 膜联蛋白在预防和治疗肌膜损伤中的用途

Also Published As

Publication number Publication date
CN107405381B (zh) 2022-03-29
WO2016109638A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
CN107405381A (zh) 预防和修复急性肾损伤的组合物和方法
ES2753264T3 (es) Modelos de cáncer y métodos asociados
US9458465B2 (en) Compositions and methods to modulate cell membrane resealing
US10787492B2 (en) Cell-permeable (iCP)-SOCS3 recombinant protein and uses thereof
US20220009991A1 (en) Bi-specific therapeutic proteins and method of use thereof
CN103547281A (zh) 治疗和预防心脏缺血损伤的组合物和方法
CN106478776A (zh) 抗纤维化肽及其在用于治疗以纤维化为特征的疾病和病症的方法中的用途
Chien et al. Impaired water reabsorption in mice deficient in the type VI adenylyl cyclase (AC6)
CN104066452A (zh) 治疗和预防气道损伤的含mg53组合物及方法
BR112019023116A2 (pt) fragmentos de cdnf e manf do terminal c, composições farmacêuticas que os compreendem e usos dos mesmos
CN111135311B (zh) Ecm1在预防和/或治疗肝纤维化相关疾病中的应用
KR20160052537A (ko) 조직 손상과 연관된 질환 및 장애를 예방 및 치료하기 위한 조직 보호 펩티드 및 펩티드 유사체
US20090035317A1 (en) Peptides binding to vascular endothelial growth factor
CN106265620A (zh) 阿特匹灵c及其类似物在制备防治代谢性疾病的药物中的应用
Zhang et al. Disruption of dopamine D1 receptor phosphorylation at serine 421 attenuates cocaine-induced behaviors in mice
CN104582715A (zh) 用于代谢调节的方法和组合物
CN104684574B (zh) 加压素-2受体的肽拮抗剂
EP1867341A1 (en) Therapeutic agent for non-alcoholic fatty liver disease, and screening method for drug candidate compound for treatment or prevention of non-alcoholic fatty liver disease
Frison et al. The 18 kDa Translocator protein (TSPO): cholesterol trafficking and the biology of a prognostic and therapeutic mitochondrial target
WO2017147044A1 (en) Peptides and methods for treatment of neurodegenerative diseases
JP6330236B2 (ja) ヒトインスリン受容体を発現するトランスジェニックカイコ、該トランスジェニックカイコを用いた評価方法、スクリーニング方法及び薬剤製造方法
Li et al. A Novel Cargo Delivery System‐AnCar‐ExoLaIMTS Ameliorates Arthritis via Specifically Targeting Pro‐Inflammatory Macrophages
Brunialti et al. Design and validation of a reporter mouse to study the dynamic regulation of TFEB and TFE3 activity through in vivo imaging techniques
Yang The model of the fruit fly Drosophila melanogaster as a novel tool for characterization of human membrane transporters
EP4076499A1 (en) Use of glial cell line-derived neurotrophic factor (gdnf) for the treatment of enteric neuropathies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant