CN107382356A - 铝酸镁尖晶石多孔块体的制备方法 - Google Patents

铝酸镁尖晶石多孔块体的制备方法 Download PDF

Info

Publication number
CN107382356A
CN107382356A CN201710431912.8A CN201710431912A CN107382356A CN 107382356 A CN107382356 A CN 107382356A CN 201710431912 A CN201710431912 A CN 201710431912A CN 107382356 A CN107382356 A CN 107382356A
Authority
CN
China
Prior art keywords
magnesium
porous blocks
preparation
magnesium aluminate
aluminate spinels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710431912.8A
Other languages
English (en)
Other versions
CN107382356B (zh
Inventor
郭兴忠
尹朋岸
杨辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710431912.8A priority Critical patent/CN107382356B/zh
Publication of CN107382356A publication Critical patent/CN107382356A/zh
Application granted granted Critical
Publication of CN107382356B publication Critical patent/CN107382356B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63452Polyepoxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明公开了一种铝酸镁尖晶石多孔块体的制备方法,依次进行以下步骤:1)、将无机镁盐、无机铝盐、相分离诱导剂溶解在溶剂中,搅拌直至得到透明澄清溶液;2)、在步骤1)所得的透明澄清溶液中以加入凝胶促进剂均匀搅拌,在超声仪中超声从而去除溶液中的气泡;3)、将步骤2)所得的均质溶液置于容器中密封后在20~60℃凝胶3~15min;4)、将步骤3)所得的湿凝胶于密封条件下20~60℃陈化12~24h;接着采用低表面张力溶剂浸泡1~3次,每次浸泡时间为6~12h;5)、将步骤4)所得的浸泡后的湿凝胶置于60~120℃干燥24~36h;然后于700~900℃热处理1~3h,得到铝酸镁尖晶石多孔块体。

