CN107382308A - 一种高介电常数抗还原型介质材料 - Google Patents

一种高介电常数抗还原型介质材料 Download PDF

Info

Publication number
CN107382308A
CN107382308A CN201710580743.4A CN201710580743A CN107382308A CN 107382308 A CN107382308 A CN 107382308A CN 201710580743 A CN201710580743 A CN 201710580743A CN 107382308 A CN107382308 A CN 107382308A
Authority
CN
China
Prior art keywords
dielectric material
reduced form
powder
form dielectric
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710580743.4A
Other languages
English (en)
Inventor
李玲霞
王瑞杰
张宁
于仕辉
孙正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201710580743.4A priority Critical patent/CN107382308A/zh
Publication of CN107382308A publication Critical patent/CN107382308A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种高介电常数抗还原型介质材料,化学式为Ba(SnxTi1‑x)O3,其中0<x≤0.2。先将原料BaTiO3、SnO2、BaCO3按化学式称量配料,经球磨、烘干,过筛,再于1000~1300℃下煅烧3小时,合成主晶相,再外加质量百分比为7%的粘结剂,造粒,压制成生坯,经排胶后,在空气或还原气氛下,于1300~1450℃烧结,制得高介电常数抗还原型介质材料。本发明的介电常数在4000~12000之间,介电损耗在1.0%~8.0%范围内,可用于多层片式陶瓷电容器(MLCC)的制备,同时因为该介质材料具有抗还原性能,可与Ni电极共烧匹配,实现MLCC的低成本化。

Description

一种高介电常数抗还原型介质材料
技术领域
本发明属于一种以成分为特征的陶瓷组合物,特别涉及一种高介电常数抗还原介质材料及制备方法。
背景技术
MLCC(多层片式陶瓷电容器)的制作工艺要求内电极必须与介质材料进行共同烧结以形成独石结构,而常见的MLCC瓷料如BaTiO3系统瓷料的烧结温度较高,对于通常的空气气氛烧结而言,只有那些熔点高、难氧化、具有低电阻率的金属才能作为内电极材料,一般选用贵金属Pt、Pd或Pd-Ag合金作为MLCC内电极,这样在MLCC的生产成本中内电极材料成本占了较大比例,并一度造成MLCC的成本因电极材料昂贵而居高不下,极大地限制了其应用范围。此外,MLCC的大比容化要求减小介质层的厚度并增加陶瓷介质的层数,但是随着介质层数的增加,内电极层数也相应增加,导致MLCC的生产成本提高。因此,MLCC的低成本化迫切要求内电极贱金属化。当选用Ni电极作为金属电极时,就要求介质材料和电极同时在还原气氛中共烧,进而要求介质材料的抗还原性。
Ba(SnxTi1-x)O3介质材料是一类很重要的电子陶瓷材料。一方面,它的应用很广泛,可以作为高介电容器、介质放大器、参量器件以及开关电路保护器等。另一方面,随着Sn含量的增加,Ba(SnxTi1-x)O3陶瓷会表现出从典型铁电体到弛豫型铁电体的过渡,所以,它是一类对于铁电体物理学的理论研究很重要的材料。
发明内容
本发明的目的,是为了克服现BaTiO3介质材料在还原气氛下介电性能恶化的问题,提供一种具有高介电常数抗还原型介质材料及制备方法。
本发明通过如下技术方案予以实现。
一种高介电常数抗还原型介质材料,化学式为Ba(SnxTi1-x)O3,其中0<x≤0.2;
该高介电常数抗还原型介质材料的制备方法,具有如下步骤:
(1)将原料BaTiO3、SnO2、BaCO3按Ba(SnxTi1-x)O3,其中0<x≤0.2的化学式称量配料;
(2)将步骤(1)配制的粉料放入球磨罐中,加入氧化锆球和去离子水,球磨4小时;再将球磨后的原料置于红外干燥箱中烘干,烘干后过40目筛,获得颗粒均匀的粉料;
(3)将步骤(2)处理后的粉料于1000~1300℃下煅烧3小时,合成主晶相;
(4)在步骤(3)合成主晶相的粉料外加质量百分比为7%的粘结剂,过80目分样筛,造粒;
(5)将步骤(4)的造粒粉料压制成生坯,经排胶后,在空气或还原气氛下,于1300~1450℃烧结,保温2~4小时,制得高介电常数抗还原型介质材料。
所述步骤(2)的烘干温度为100℃。
所述步骤(2)的陶瓷粉体与氧化锆球、去离子水的质量比为1∶1∶2。
所述步骤(5)的生坯为Φ15mm×1mm的圆片。
所述步骤(5)烧结温度为1400℃,保温时间为3h。
本发明提供了一种高介电常数抗还原型介质材料及其制备方法,制得的Ba(Sn0.15Ti0.85)O3介质材料的烧结温度为1300~1450℃,介电常数在4000~12000之间,介电损耗在1.0%~8.0%范围内,可用于多层片式陶瓷电容器(MLCC)的制备,同时因为该介质材料具有抗还原性能,可与Ni电极共烧匹配,实现MLCC的低成本化。
具体实施方式
下面通过具体实施例对本发明作进一步说明,实例中所用原料均为市售分析纯试剂,具体实施例如下。
实施例1
(1)将原料BaTiO3、SnO2、BaCO3按Ba(Sn0.15Ti0.85)O3化学式称量配料;
(2)将上述配制的粉料放入球磨罐中,加入氧化锆球和去离子水,球磨4小时,粉体与氧化锆球、去离子水的质量比为1∶1∶2;将球磨后的原料置于红外干燥箱中于100℃下烘干,烘干后过40目筛,获得颗粒均匀的粉料;
(3)将步骤(2)处理后的粉料于1050℃下煅烧3小时,合成主晶相;
(4)在步骤(3)合成主晶相的粉料外加质量百分比为7%的粘结剂,过80目分样筛,造粒;
(5)将步骤(4)的造粒粉料用用粉末压片机以6MPa的压力压成Φ15mm×1mm的坯体,经排胶后,于1300℃烧结,保温3小时,制得高介电常数抗还原型介质材料。
(6)采用TH2828S测试其样品的电容量C和损耗tanδ以及100V下的绝缘电阻,并计算出样品的介电常数和绝缘电阻率,1KHz下,εr=4244,tanδ=6.84%,ρv=7.40×109
实施例2
(1)将原料BaTiO3、SnO2、BaCO3按Ba(Sn0.15Ti0.85)O3化学式称量配料;
(2)将上述配制的粉料放入球磨罐中,加入氧化锆球和去离子水,球磨4小时,粉体与氧化锆球、去离子水的质量比为1∶1∶2;将球磨后的原料置于红外干燥箱中于100℃下烘干,烘干后过40目筛,获得颗粒均匀的粉料;
(3)将步骤(2)处理后的粉料于1050℃下煅烧3小时,合成主晶相;
(4)在步骤(3)合成主晶相的粉料外加质量百分比为7%的粘结剂,过80目分样筛,造粒;
(5)将步骤(4)的造粒粉料用用粉末压片机以6MPa的压力压成Φ15mm×1mm的坯体,经排胶后,在H2:N2=1:20的还原气氛比例下,于1350℃烧结,保温3小时,制得高介电常数抗还原介质材料。
(6)采用TH2828S测试其样品的电容量C和损耗tanδ以及100V下的绝缘电阻,并计算出样品的介电常数和绝缘电阻率,1KHz下,εr=11842,tanδ=1.016%,ρv=4.50×1010
实施例3
(1)将原料BaTiO3、SnO2、BaCO3按Ba(Sn0.15Ti0.85)O3化学式称量配料;
(2)将上述配制的粉料放入球磨罐中,加入氧化锆球和去离子水,球磨4小时,粉体与氧化锆球、去离子水的质量比为1∶1∶2;将球磨后的原料置于红外干燥箱中于100℃下烘干,烘干后过40目筛,获得颗粒均匀的粉料;
(3)将步骤(2)处理后的粉料于1050℃下煅烧3小时,合成主晶相;
(4)在步骤(3)合成主晶相的粉料外加质量百分比为7%的粘结剂,过80目分样筛,造粒;
(5)将步骤(4)的造粒粉料用用粉末压片机以6MPa的压力压成Φ15mm×1mm的坯体,经排胶后,于1400℃烧结,保温3小时,制得高介电常数介质材料。
(6)采用TH2828S测试样品的电容量C和损耗tanδ以及100V下的绝缘电阻,并计算出样品的介电常数和绝缘电阻率,1MHz下,εr=9563,tanδ=1.654%,ρv=1.50×1011
实施例1、2、3的主要工艺参数及其介电性能详见表1。
表1
本发明不局限于上述实施例,一些细节的变化是可能的,但这并不因此违背本发明的范围和精神。

