CN107390169A - 一种天线参数校准方法和装置 - Google Patents

一种天线参数校准方法和装置 Download PDF

Info

Publication number
CN107390169A
CN107390169A CN201710592842.4A CN201710592842A CN107390169A CN 107390169 A CN107390169 A CN 107390169A CN 201710592842 A CN201710592842 A CN 201710592842A CN 107390169 A CN107390169 A CN 107390169A
Authority
CN
China
Prior art keywords
distance value
value
measurement distance
target terminal
function formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710592842.4A
Other languages
English (en)
Other versions
CN107390169B (zh
Inventor
李睿智
任国荣
陈召强
齐欧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smart Technology (beijing) Co Ltd
Original Assignee
Smart Technology (beijing) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smart Technology (beijing) Co Ltd filed Critical Smart Technology (beijing) Co Ltd
Priority to CN201710592842.4A priority Critical patent/CN107390169B/zh
Publication of CN107390169A publication Critical patent/CN107390169A/zh
Application granted granted Critical
Publication of CN107390169B publication Critical patent/CN107390169B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/021Calibration, monitoring or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/022Means for monitoring or calibrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种天线参数校准方法和装置,该方法包括基站通过向目标终端发送测距信号,确定与目标终端之间的多个测量距离值;基于所述多个测量距离值,以及与每个测量距离值对应的所述基站与目标终端之间的实际距离值,拟合表征实际距离值与测量距离值之间关系的第一函数式和第二函数式;基于所述第一函数式和所述第二函数式,确定奇点的测量距离值;基于确定的所述奇点的测量距离值,以及预设的延时参数的初始值,确定天线延时参数的校准值。本发明还公开了相应的天线校准装置。

Description

一种天线参数校准方法和装置
技术领域
本发明涉及UWB(Ultra Wideband,超带宽)通信技术领域,具体而言,涉及一种天线参数校准方法和装置。
背景技术
目前,基于无载波通信(例如UWB)技术的定位系统在机器人上应用得越来越广泛。由于采用的无载波通信定位芯片不同,定位芯片中的天线延时也会不同,而初始的天线延时值并未进行校准,由于初始的天线延时值可能不准确,在基于无载波通信技术进行测距时,一般会提前对天线延时进行校准,对天线延时的校准主要通过手工迭代校准方法进行,其校准精度和通用性相对较差,从而导致测量的距离不准确。
因此,为了实现对机器人的准确定位,亟需一种能够对天线延时进行更好校准的技术。
发明内容
有鉴于此,本发明的目的在于提供一种天线参数校准方法和装置,用于解决现有技术中天线延时参数的值较难校准的问题。
第一方面,本发明实施例提供一种天线参数校准方法,该方法包括:
基站通过向目标终端发送测距信号,确定与目标终端之间的多个测量距离值;
基于所述多个测量距离值,以及与每个测量距离值对应的所述基站与目标终端之间的实际距离值,拟合表征实际距离值与测量距离值之间关系的第一函数式和第二函数式,所述第一函数式对应第一直线,所述第二函数式对应第二直线,所述第一直线和所述第二直线相交形成的交点为奇点;
基于所述第一函数式和所述第二函数式,确定奇点的测量距离值;
基于确定的所述奇点的测量距离值以及预设的天线延时参数的初始值,确定天线延时参数的校准值。
可选地,根据以下步骤确定基站与目标终端之间的任一所述测量距离值:
在基站相对目标终端移动过程中,基站获取向目标终端发送测距信号的第一时间、接收到目标终端的反馈信号时的第二时间和目标终端接收到测距信号后的反馈时间;
根据获取的所述第一时间、所述第二时间和所述反馈时间,以及预设的天线延时参数的初始值和测量速度,确定基站与目标终端之间的测量距离值。
可选地,在所述基于确定的所述奇点的测量距离值和所述延时参数的初始值,确定天线延时参数的校准值之前,还包括:
基于所述奇点的测量距离值和设定系数,确定奇点临界值是否小于设定阈值,所述奇点临界值为测量距离值和设定系数的乘积。
可选地,在所述拟合表征实际距离值与测量距离值之间关系的第一函数式和第二函数式之前,还包括:
按照设定的数据范围,从所述多个测量距离值中确定属于所述数据范围的测量距离值,并将属于所述数据范围的测量距离值从所述多个测量距离值中去除。
可选地,根据以下公式确定天线延时参数的校准值:
DelayNew=Delay+DisError*Kexp
其中,DelayNew为天线延时参数的校准值;Delay为天线延时参数的初始值;DisError为奇点的测量距离值;Kexp为设定系数。
第二方面,本发明实施例提供一种天线参数校准装置,该装置包括:
第一确定单元,用于通过向目标终端发送测距信号,确定与目标终端之间的多个测量距离值;
第二确定单元,用于基于所述多个测量距离值,以及与每个测量距离值对应的所述基站与目标终端之间的实际距离值,拟合表征实际距离值与测量距离值之间关系的第一函数式和第二函数式,所述第一函数式对应第一直线,所述第二函数式对应第二直线,所述第一直线和所述第二直线相交形成的交点为奇点;
第三确定单元,用于基于所述第一函数式和所述第二函数式,确定奇点的测量距离值;
第四确定单元,用于基于确定的所述奇点的测量距离值以及预设的天线延时参数的初始值,确定天线延时参数的校准值。
可选地,所述第一确定单元具体用于:
在基站相对目标终端移动过程中,基站获取向目标终端发送测距信号的第一时间、接收到目标终端的反馈信号时的第二时间和目标终端接收到测距信号后的反馈时间;
根据获取的所述第一时间、所述第二时间和所述反馈时间,以及预设的天线延时参数的初始值和测量速度,确定基站与目标终端之间的测量距离值。
可选地,所述第四确定单元还用于:
基于所述奇点的测量距离值和设定系数,确定奇点临界值是否小于设定阈值,所述奇点临界值为测量距离值和设定系数的乘积。
可选地,所述第二确定单元还用于:
按照设定的数据范围,从所述多个测量距离值中确定属于所述数据范围的测量距离值,并将属于所述数据范围的测量距离值从所述多个测量距离值中去除。
可选地,所述第四确定单元具体用于根据以下公式确定天线延时参数的校准值:
DelayNew=Delay+DisError*Kexp
其中,DelayNew为天线延时参数的校准值;Delay为天线延时参数的初始值;DisError为奇点的测量距离值;Kexp为设定系数。