Description

铝酸镁尖晶石多孔块体的制备方法
技术领域
本发明涉及一种铝酸镁尖晶石多孔块体的制备方法,具体涉及一种环氧化物调控溶胶凝胶-伴随相分离法制备铝酸镁尖晶石多孔块体的制备方法。
背景技术
铝酸镁尖晶石属于立方晶系,其单位晶胞由32个立方密堆积的氧阴离子O2-和16个在八面体空隙中的氯离子Al3+以及8个在四面体空隙中的镁离子Mg2+组成。铝酸镁尖晶石(镁铝尖晶石)材料具有高熔点(2135℃)、抗化学腐蚀钢、宽带系、室温和高温下都具有较高的机械强度、高硬度等优良的性能。这些优良的性能使得铝酸镁尖晶石在建筑、光学、化学催化、高温耐火材料和电子材料等领域有着广泛的应用。
具备孔结构可控的铝酸镁尖晶石材料在催化领域、耐火材料领域内获得了广泛的关注,铝酸镁尖晶石还可以用作催化剂和催化剂载体,如脱硫催化剂、环己酮双聚催化剂、甲烷化催化剂载体及萘重整催化剂载体等。
专利CN105837251A公开了一种宏孔铝酸镁尖晶石原料及其制备方法;其技术方案是:将用后的镁碳砖球磨至粒度小于80μm,于马弗炉中在600~700℃条件下保温1~1.5小时,得到轻烧镁碳砖粉末;然后加入50~55wt%的水,湿磨至粒度小于60μm,100~110℃干燥,得到干燥后的镁碳砖粉末。按干燥后的镁碳砖粉末:勃姆石粉体:氧化铈粉体的质量比为1:(3.0~3.3):(0.04~0.06)配料,混合0.2~0.3小时,半干法机压成型,置于马弗炉中,以9~10℃/min的升温速率升温至1500~1550℃,保温0.5~1小时,随炉冷却,破碎,即得宏孔铝酸镁尖晶石原料。但是其孔隙率较低,并且反应复杂,孔径太大不适合于在催化反应中的应用。
专利CN104710169A公开了一种铝酸镁尖晶石超细粉体及其制备方法,其技术方案是:按Al2O3:MgO的物质的量比为(1~4):1将含镁物料与含铝物料混合,向混合物中加入水和添加剂,搅拌或研磨,制得浆料。将所述浆料洗涤,分离,得到前驱体胶体。然后向所得的前驱体胶体中加入无水乙醇洗涤2~3次,加入醇类分散剂分散,得到预处理后的胶体。最后将所述前驱体胶或将所述预处理后的胶体干燥,在400~1200℃热处理0.5~5.5小时,即得铝酸镁尖晶石超细粉体。但粉体材料在很多领域中存在分离困难的缺点。
专利CN105642264A公开了一种催化剂载体用铝酸镁尖晶石的制备方法,使用溶胶凝胶法制备,包括以下步骤:(1)于50-80℃条件下,将水和乙二醇混溶;(2)向乙二醇水溶液中加入柠檬酸、镁源和铝源,柠檬酸(CA):Mg:Al的摩尔比为6:(0.9~1):(2~2.2);(3)加热溶液,直到溶液至透明的红色凝胶,老化;(4)于350-500℃,焙烧2-4h后,研磨,再次于600-800℃焙烧2-12h,得到铝酸镁尖晶石载体。镁源为硝酸镁;铝源为硝酸铝或氯化铝。其同样存在分离困难的缺点。
目前为止还没有关于铝酸镁尖晶石多孔块体制备的专利报道。
发明内容
本发明要解决的技术问题是提供一种铝酸镁尖晶石多孔块体的制备方法,采用该方法制备的铝酸镁尖晶石多孔块体具有连续大孔骨架、孔隙率高的特点。
为了解决上述技术问题,本发明提供一种铝酸镁尖晶石多孔块体的制备方法,先按照如下比例配置主原料:0.004~0.006mol(较佳为0.005mol)的无机镁盐、0.005~0.015mol(0.010mol)的无机铝盐、0.04~0.08g相分离诱导剂和1.6~2.0ml(较佳为1.8ml)的凝胶促进剂;然后依次进行以下步骤:
1)、将无机镁盐、无机铝盐、相分离诱导剂溶解在溶剂中,搅拌(搅拌时间为60~90min)直至得到透明澄清溶液;
2)、在步骤1)所得的透明澄清溶液中以加入(缓慢加入,1~2分钟加入完毕)凝胶促进剂均匀搅拌2~5min,在超声仪中超声从而去除溶液中的气泡(超声时间30~60s),得到均质溶液;
3)、将步骤2)所得的均质溶液置于容器中密封后在20~60℃凝胶3~15min(较佳为45℃凝胶8min),得到湿凝胶;
4)、将步骤3)所得的湿凝胶于密封条件下20~60℃陈化12~24h(较佳为45℃陈化24h);
接着采用低表面张力溶剂浸泡1~3次,每次浸泡时间为6~12h;
5)、将步骤4)所得的浸泡后的湿凝胶置于60~120℃干燥24~36h;然后于700~900℃热处理1~3h,得到铝酸镁尖晶石多孔块体。
作为本发明的铝酸镁尖晶石多孔块体的制备方法的改进:
所述无机镁盐为无水氯化镁(MgCl2)、六水合氯化镁(MgCl2·6H2O)或六水合硝酸镁(Mg(NO3)2·6H2O),
所述无机铝盐为六水合氯化铝(AlCl2·6H2O)或六水合硝酸铝(Al(NO3)2·6H2O);
所述相分离诱导剂为分子量为聚氧化乙烯(PEO,平均分子量为1×106)或聚乙烯吡络烷酮(分子量为40000);
所述凝胶促进剂为1,2-环氧丙烷(PO)或2,3-环氧丁烷。
作为本发明的铝酸镁尖晶石多孔块体的制备方法的进一步改进:所述溶剂为去离子水与无水乙醇的混合物,溶剂的总体积为3~7ml。
作为本发明的铝酸镁尖晶石多孔块体的制备方法的进一步改进:所述溶剂中去离子水与无水乙醇的体积比为0.5~1.5:1(较佳为1:1)。
作为本发明的铝酸镁尖晶石多孔块体的制备方法的进一步改进:所述无机铝盐与无机镁盐的物质的量的比为2:0.8~1.2(较佳为2:1)。
作为本发明的铝酸镁尖晶石多孔块体的制备方法的进一步改进:所述低表面张力的溶剂为无水乙醇、异丙醇或甲醇。
作为本发明的铝酸镁尖晶石多孔块体的制备方法的进一步改进:所述步骤5)的升温速率为1~5℃/min。