Claims (5)

1.一种高介电常数抗还原型介质材料,化学式为Ba(SnxTi1-x)O3,其中0<x≤0.2。
该高介电常数抗还原型介质材料的制备方法,具有如下步骤:
(1)将原料BaTiO3、SnO2、BaCO3按Ba(SnxTi1-x)O3,其中0<x≤0.2的化学式称量配料;
(2)将步骤(1)配制的粉料放入球磨罐中,加入氧化锆球和去离子水,球磨4小时;再将球磨后的原料置于红外干燥箱中烘干,烘干后过40目筛,获得颗粒均匀的粉料;
(3)将步骤(2)处理后的粉料于1000~1300℃下煅烧3小时,合成主晶相;
(4)在步骤(3)合成主晶相的粉料外加质量百分比为7%的粘结剂,过80目分样筛,造粒;
(5)将步骤(4)的造粒粉料压制成生坯,经排胶后,在空气或还原气氛下,于1300~1450℃烧结,保温2~4小时,制得高介电常数抗还原型介质材料。
2.根据权利要求1所述的一种高介电常数抗还原型介质材料,其特征在于,所述步骤(2)的烘干温度为100℃。
3.根据权利要求1所述的一种高介电常数抗还原型介质材料,其特征在于,所述步骤(2)的陶瓷粉体与氧化锆球、去离子水的质量比为1∶1∶2。
4.根据权利要求1所述的一种高介电常数抗还原型介质材料,其特征在于,所述步骤(5)的生坯为Φ15mm×1mm的圆片。
5.根据权利要求1所述的一种高介电常数抗还原型介质材料,其特征在于,所述步骤(5)烧结温度为1400℃,保温时间为3h。
CN201710580743.4A 2017-07-17 2017-07-17 一种高介电常数抗还原型介质材料 Pending CN107382308A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710580743.4A CN107382308A (zh) 2017-07-17 2017-07-17 一种高介电常数抗还原型介质材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710580743.4A CN107382308A (zh) 2017-07-17 2017-07-17 一种高介电常数抗还原型介质材料

Publications (1)

Publication Number Publication Date
CN107382308A true CN107382308A (zh) 2017-11-24

Family

ID=60340860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710580743.4A Pending CN107382308A (zh) 2017-07-17 2017-07-17 一种高介电常数抗还原型介质材料

Country Status (1)

Country Link
CN (1) CN107382308A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108610040A (zh) * 2018-04-27 2018-10-02 天津大学 一种降低钛锡酸钡体系在还原气氛下介电损耗的方法
CN108610041A (zh) * 2018-04-27 2018-10-02 天津大学 一种提高钛锡酸钡在还原气氛下介电性能的方法
CN108975907A (zh) * 2018-09-05 2018-12-11 天津大学 通过变价离子掺杂提高钛酸钡介质材料抗还原性的方法
CN109020537A (zh) * 2018-09-05 2018-12-18 天津大学 一种抗还原低损耗型钛酸钡基介质材料
CN109133913A (zh) * 2018-07-27 2019-01-04 广东工业大学 一种高介电常数锡钙酸钡钛及其制备方法和应用
CN109305813A (zh) * 2018-09-05 2019-02-05 天津大学 一种提高钛酸钡介质材料在还原气氛下抗还原性的方法
CN113860867A (zh) * 2021-10-11 2021-12-31 天津大学 一种高调谐率钛酸钡基介质陶瓷材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404081A (zh) * 2002-10-21 2003-03-19 清华大学 用于贱金属电极的高介电、抗还原电容介质材料
CN104961460A (zh) * 2015-07-01 2015-10-07 西北工业大学 锡钛酸钡陶瓷及其制备方法
CN106495687A (zh) * 2016-10-27 2017-03-15 西安交通大学 一种低电场、高能量密度的介电陶瓷及其制备方法
CN106505144A (zh) * 2016-10-17 2017-03-15 奈申(上海)智能科技有限公司 多层电卡陶瓷元件及其制备方法
CN106938928A (zh) * 2017-03-31 2017-07-11 天津大学 一种抗还原巨介电常数低损耗高阻值陶瓷电容器介质材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404081A (zh) * 2002-10-21 2003-03-19 清华大学 用于贱金属电极的高介电、抗还原电容介质材料
CN104961460A (zh) * 2015-07-01 2015-10-07 西北工业大学 锡钛酸钡陶瓷及其制备方法
CN106505144A (zh) * 2016-10-17 2017-03-15 奈申(上海)智能科技有限公司 多层电卡陶瓷元件及其制备方法
CN106495687A (zh) * 2016-10-27 2017-03-15 西安交通大学 一种低电场、高能量密度的介电陶瓷及其制备方法
CN106938928A (zh) * 2017-03-31 2017-07-11 天津大学 一种抗还原巨介电常数低损耗高阻值陶瓷电容器介质材料

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108610040A (zh) * 2018-04-27 2018-10-02 天津大学 一种降低钛锡酸钡体系在还原气氛下介电损耗的方法
CN108610041A (zh) * 2018-04-27 2018-10-02 天津大学 一种提高钛锡酸钡在还原气氛下介电性能的方法
CN109133913A (zh) * 2018-07-27 2019-01-04 广东工业大学 一种高介电常数锡钙酸钡钛及其制备方法和应用
CN109133913B (zh) * 2018-07-27 2021-03-26 广东工业大学 一种高介电常数锡钙酸钡钛及其制备方法和应用
CN108975907A (zh) * 2018-09-05 2018-12-11 天津大学 通过变价离子掺杂提高钛酸钡介质材料抗还原性的方法
CN109020537A (zh) * 2018-09-05 2018-12-18 天津大学 一种抗还原低损耗型钛酸钡基介质材料
CN109305813A (zh) * 2018-09-05 2019-02-05 天津大学 一种提高钛酸钡介质材料在还原气氛下抗还原性的方法
CN113860867A (zh) * 2021-10-11 2021-12-31 天津大学 一种高调谐率钛酸钡基介质陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
CN107382308A (zh) 一种高介电常数抗还原型介质材料
CN108975907A (zh) 通过变价离子掺杂提高钛酸钡介质材料抗还原性的方法
CN107162583B (zh) 基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法
CN105565799B (zh) 一种低损耗温度稳定型高频介质陶瓷
CN106673642A (zh) 一种巨介电低损耗ccto基陶瓷材料及其制备方法
CN106938928A (zh) 一种抗还原巨介电常数低损耗高阻值陶瓷电容器介质材料
CN104310986B (zh) 一种高介电常数温度稳定型陶瓷电容器介质材料
EP2138473A1 (en) Piezoelectric ceramic composition and piezoelectric device
CN106587986A (zh) 具备储能、应变与宽介电温区的多功能无铅陶瓷及制备方法
CN108249914B (zh) 一种石榴石结构铝酸盐微波介质陶瓷及其制备方法
CN105801104B (zh) 一种高介电常数温度稳定型陶瓷电容器介质材料
JP4524411B2 (ja) 誘電体磁器組成物
CN109020537A (zh) 一种抗还原低损耗型钛酸钡基介质材料
CN107445611B (zh) 一种无铅低损耗高储能密度陶瓷材料及其制备方法
CN103951414A (zh) 具有低介电损耗巨电容率和压敏特性陶瓷材料的制造方法
Lee et al. Dielectric properties of CaCu 3 Ti 4 O 12 polycrystalline ceramics
CN108610040A (zh) 一种降低钛锡酸钡体系在还原气氛下介电损耗的方法
EP3778530A1 (en) Dielectric ceramic composition and ceramic electronic component
CN106892656A (zh) 一种低温烧结高介电常数电容器介质材料
CN110304916B (zh) 一种抗还原BaTiO3基介质陶瓷及制备方法
CN108610041A (zh) 一种提高钛锡酸钡在还原气氛下介电性能的方法
CN109336594B (zh) 低电容变化率压电陶瓷元件、压电陶瓷及其制作方法
Makcharoen et al. Dielectric Relaxation and Microstructures of SnO2 Doped CaCu3Ti4O12 Electroceramics Prepared Via Vibro-milling Method
CN109305813A (zh) 一种提高钛酸钡介质材料在还原气氛下抗还原性的方法
CN108439970B (zh) 一种稀土掺杂钙钛矿型ntc复合热敏陶瓷材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171124