本发明实施例的天线参数校准方法和装置,包括基站通过向目标终端发送测距信号,确定与目标终端之间的多个测量距离值;基于所述多个测量距离值,以及与每个测量距离值对应的所述基站与目标终端之间的实际距离值,拟合表征实际距离值与测量距离值之间关系的第一函数式和第二函数式,所述第一函数式对应第一直线,所述第二函数式对应第二直线;基于所述第一函数式和所述第二函数式,确定奇点的测量距离值;所述奇点为所述第一直线与所述第二直线的交点;基于确定的所述奇点的测量距离值和所述延时参数的初始值,确定天线延时参数的校准值。本发明实施例提供的天线参数校准方法,天线延时的校准值可以通过多次测量基站和目标终端之间的测量距离值来进行校准,以得到该基站相对准确的天线延时参数的值,减少测距时的误差。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明一实施例提供的一种天线参数校准方法的第一种流程示意图;
图2为本发明一实施例提供的一种测距信号测距的示意图;
图3为本发明一实施例提供的一种天线参数校准方法的第二种流程示意图;
图4为本发明一实施例提供的一种实际距离值和测量距离值之间的关系图;
图5为本发明又一实施例提供的一种拟合后的实际距离值和测量值之间的关系图;
图6为本发明又一实施例提供的一种天线参数校准装置的机构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明一实施例提供了一种天线参数校准方法,如图1所示,该方法包括如下步骤:
S101,基站通过向目标终端发送测距信号,确定与目标终端之间的多个测量距离值;
S102,基于所述多个测量距离值,以及与每个测量距离值对应的所述基站与目标终端之间的实际距离值,拟合表征实际距离值与测量距离值之间关系的第一函数式和第二函数式,所述第一函数式对应第一直线,所述第二函数式对应第二直线,所述第一直线和所述第二直线相交形成的交点为奇点;
S103,基于所述第一函数式和所述第二函数式,确定奇点的测量距离值;
S104,基于确定的所述奇点的测量距离值预设的天线延时参数的初始值,确定天线延时参数的校准值。
在本发明实施例中,基站用于发送测距信号,目标终端用于接收基站发送的测距信号,并返回反馈信号;测距信号可以为无线电波、电磁波,频率一般在3GHz到30GHz之间;第一函数式可以为一次线性关系式,第二函数式也可以为一次线性关系式;奇点是理论上基站与目标终端之间的最短的测量距离值,当基站与目标终端之间的测量距离超过上述最短的测量距离值后,基站测量的基站与目标终端之间的测量距离会随着实际距离的减少而逐渐增大;由于硬件原因,基站在接收例如反馈信号时,会产生延时,为避免延时带来的测量误差,通过设置基站的天线延时参数来减少测量误差。
天线延时参数的初始值可以根据硬件进行设置,天线延时的校准值可以通过多次测量基站和目标终端之间的测量距离值来进行校准,以得到该基站相对准确的天线延时参数的值,减少测距时的误差。
进一步地,在S101中确定与目标终端之间的多个测量距离值,根据以下步骤确定基站与目标终端之间的任一所述测量距离值:
在基站相对目标终端移动过程中,基站获取向目标终端发送测距信号的第一时间、接收到目标终端的反馈信号时的第二时间和目标终端接收到测距信号后的反馈时间;
根据获取的所述第一时间、所述第二时间和所述反馈时间,以及预设的天线延时参数的初始值和测量速度,确定基站与目标终端之间的测量距离值。
参考图2,在基站相对目标终端移动过程中,使得基站在预先设置多个实际距离值对应的位置,测量与目标终端之间的测量距离值。针对每个实际距离值,在该实际距离值,获取向目标终端发送测距信号的第一时间T1;获取目标终端接收到测距信号后向基站发送反馈信号的反馈时间Treply,该反馈时间可以为用户手动输入完成;接收目标终端的反馈信号时的第二时间T2;基于上述第一时间、第二时间和反馈时间,以及天线延时参数的初始值p和测量速度C,根据以下公式确定基站和目标终端之间的测量距离值Distance:
其中,Distance为基站测量的基站与目标终端之间的测量距离值;
C为测量速度,即光速;
T1为发送测距信号的第一时间;
T2为接收反馈信号的第二时间;
Treply为目标终端接收到测距信号后的反馈时间;
P为天线延时参数的初始值。
本发明一实施例提供了一种天线参数校准方法,参考图3,该方法包括以下步骤:
S301,基站通过向目标终端发送测距信号,确定与目标终端之间的多个测量距离值。
S302,按照设定的数据范围,从所述多个测量距离值中确定属于所述数据范围的测量距离值,并将属于所述数据范围的测量距离值从所述多个测量距离值中去除。
具体地,数据范围可根据实际情况进行确定,例如,图4中框出来的数据认为是在数据范围内的数据。
S303,基于S302的多个测量距离值,以及与每个测量距离值对应的所述基站与目标终端之间的实际距离值,拟合表征实际距离值与测量距离值之间关系的第一函数式和第二函数式,所述第一函数式对应第一直线,所述第二函数式对应第二直线,所述第一直线和所述第二直线相交形成的交点为奇点。
参考图5,以实际距离为横坐标、测量距离作为纵坐标,采用最小二乘法对步骤S302中的测量距离值和实际距离值进行拟合处理,分别得到图5中的第一直线和第二直线。其中最小二乘法在现有技术中已有详细的介绍,此处不做过多说明。