在本发明中,没有明确告知的均为在室温下进行,室温一般是指20~30℃;搅拌均在300~600r/min的转速下进行。
采用本发明的方法能获得具有共连续结构的铝酸镁尖晶石多孔块体材料,该制备方法采用廉价的无机盐为原料,具有工艺简单、设备低廉等优点,并且可以方便有效的控制孔径尺寸、孔容及孔隙率。由于其独特的多孔结构,制备出的镁铝尖晶石多孔块体材料有望在石油化工领域的烯烃脱硫催化、荧光粉载体制备、光电线性材料等领域取得良好的应用。
综上所述,本发明以聚氧化乙烯或聚乙烯吡络烷酮为相分离诱导剂,环氧丙烷(PO)或2,3-环氧丁烷为凝胶促进剂,制备了大孔铝酸镁尖晶石多孔块体,采用本发明方法制备的铝酸镁尖晶石多孔块体具有共连续大孔骨架结构、孔隙率高以及孔径尺寸可控等特点。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细说明。
图1是实施例1得到的铝酸镁尖晶石多孔块体内部微观结构图;
图2是对比例1-1得到的铝酸镁尖晶石多孔块体内部微观结构图;
图3是对比例1-3得到的铝酸镁尖晶石多孔块体内部微观结构图;
图4是实施例2得到的铝酸镁尖晶石多孔块体内部微观结构图;
图5是不同热处理温度下得到的铝酸镁尖晶石多孔块体的X射线衍射图;
图6是实施例3得到的铝酸镁尖晶石多孔块体内部微观结构图。
具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此。
实施例1、一种铝酸镁尖晶石多孔块体的制备方法,先按照如下比例配置主原料:以0.005mol的无水氯化镁为镁源,0.01mol的六水合氯化铝为铝源,0.08g聚氧化乙烯(PEO,平均分子量为1×106)为相分离诱导剂、1.8ml的1,2-环氧丙烷(PO)为凝胶促进剂;然后依次进行以下步骤:
1)在室温下,首先将无水氯化镁、六水合氯化铝,聚氧化乙烯溶解在溶剂(该溶剂由2.5ml去离子水和2.5ml无水乙醇组成),搅拌90min得到透明澄清溶液;
2)在步骤1)所得的透明澄清溶液中以1ml/min的滴加速率(即,1.8分钟完成滴加)缓慢加入1.8ml 1,2-环氧丙烷均匀搅拌2min,在超声仪中超声30s去除溶液中的气泡,得到均质溶液;
3)将步骤2)所得的均质溶液置于容器中密封后于45℃凝胶8min,得到湿凝胶;
4)将步骤3)所得的湿凝胶于密封条件下45℃陈化24h;接着采用低表面张力的异丙醇浸泡3次,每次浸泡的时间为12h;
5)将步骤4)所得的浸泡后的湿凝胶置于60℃干燥36h;然后以2℃/min的升温速率升温至700℃热处理3h,得到铝酸镁尖晶石多孔块体。
得到铝酸镁尖晶石多孔块体内部微观结构如图1所示,为共连续的骨架和孔道结构。孔隙率为53.5%;孔径为1.24μm,孔容为0.64ml/g。
对比例1-1、将1,2-环氧丙烷的用量由1.8ml改成2.0ml,其余同实施例1,制备得到的铝酸镁尖晶石多孔块体如图2所示,同样可以得到三位骨架共连续的铝酸镁尖晶石多孔块体,但是骨架上存在大量的微球,导致孔隙率较少仅为47.1%。孔径为3.54μm,孔容为0.57ml/g。
对比例1-2、取消1,2-环氧丙烷的使用,其余同实施例1,所得结果为:体系在密封后置于45℃下24h后仍然不出现凝胶。
对比例1-3、将聚氧化乙烯(PEO)的用量由0.08g改成0.03g,其余同实施例1,制备得到的铝酸镁尖晶石多孔块体内部的微观结构如图3所示,基本没有共连续的骨架结构,这是由于相分离程度不足导致。
实施例2、铝酸镁尖晶石多孔块体的制备方法,将实施例1步骤5)中的热处理温度由700℃改成800℃,其余同实施例1。
制备得到的铝酸镁尖晶石多孔块体保留完整,其内部微观结构如图4所示,并有少量收缩,但其共连续的孔结构未被破坏,仍然可以得到铝酸镁尖晶石多孔块体,其孔隙率为66.7%。孔径为1.8μm。
对比例2-1、将热处理温度700℃改成400℃,其余同实施例2。
得到的铝酸镁尖晶石多孔块体为无定形态,其晶相如图5所示。因为在400℃热处理后尚未发生晶型转变,无定形态的铝酸镁尖晶石多孔块体实际应用范围有限。其孔隙率为57.9%。
根据图5,我们得知:当热处理温度为700~1000℃,均能获得铝酸铜尖晶石多孔块体;其孔隙率、孔径分布、形态如下表1所述。
表1
实施例3、铝酸镁尖晶石多孔块体的制备方法,将实施例1中的镁源由无水氯化镁改成六水合氯化镁,摩尔量不变;其余等同实施例1。
所得到的铝酸镁尖晶石多孔块体微观结构如图6所示,其共连续的骨架结构基本得到保留,其孔隙率为36.9%,孔径为0.52μm。
实施例4、将实施例1中的的铝源由六水合氯化铝改成六水合硝酸铝,摩尔量不变;其余等同实施例1。所得结果为:其共连续的骨架结构也基本能够得到保留,其孔隙率为43.2%,孔径为0.68μm。
对比例3-1、将实施例1中的镁源由无水氯化镁改成六水合硫酸镁、碳酸镁、醋酸镁,摩尔量不变,其余等同实施例1。
所得结果为:无法得到骨架结构共连续的铝酸镁尖晶石多孔块体。
对比例4-1、将实施例1中的的铝源由六水合氯化铝改成硫酸铝、醋酸铝,摩尔量不变;其余等同实施例1。
所得结果为:无法得到骨架结构共连续的铝酸镁尖晶石多孔块体。
最后,还需要注意的是,以上列举的仅是本发明的若干具体实施例。显然,本发明不局限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或者联想到的所有变形,均应认为是本发明的保护范围。

Claims (7)

1.铝酸镁尖晶石多孔块体的制备方法,其特征在于:先按照如下比例配置主原料:0.004~0.006mol的无机镁盐、0.005~0.015mol的无机铝盐、0.04~0.08g相分离诱导剂和1.6~2.0ml的凝胶促进剂,然后依次进行以下步骤:
1)、将无机镁盐、无机铝盐、相分离诱导剂溶解在溶剂中,搅拌直至得到透明澄清溶液;
2)、在步骤1)所得的透明澄清溶液中以加入凝胶促进剂均匀搅拌2~5min,在超声仪中超声从而去除溶液中的气泡,得到均质溶液;
3)、将步骤2)所得的均质溶液置于容器中密封后在20~60℃凝胶3~15min,得到湿凝胶;
4)、将步骤3)所得的湿凝胶于密封条件下20~60℃陈化12~24h;
接着采用低表面张力溶剂浸泡1~3次,每次浸泡时间为6~12h;
5)、将步骤4)所得的浸泡后的湿凝胶置于60~120℃干燥24~36h;然后于700~900℃热处理1~3h,得到铝酸镁尖晶石多孔块体。
2.根据权利要求1所述的铝酸镁尖晶石多孔块体的制备方法,其特征在于:
所述无机镁盐为无水氯化镁、六水合氯化镁或六水合硝酸镁,
所述无机铝盐为六水合氯化铝或六水合硝酸铝;
所述相分离诱导剂为分子量为聚氧化乙烯或聚乙烯吡络烷酮;
所述凝胶促进剂为1,2-环氧丙烷或2,3-环氧丁烷。
3.根据权利要求2所述的铝酸镁尖晶石多孔块体的制备方法,其特征在于:
所述溶剂为去离子水与无水乙醇的混合物,溶剂的总体积为3~7ml。
4.根据权利要求3所述的铝酸镁尖晶石多孔块体的制备方法,其特征在于:
所述溶剂中去离子水与无水乙醇的体积比为0.5~1.5:1。
5.根据权利要求1~4任一所述的铝酸镁尖晶石多孔块体的制备方法,其特征在于:
所述无机铝盐与无机镁盐的物质的量的比为2:0.8~1.2。
6.根据权利要求1~4任一所述的铝酸镁尖晶石多孔块体的制备方法,其特征在于:
所述低表面张力的溶剂为无水乙醇、异丙醇或甲醇。
7.根据权利要求1~4任一所述的铝酸镁尖晶石多孔块体的制备方法,其特征在于:
所述步骤5)的升温速率为1~5℃/min。
CN201710431912.8A 2017-06-09 2017-06-09 铝酸镁尖晶石多孔块体的制备方法 Active CN107382356B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710431912.8A CN107382356B (zh) 2017-06-09 2017-06-09 铝酸镁尖晶石多孔块体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710431912.8A CN107382356B (zh) 2017-06-09 2017-06-09 铝酸镁尖晶石多孔块体的制备方法

Publications (2)