例如,第一函数式可以为y=-ax+b,第二函数式为y=a’x-b’,其中,x为实际距离值,y为测量距离值,a、a’以及b、b’可以是任意合适的数。例如,a和a’可以相同或不同,b和b’可以相同或不同。不过应当理解,上述第一函数式和所述第二函数式的示例仅仅是示意性,本发明对此不予限制。
优选地,第一函数式通过下述公式表达:
y=-x/(C*k1)+Delay+offset1
其中,y为测量距离值,x为实际距离值;C为光速;k1为设定系数,即常数;Delay为天线延时参数的初始值;offset1为偏移量,可以通过预设的第一数值与delay的差值计算得到。
优选地,第二函数式通过下述公式表达:
y=x/(k2*C)-Delay+offset2
其中,y为测量距离值,x为实际距离值;C为光速;k2为设定系数,即常数;Delay为天线延时参数的初始值;offset2为偏移量,可以通过预设的第二数值与delay的差值计算得到。
对于上述两个公式而言,k1与k2可以相同也可以不相同,应根据具体拟合情况而定;offset1与offset2可以相同也可以不相同,应根据具体拟合情况而定。
S304,基于所述第一函数式和所述第二函数式,确定奇点的测量距离值;所述奇点为所述第一直线与所述第二直线的交点。
参考图5,根据第一函数式和第二函数式,可求得奇点的横坐标和纵坐标,奇点的纵坐标即为需要的测量距离值。
S305,基于所述奇点的测量距离值和设定系数,确定奇点临界值是否小于设定阈值,所述奇点临界值为测量距离值和设定系数的乘积。
S306,基于确定的所述奇点的测量距离值,以及预设的天线延时参数的初始值,确定天线延时参数的校准值。
进一步地,根据以下公式确定天线延时参数的校准值:
DelayNew=Delay+DisError*Kexp
其中,DelayNew为天线延时参数的校准值;Delay为天线延时参数的初始值;DisError为奇点的测量距离值;Kexp为设定系数。
本发明另一实施例提供了一种天线参数校准装置,参考图6,该装置包括:第一确定单元610、第二确定单元620、第三确定单元630和第四确定单元640。
第一确定单元610,用于通过向目标终端发送测距信号,确定与目标终端之间的多个测量距离值;
第二确定单元620,用于基于所述多个测量距离值,以及与每个测量距离值对应的所述基站与目标终端之间的实际距离值,拟合表征实际距离值与测量距离值之间关系的第一函数式和第二函数式,所述第一函数式对应第一直线,所述第二函数式对应第二直线,所述第一直线和所述第二直线相交形成的交点为奇点;
第三确定单元630,用于基于所述第一函数式和所述第二函数式,确定奇点的测量距离值;
第四确定单元640,用于基于确定的所述奇点的测量距离值以及预设的天线延时参数的初始值,确定天线延时参数的校准值。
进一步地,所述第一确定单元610具体用于:
在基站相对目标终端移动过程中,基站获取向目标终端发送测距信号的第一时间、接收到目标终端的反馈信号时的第二时间和目标终端接收到测距信号后的反馈时间;
根据获取的所述第一时间、所述第二时间和所述反馈时间,以及预设的天线延时参数的初始值和测量速度,确定基站与目标终端之间的测量距离值。
进一步地,所述第四确定单元640还用于:
基于所述奇点的测量距离值和设定系数,确定奇点临界值是否小于设定阈值,所述奇点临界值为测量距离值和设定系数的乘积。
进一步地,所述第二确定单元620还用于:
按照设定的数据范围,从所述多个测量距离值中确定属于所述数据范围的测量距离值,并将属于所述数据范围的测量距离值从所述多个测量距离值中去除。
进一步地,所述第四确定单元640具体用于根据以下公式确定天线延时参数的校准值:
DelayNew=Delay+DisError*Kexp
其中,DelayNew为天线延时参数的校准值;Delay为天线延时参数的初始值;DisError为奇点的测量距离值;Kexp为设定系数。
关于第一确定单元、第二确定单元、第三确定单元和第四确定单元以及其他步骤的相关介绍其实现原理及产生的技术效果和前述天线参数校准方法实施例相同,为简要描述,装置实施例部分未提及之处,可参考前述方法实施例中相应内容。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,前述描述的装置的具体工作过程,均可以参考上述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的实施例中,应该理解到,所揭露装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明提供的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释,此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围。都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (10)

1.一种天线参数校准方法,其特征在于,该方法包括:
基站通过向目标终端发送测距信号,确定与目标终端之间的多个测量距离值;
基于所述多个测量距离值,以及与每个测量距离值对应的所述基站与目标终端之间的实际距离值,拟合表征实际距离值与测量距离值之间关系的第一函数式和第二函数式,所述第一函数式对应第一直线,所述第二函数式对应第二直线,所述第一直线和所述第二直线相交形成的交点为奇点;
基于所述第一函数式和所述第二函数式,确定奇点的测量距离值;
基于确定的所述奇点的测量距离值,以及预设的天线延时参数的初始值,确定天线延时参数的校准值。
2.如权利要求1所述的方法,其特征在于,根据以下步骤确定基站与目标终端之间的任一所述测量距离值:
在基站相对所述目标终端移动过程中,基站获取向目标终端发送测距信号的第一时间、接收到目标终端的反馈信号时的第二时间和目标终端接收到测距信号后的反馈时间;
根据获取的所述第一时间、所述第二时间和所述反馈时间,以及预设的天线延时参数的初始值和测量速度,确定基站与目标终端之间的测量距离值。
3.如权利要求1所述的方法,其特征在于,在基于确定的所述奇点的测量距离值和所述延时参数的初始值,确定天线延时参数的校准值之前,还包括:
基于所述奇点的测量距离值和设定系数,确定奇点临界值是否小于设定阈值,所述奇点临界值为测量距离值和设定系数的乘积。
4.如权利要求1所述的方法,其特征在于,在所述拟合表征实际距离值与测量距离值之间关系的第一函数式和第二函数式之前,还包括:
按照设定的数据范围,从所述多个测量距离值中确定属于所述数据范围的测量距离值,并将属于所述数据范围的测量距离值从所述多个测量距离值中去除。
5.如权利要求1所述的方法,其特征在于,根据以下公式确定天线延时参数的校准值:
DelayNew=Delay+DisError*Kexp
其中,DelayNew为天线延时参数的校准值;Delay为天线延时参数的初始值;DisError为奇点的测量距离值;Kexp为设定系数。
6.一种天线参数校准装置,其特征在于,该装置包括:
第一确定单元,用于通过向目标终端发送测距信号,确定与目标终端之间的多个测量距离值;
第二确定单元,用于基于所述多个测量距离值,以及与每个测量距离值对应的所述基站与目标终端之间的实际距离值,拟合表征实际距离值与测量距离值之间关系的第一函数式和第二函数式,所述第一函数式对应第一直线,所述第二函数式对应第二直线,所述第一直线和所述第二直线相交形成的交点为奇点;
第三确定单元,用于基于所述第一函数式和所述第二函数式,确定奇点的测量距离值;
第四确定单元,用于基于确定的所述奇点的测量距离值以及预设的天线延时参数的初始值,确定天线延时参数的校准值。
7.如权利要求6所述的装置,其特征在于,所述第一确定单元具体用于:
在基站相对目标终端移动过程中,获取向目标终端发送测距信号的第一时间、接收到目标终端的反馈信号时的第二时间和目标终端接收到测距信号后的反馈时间;
根据获取的所述第一时间、所述第二时间和所述反馈时间,以及预设的天线延时参数的初始值和测量速度,确定基站与目标终端之间的测量距离值。
8.如权利要求6所述的装置,其特征在于,所述第四确定单元还用于:
基于所述奇点的测量距离值和设定系数,确定奇点临界值是否小于设定阈值,所述奇点临界值为测量距离值和设定系数的乘积。
9.如权利要求6所述的装置,其特征在于,所述第二确定单元还用于:
按照设定的数据范围,从所述多个测量距离值中确定属于所述数据范围的测量距离值,并将属于所述数据范围的测量距离值从所述多个测量距离值中去除。
10.如权利要求6所述的装置,其特征在于,所述第四确定单元具体用于根据以下公式确定天线延时参数的校准值:
DelayNew=Delay+DisError*Kexp
其中,DelayNew为天线延时参数的校准值;Delay为天线延时参数的初始值;DisError为奇点的测量距离值;Kexp为设定系数。
CN201710592842.4A 2017-07-19 2017-07-19 一种天线参数校准方法和装置 Active CN107390169B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710592842.4A CN107390169B (zh) 2017-07-19 2017-07-19 一种天线参数校准方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710592842.4A CN107390169B (zh) 2017-07-19 2017-07-19 一种天线参数校准方法和装置

Publications (2)

Publication Number Publication Date
CN107390169A true CN107390169A (zh) 2017-11-24
CN107390169B CN107390169B (zh) 2019-07-16

Family

ID=60335896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710592842.4A Active CN107390169B (zh) 2017-07-19 2017-07-19 一种天线参数校准方法和装置

Country Status (1)

Country Link
CN (1) CN107390169B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761388A (zh) * 2018-06-06 2018-11-06 上海交通大学 基于uwb高精度测距定位系统的天线延迟校准方法
CN112505644A (zh) * 2020-02-28 2021-03-16 加特兰微电子科技(上海)有限公司 传感器测量校正方法、装置、终端设备及存储介质
CN112946569A (zh) * 2021-02-01 2021-06-11 Oppo广东移动通信有限公司 测量距离校正方法、装置、介质及电子设备
CN113759180A (zh) * 2021-09-06 2021-12-07 西安电子科技大学 提高超宽带测距精度的天线延时校准方法及系统
CN115208486A (zh) * 2022-06-28 2022-10-18 北京万集科技股份有限公司 一种互校准方法、互校准系统、校准方法和第一终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320091A (zh) * 2008-07-15 2008-12-10 浙江大学 声源端时延消除的频率检测无线传感器网络测距方法
CN103001709A (zh) * 2012-09-29 2013-03-27 西安空间无线电技术研究所 一种天线时延测试方法
CN105547297A (zh) * 2015-12-11 2016-05-04 武汉大学 一种基于uwb定位系统的室内定位方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320091A (zh) * 2008-07-15 2008-12-10 浙江大学 声源端时延消除的频率检测无线传感器网络测距方法
CN103001709A (zh) * 2012-09-29 2013-03-27 西安空间无线电技术研究所 一种天线时延测试方法
CN105547297A (zh) * 2015-12-11 2016-05-04 武汉大学 一种基于uwb定位系统的室内定位方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
宋海涛 等: "无线链路时延测试与标定", 《河北省科学院学报》 *
马红皎 等: "双向测距与时间同步系统中设备时延标定的研究", 《时间频率学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761388A (zh) * 2018-06-06 2018-11-06 上海交通大学 基于uwb高精度测距定位系统的天线延迟校准方法
CN108761388B (zh) * 2018-06-06 2022-02-11 上海交通大学 基于uwb高精度测距定位系统的天线延迟校准方法
CN112505644A (zh) * 2020-02-28 2021-03-16 加特兰微电子科技(上海)有限公司 传感器测量校正方法、装置、终端设备及存储介质
CN112946569A (zh) * 2021-02-01 2021-06-11 Oppo广东移动通信有限公司 测量距离校正方法、装置、介质及电子设备
CN113759180A (zh) * 2021-09-06 2021-12-07 西安电子科技大学 提高超宽带测距精度的天线延时校准方法及系统
CN115208486A (zh) * 2022-06-28 2022-10-18 北京万集科技股份有限公司 一种互校准方法、互校准系统、校准方法和第一终端
CN115208486B (zh) * 2022-06-28 2024-01-12 北京万集科技股份有限公司 一种互校准方法、互校准系统、校准方法和第一终端

Also Published As

Publication number Publication date
CN107390169B (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
CN107390169A (zh) 一种天线参数校准方法和装置
CN109085564B (zh) 一种定位方法及装置
CN106879067A (zh) 一种基于双差分双工的超宽带无线定位方法
CN109218967A (zh) Uwb系统定位基站标定方法及其设备
CN111381209A (zh) 一种测距定位的方法及装置
CN106792459B (zh) 无线设备高精度定位的方法以及系统
CN111381586A (zh) 一种机器人及其移动控制方法和装置
TW201625041A (zh) 訊號強度分佈建立方法及無線定位系統
CN105510876A (zh) 一种基于电磁波传播特性的室内测距定位方法
CN110806561B (zh) 一种多基站的自标定方法
JP2009517988A (ja) 無線ネットワークにおいて動作するモバイル機器の位置を算出するためのシステムおよび方法
CN112218306B (zh) 基站覆盖性能的预测方法、装置和计算机设备
CN110622024A (zh) 室内定位方法、装置和设备
CN112702699B (zh) 一种融合UWB和LiDAR的室内定位方法
CN113347703A (zh) 定位方法、定位装置及电子设备
CN109444547B (zh) 基于二端口网络的rfid芯片阻抗测量方法及装置
CN110554418A (zh) 卫星信号遮蔽区域rtk/uwb组合测图方法及系统
CN108632749A (zh) 室内定位方法和装置
CN105044644B (zh) 针对矢量网络分析仪电子校准件的校准标准选取方法
CN102495410B (zh) 一种特种车辆考场定位系统及方法
CN114565683B (zh) 一种精度确定方法、装置、设备、介质及产品
CN112788743A (zh) 一种基于超宽带技术的定位方法和装置
CN103207382A (zh) 无线通信定位方法
Guan et al. Research on indoor positioning algorithm based on trilateral positioning and Taylor series expansion
CN111343573B (zh) 根据环境差异标校在线rssi值的指纹定位方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A method and device for calibrating antenna parameters

Effective date of registration: 20230214

Granted publication date: 20190716

Pledgee: Pudong Development Silicon Valley Bank Co.,Ltd. Beijing branch

Pledgor: LINGDONG TECHNOLOGY (BEIJING) Co.,Ltd.

Registration number: Y2023990000112

PE01 Entry into force of the registration of the contract for pledge of patent right