Publication Number Publication Date
CN107382356A true CN107382356A (zh) 2017-11-24
CN107382356B CN107382356B (zh) 2020-12-08

Family

ID=60333209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710431912.8A Active CN107382356B (zh) 2017-06-09 2017-06-09 铝酸镁尖晶石多孔块体的制备方法

Country Status (1)

Country Link
CN (1) CN107382356B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659398A (zh) * 2012-04-25 2012-09-12 中钢集团洛阳耐火材料研究院有限公司 一种制备轻质镁铝尖晶石隔热材料的方法
CN105642264A (zh) * 2014-11-21 2016-06-08 中国科学院大连化学物理研究所 一种催化剂载体用镁铝尖晶石的制备方法
CN106478134A (zh) * 2016-10-10 2017-03-08 南京工业大学 耐高温低温合成块状尖晶石气凝胶材料的制备方法
CN106673688A (zh) * 2016-12-06 2017-05-17 浙江大学 多孔锌铝尖晶石块体的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659398A (zh) * 2012-04-25 2012-09-12 中钢集团洛阳耐火材料研究院有限公司 一种制备轻质镁铝尖晶石隔热材料的方法
CN105642264A (zh) * 2014-11-21 2016-06-08 中国科学院大连化学物理研究所 一种催化剂载体用镁铝尖晶石的制备方法
CN106478134A (zh) * 2016-10-10 2017-03-08 南京工业大学 耐高温低温合成块状尖晶石气凝胶材料的制备方法
CN106673688A (zh) * 2016-12-06 2017-05-17 浙江大学 多孔锌铝尖晶石块体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吕宪俊等: "《工艺矿物学》", 31 August 2011, 中南大学出版社 *

Also Published As

Publication number Publication date
CN107382356B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
Wang et al. Synthesis of macroporous Li4SiO4 via a citric acid-based sol–gel route coupled with carbon coating and its CO2 chemisorption properties
Guo et al. Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent: Textural properties, electron donation, and oxygen vacancy
Kim et al. Synthesis of thermo-stable high surface area alumina powder from sol–gel derived boehmite
Zhang et al. Scalable synthesis of the lithium silicate-based high-temperature CO2 sorbent from inexpensive raw material vermiculite
Gigantino et al. Thermochemical energy storage via isothermal carbonation-calcination cycles of MgO-stabilized SrO in the range of 1000–1100 C
CA2823165C (en) Zeolite having copper and alkali earth metal supported thereon
JP3283475B2 (ja) 板状ベーマイト及び板状アルミナ並びにそれらの製造方法
JP3531868B2 (ja) 活性酸素種を包接する12CaO・7Al2O3化合物およびその製造方法
Ochoa-Fernández et al. Compositional effects of nanocrystalline lithium zirconate on its CO2 capture properties
Yan et al. CO 2 capture by a novel CaO/MgO sorbent fabricated from industrial waste and dolomite under calcium looping conditions
Niu et al. Lithium orthosilicate with halloysite as silicon source for high temperature CO 2 capture
KR102129903B1 (ko) 이산화탄소 흡착제, 그 제조 방법 및 이를 포함하는 이산화탄소 포집 모듈
CN105948098B (zh) 一种球形氧化镧
Aytimur et al. Magnesia stabilized zirconia doped with boron, ceria and gadolinia
MX2014001677A (es) Catalizadores con óxido de circonio estimulada con lantánidos y métodos de elaboración.
BR112013033834B1 (pt) composição de céria zircônia alumina com estabilidade térmica melhorada e processo de produção da mesma
Subha et al. Germanium-incorporated lithium silicate composites as highly efficient low-temperature sorbents for CO 2 capture
Zhang et al. Thermal and hydrothermal stability of pure and silica-doped mesoporous aluminas
Chang et al. Synthesis, Characterization, and CO2 Adsorptive Behavior of Mesoporous AlOOH‐Supported Layered Hydroxides
Sun et al. Studies on the improved thermal stability for doped ordered mesoporous γ-alumina
CN106478134B (zh) 耐高温低温合成块状尖晶石气凝胶材料的制备方法
Zhao et al. Preparation and pore structure stability at high temperature of silicon-doped ordered mesoporous alumina
US11306189B2 (en) Polyethylene glycol phase change composite
Nair et al. A kinetic study of CO2 sorption/desorption of lithium silicate synthesized through a ball milling method
CN102260542A (zh) 一种三维有序大孔氧化铁脱硫剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant