CN107377936A - 负重轮复合加载液态模锻工艺 - Google Patents

负重轮复合加载液态模锻工艺 Download PDF

Info

Publication number
CN107377936A
CN107377936A CN201710311826.3A CN201710311826A CN107377936A CN 107377936 A CN107377936 A CN 107377936A CN 201710311826 A CN201710311826 A CN 201710311826A CN 107377936 A CN107377936 A CN 107377936A
Authority
CN
China
Prior art keywords
bogie wheel
sicp
stirring rod
mould
straight wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710311826.3A
Other languages
English (en)
Inventor
徐宏
张新
张国伟
毛红奎
石阳
任霁萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Publication of CN107377936A publication Critical patent/CN107377936A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/02Pressure casting making use of mechanical pressure devices, e.g. cast-forging
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1047Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Forging (AREA)

Abstract

本发明涉及一种负重轮复合加载液态模锻工艺,包括:调整碟簧的预紧量使内冲头离开上模垫板一定的距离S,S称为补缩量;在这种状态下进行加载成形,上模下行,内冲头碟簧力的作用下使金属充满型腔,在负重轮直壁处充满金属的高度较零件设计尺寸高出S,继续加压,底部开始凝固,内冲头趋于静止,碟簧产生压缩变形,这时外冲头相对内冲头向下移动,压力机的总压力除克服碟簧力,剩余压力全部作用在制件正在凝固的直壁处,使其在压力下凝固,同时将压力传递到最后凝固区热节处,加压的同时,将充填时直壁多出S高度的金属补缩给直壁和热节处,通过对直壁和热节处的局部加载和补缩,并产生塑性变形。

Description

负重轮复合加载液态模锻工艺
技术领域
本发明涉及一种负重轮复合加载液态模锻工艺。
背景技术
凝固成形过程中存在着不均匀性导致。由此推断,这种凝固的不均匀性也会对制件的组织和性能产生影响。
负重轮简单加载液态模锻过程研究结果可知,由于制件形状和和液态金属的受力不均匀,导致成形过程中液态金属凝固不均匀,最后凝固区(直壁与底部的转角处)由于得不到补缩,性能最差,甚至产生裂纹等缺陷。底部先凝固的金属承载了冲头几乎全部的载荷而进入塑性变形,限制和减缓了冲头的继续下行,冲头不能充分对直壁部分施压,直壁部分的密度及性能也低于底部。这种简单加载方式造成了制件各部组织和性能的不均匀性。
有鉴于上述的缺陷,本设计人积极加以研究创新,以期创设一种负重轮复合加载液态模锻工艺,使其更具有产业上的利用价值。
发明内容
为解决上述技术问题,本发明的目的是提供一种制备综合性能良好的制件的负重轮复合加载液态模锻工艺。
本发明负重轮复合加载液态模锻工艺,所述的负重轮利用成型模锻系统加工而成,所述的成型模锻系统包括:铝基复合材料的制备装置,负重轮成型模具,用于提供负重轮成型模具冲头压力的液压机;所述负重轮成型模具至少包括:下模,外冲头、内冲头组成的上模,内冲头与上模板之间设有碟簧,所述碟簧用于控制内冲头与上模板之间的距离;
所述的负重轮成型工艺包括:
将机械搅拌法制备的铝基复合材料;
将机械搅拌法制备的铝基复合材料定量浇注于负重轮成形腔内,采用复合加载方法进行模锻成型,所述复合加载模锻成型具体包括:加载前,调整碟簧的预紧量使内冲头离开上模垫板一定的距离S,S称为补缩量;在这种状态下进行加载成形,上模下行,内冲头碟簧力的作用下使金属充满型腔,在负重轮直壁处充满金属的高度较零件设计尺寸高出S,继续加压,底部开始凝固,内冲头趋于静止,碟簧产生压缩变形,这时外冲头相对内冲头向下移动,压力机的总压力除克服碟簧力,剩余压力全部作用在制件正在凝固的直壁处,使其在压力下凝固,同时将压力传递到最后凝固区热节处,加压的同时,将充填时直壁多出S 高度的金属补缩给直壁和热节处,通过对直壁和热节处的局部加载和补缩,并产生塑性变形;
负重轮液态模锻成形工艺参数选择如下:
金属液浇注温度选择浇注温度为720℃;
模具预热温度:下模300℃,上模200℃。
比压:40~60MPa;
加压速度:15mm/s;
开始加压时间:浇注完毕后立即开始加压;
保压时间:25-30s。
所述的铝基复合材料的制备方法包括:
材料选择:基体材料为2A50锻铝合金,增强体材料为SiCp颗粒,SiCp颗粒颗粒度为7μm,体积分数10%;
对SiCp颗粒进行预处理,得到备用的增强体颗粒;
熔炼2A50铝合金:用坩埚熔炼铝合金到640℃~660℃,加入精炼剂,精炼 5分钟后除渣,除渣时对铝合金液进行搅拌,并上、下移动;
在铝合金液中加入1.5wt%~2wt%的纯Mg;
SiCp颗粒预热:将SiCp颗粒用10g铝箔包裹起来,放入加热炉的坩埚中加热至600℃,并保温30min至60min;
先将预热后的SiCp颗粒加入搅拌坩埚内,然后加入铝合金液,进行加热,搅拌温度610℃~615℃搅拌速度875r/min;搅拌时间40min~60min,搅拌时,依据坩埚内的材料含量调节搅拌棒的上下位置,每搅拌3至8分钟后改变搅拌棒旋转方向。
进一步地,还包括将触变模锻负重轮制件进行T6热处理,其热处理工艺为:在500℃固溶处理3小时,放入水中淬火20min,然后在160℃时效处理10小时,取出负重轮空冷至室温。
进一步地,对SiCp颗粒进行预处理具体包括:
酸洗:用10%的HF溶液浸泡SiCp颗粒24h进行酸洗;
清洗:对酸洗24h后的SiCp悬浊液用大量蒸馏水多次清洗,每1~2小时换一次蒸馏水,直至溶液达到中性;
烘干:把SiCp液体表面的清水除去,在烘干箱中140℃~160℃的条件下烘干24h~28h;
研磨:烘干后的SiCp出现结块现象,用研钵进行研磨,使其成为粉末状,研磨之后密封保存;
烧结:经过上述过程处理的SiCp需要在800℃±5℃高温下烧结2~3小时。
进一步地,所述的烧结过程具体为:将坩埚放入加热炉中随炉预热到 100℃~150℃,将SiCp颗粒放入坩埚中随炉加热到300℃~400℃,保温30min 左右,并不断搅拌;加热到800℃进行烧结,烧结过程中需要不断搅拌;随炉冷却至室温。
进一步地,所述铝基复合材料的制备系统包括:加热炉、对加热炉内物料进行搅拌的搅拌装置以及对加热炉进行温度控制的温控箱,所述搅拌装置包括搅拌棒、驱动所述搅拌棒圆周旋转的动力装置,其中,所述搅拌棒的一端部连接所述动力装置,所述搅拌棒的另一端部设有搅拌叶片,所述叶片为沿搅拌棒轴线上、下布置的两排,各排叶片沿搅拌棒的圆周方向布置,所述叶片呈矩形结构,所述叶片与水平面成15°夹角,搅拌棒上排的叶片和下排的叶片交错设置;
所述动力装置包括摇臂钻床以及设置在所述摇臂钻床上的搅拌电机,所述搅拌电机的动力端与所述搅拌棒连接,所述搅拌棒表面涂有耐高温防腐陶瓷材料。
进一步地,所述温控箱通过热电偶获取加热炉的温度,所述加热炉侧壁中间位置下部的侧壁上设有热电偶测温孔,所述热电偶设置在所述热电偶测温孔上。
进一步地,所述加热炉包括外壳、加热炉密封盖以及设置在所述外壳内的坩埚,其中所述加热炉密封盖为两个相拼的半圆形外盖,外盖设有移动耳朵,中间开一用作搅拌棒通道的圆孔。
进一步地,所述坩埚为圆柱状,上部设有法兰外圈,在外法兰处焊接有两个长度不超过炉子外盖内径的短圆柱。
进一步地,所述的模具工作零件材料均选用5CrNiMo热模具钢;模具单边间隙为0.15mm;脱模斜度为2°~3°;在冲头中心处开带有斜度的排气孔。
进一步地,补缩量为8-10mm。
借由上述方案,本发明至少具有以下优点:
通过采用复合加载方式对负重轮制件直壁进行局部加载补缩,得到了质量良好的制件。
随补缩量的增大,制件直壁的密度值逐渐增大,底部的密度值变化不明显。当补缩量达到6mm时,制件整体的密度接近均匀,补缩量再增大,其密度变化不明显。
随补缩量的增大,制件直壁的抗拉强度逐渐增大,底部的抗拉强度随补缩量的增大变化不大。当补缩量达到8-10mm时,制件的力学性能基本一致抗拉强度平均为352MPa,延伸率平均为8%。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1是负重轮成形模具;
1—上模板 2—螺栓 3—上模垫板 4—外冲头 5—内冲头 6—下模外套1
7—下模 8—螺栓 9—顶杆 10—拉杆螺栓 11—碟簧 12—导向套 13—托盘14—螺栓 15—下模外套2 16—定位销 17—下模垫板
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
铝合金负重轮液态模锻成形过程的数值模拟
有限元模型建立
负重轮结构制件直径较大,外径为φ440mm,内径为φ418mm,各处壁厚不均匀,在制件直壁与底部的转角处壁厚最大。
负重轮为轴对称制件,可以模拟负重轮的二分之一。用Pro/E软件对零件及其模具进行三维实体造型,并装配。在Pro/E Mechanic中进行面网格划分,存为.ans文件;将.ans文件导入ProCAST,在MeshCAST中将模型面网格剖分为体网格,生成.mesh文件。负重轮及其模具的装配模型和划分体网格后的有限元模型。划分网格尺寸最大为5mm,网格总数为1286232。
负重轮及其模具数值模拟模型
材料性质
负重轮材料为2A50铝合金,模具材料为5CrNiM。化学成分如表4-1和4-2 所示。根据材料成分在ProCAST中自动生成材料的液相线温度、固相线温度、潜热、比热和固相率的变化等热力学参数。
表4-1 2A50的成分(wt%)
表4-2 5CrNiMo的成分(wt%)
Table 4-2 Composition(wt.%)of 5CrNiMo al loy
由差热分析(DTA)可知:2A50铝合金的固相线温度为521℃,液相线温度为615℃。根据差热分析结果对自动生成的2A50铝合金的液固相线进行了修正。
负重轮凝固过程的温度场模拟
凝固过程温度场的模拟对制件缩孔、缩松、热裂等缺陷的预测与消除,以及工艺方案和模具设计的优化均具有重要的指导意义。
温度场模拟的主要工艺参数
液态模锻主要工艺参数:
(1)金属液浇注温度浇注温度直接影响着加压开始时自由凝固层的厚度和凝固过程中液态金属总热量的散失,进而影响凝固时间和凝固速度。温度过高,容易产生缩孔;温度过低,会因合金凝固过快产生冷隔等缺陷。2A50铝合金选择720℃。
(2)模具预热温度模具温度过高,容易发生粘模,脱模困难,降低模具寿命;模具温度过低,则铸件质量难以得到保证,产生冷隔和表面裂纹等缺陷。铝合金液态模锻模具预热温度在200℃-300℃。
(3)开始加压时间开始加压时间是指合金浇入凹模至开始加压的时间间隔。开始加压时间过晚,金属自由结壳厚度大,增加变形抗力,降低加压效果,影响制件质量。一般情形,金属液浇入型腔后立即加压。
(4)比压单位面积上的压力。压力作用是使金属液在等静压的作用下,及时消除制件的气孔、缩孔和疏松等缺陷,并产生压力下结晶的凝固机理,从而获得较好的内部组织和较高的力学性能。铝合金液态模锻比压为40~60MPa
(5)保压时间指从金属液在压力作用下充满型腔后开始,到液压机撤消压力为止的时间段,这段时间实际上是金属液在压力下凝固、结晶和补缩的时间。保压时间取决于制件断面的最大壁厚,一般取0.5-1sec/mm。
负重轮凝固过程的数值模拟工艺参数选择如表4-3所示。
表4-3模拟的主要工艺参数
温度场模拟结果
制件首先在与模具接触处开始凝固,制件的直壁与底部的转角处和底部中心处最后凝固,金属液充满型腔后,制件完全凝固需要的时间大概为23s。在制件的直壁与底部的转角处存在金属液的最后凝固区,这些区域的金属液凝固收缩时,受两侧已经凝固得金属层的阻碍,很可能产生应力集中,形成裂纹和缩孔缩松。在制件的直壁与底部的转角处产生缺陷的可能性。
制件直壁边缘凝固最快,在充型完毕瞬间就迅速凝固,其固相分数近50%。制件的直壁与底面的转角处心部区域凝固最慢,在前4s基本没有发生凝固。在 13s左右,各特征点的固相分数趋于一致,达到90%左右,在23s左右固相分数接近100%,凝固结束。
负重轮制件凝固过程的温度分布。在金属液充型结束瞬间,冲头和金属液上表面接触并给金属液加压,这时热量以热传导的方式迅速从接触表面传出,使制件表面温度迅速下降,在0.368s时表面温度已经在610℃左右,下降约 110℃,迅速在表面凝固成一层金属硬壳;制件直壁与底部的转角处的温度要高于其它部位的温度,这也说明了此处是金属液最后凝固的区域。制件在冲头压力下产生塑性变形,从而消除了因制件凝固收缩而在制件和模具之间产生的气隙,减小了制件和模具之间的热阻。由于压力的损失,制件表面和模具之间的接触情况好于制件的心部,所以制件和模具之间的热阻总体从表面到心部是逐渐增大的,所以制件在凝固过程中的总体温度分布从制件表面到心部也呈升高趋势。综合以上分析,制件在压力下凝固过程呈由表及里的趋势,最后凝固的部位在制件中心以及直壁与底部的转角处,在加压约23s时制件凝固已经结束,温度在510℃左右。
制件直壁边缘处和底部斜面部分温度降低最快,制件直壁与底面的拐角处中心部位和底部中心部位温度降低较慢。制件直壁与底面的拐角处是同一时刻温度最高的区域,即最后完成凝固区域。
负重轮凝固过程的应力场模拟
制件凝固过程中最大应力发生在制件的直壁与底面的转角处,且圆角处的应力为拉应力,在此部位很容易出现裂纹。主要原因是金属液充型刚结束时,制件表层首先凝固成金属硬壳时发生收缩,未凝固的液态金属在压力下不断地在硬壳内表面上结晶,直壁与底部相对截面积较小,首先完成凝固;转角处截面积大,其表层与直壁和底部同样厚度部分与壁与底部同步完成凝固,而其中心处是整个制件的最后凝固区,称为热节,随着凝固的进行,热节处的金属液逐步凝固收缩,周边已经凝固的金属不能提供补缩,且受模具的限制不能向其做刚性移动,从而造成热节处最后凝固区域的外表面与先期已凝固金属内表面之间产生拉应力。当拉应力达到一定值时,该处产生内部裂纹,随着拉应力的增大,会使裂纹扩展至制件表面,形成宏观裂纹。因此制件直壁与底部的转角处是发生裂纹的危险区域,制件转角处热裂指数最高。
制件表面上的各特征点均受到拉应力,这是由于制件内部金属的凝固收缩而使得先凝固的外部金属产生拉应力。在制件的直壁与底部的转角处产生的拉应力最大,所以在此处是产生裂纹缺陷的危险区域。制件的直壁与底部的转角处是产生裂纹缺陷的危险区域。
本发明负重轮复合加载液态模锻工艺的最佳实施例:所述的负重轮利用流变成型模锻系统加工而成,所述的负重轮成型工艺包括:
1、一种负重轮复合加载液态模锻工艺,其特征在于,所述的负重轮利用成型模锻系统加工而成,所述的成型模锻系统包括:铝基复合材料的制备装置,负重轮成型模具,用于提供负重轮成型模具冲头压力的液压机;所述负重轮成型模具至少包括:下模,外冲头、内冲头组成的上模,内冲头与上模板之间设有碟簧,所述碟簧用于控制内冲头与上模板之间的距离;
所述的负重轮成型工艺包括:
将机械搅拌法制备的铝基复合材料;
将机械搅拌法制备的铝基复合材料定量浇注于负重轮成形腔内,采用复合加载方法进行模锻成型,所述复合加载模锻成型具体包括:加载前,调整碟簧的预紧量使内冲头离开上模垫板一定的距离S,S称为补缩量;在这种状态下进行加载成形,上模下行,内冲头碟簧力的作用下使金属充满型腔,在负重轮直壁处充满金属的高度较零件设计尺寸高出S,继续加压,底部开始凝固,内冲头趋于静止,碟簧产生压缩变形,这时外冲头相对内冲头向下移动,压力机的总压力除克服碟簧力,剩余压力全部作用在制件正在凝固的直壁处,使其在压力下凝固,同时将压力传递到最后凝固区热节处,加压的同时,将充填时直壁多出S 高度的金属补缩给直壁和热节处,通过对直壁和热节处的局部加载和补缩,并产生塑性变形;
负重轮液态模锻成形工艺参数选择如下:
金属液浇注温度选择浇注温度为720℃;
模具预热温度:下模300℃,上模200℃。
比压:40~60MPa;
加压速度:15mm/s;
开始加压时间:浇注完毕后立即开始加压;
保压时间:25-30s。
所述的铝基复合材料的制备方法包括:
材料选择:基体材料为2A50锻铝合金,增强体材料为SiCp颗粒,SiCp颗粒颗粒度为7μm,体积分数10%;
对SiCp颗粒进行预处理,得到备用的增强体颗粒;
熔炼2A50铝合金:用坩埚熔炼铝合金到640℃~660℃,加入精炼剂,精炼 5分钟后除渣,除渣时对铝合金液进行搅拌,并上、下移动;
在铝合金液中加入1.5wt%~2wt%的纯Mg;
SiCp颗粒预热:将SiCp颗粒用10g铝箔包裹起来,放入加热炉的坩埚中加热至600℃,并保温30min至60min;
先将预热后的SiCp颗粒加入搅拌坩埚内,然后加入铝合金液,进行加热,搅拌温度610℃~615℃搅拌速度875r/min;搅拌时间40min~60min,搅拌时,依据坩埚内的材料含量调节搅拌棒的上下位置,每搅拌3至8分钟后改变搅拌棒旋转方向。
进一步地,对SiCp颗粒进行预处理具体包括:
酸洗:用10%的HF溶液浸泡SiCp颗粒24h进行酸洗;
清洗:对酸洗24h后的SiCp悬浊液用大量蒸馏水多次清洗,每1~2小时换一次蒸馏水,直至溶液达到中性;
烘干:把SiCp液体表面的清水除去,在烘干箱中140℃~160℃的条件下烘干24h~28h;
研磨:烘干后的SiCp出现结块现象,用研钵进行研磨,使其成为粉末状,研磨之后密封保存;
烧结:经过上述过程处理的SiCp需要在800℃±5℃高温下烧结2~3小时。
所述的烧结过程具体为:将坩埚放入加热炉中随炉预热到100℃~150℃,将SiCp颗粒放入坩埚中随炉加热到300℃~400℃,保温30min左右,并不断搅拌;加热到800℃进行烧结,烧结过程中需要不断搅拌;随炉冷却至室温。
所述铝基复合材料的制备系统包括:加热炉、对加热炉内物料进行搅拌的搅拌装置以及对加热炉进行温度控制的温控箱,所述搅拌装置包括搅拌棒、驱动所述搅拌棒圆周旋转的动力装置,其中,所述搅拌棒的一端部连接所述动力装置,所述搅拌棒的另一端部设有搅拌叶片,所述叶片为沿搅拌棒轴线上、下布置的两排,各排叶片沿搅拌棒的圆周方向布置,所述叶片呈矩形结构,所述叶片与水平面成15°夹角,搅拌棒上排的叶片和下排的叶片交错设置;
所述动力装置包括摇臂钻床以及设置在所述摇臂钻床上的搅拌电机,所述搅拌电机的动力端与所述搅拌棒连接,所述搅拌棒表面涂有耐高温防腐陶瓷材料。
所述温控箱通过热电偶获取加热炉的温度,所述加热炉侧壁中间位置下部的侧壁上设有热电偶测温孔,所述热电偶设置在所述热电偶测温孔上。
所述加热炉包括外壳、加热炉密封盖以及设置在所述外壳内的坩埚,其中所述加热炉密封盖为两个相拼的半圆形外盖,外盖设有移动耳朵,中间开一用作搅拌棒通道的圆孔。
所述坩埚为圆柱状,上部设有法兰外圈,在外法兰处焊接有两个长度不超过炉子外盖内径的短圆柱。
负重轮复合加载试验过程及结果
负重轮复合加载液态模锻的工艺参数与简单加载液锻相同,主要区别是通过调节碟簧控制补缩量S,在试验中补缩量S选择为:2,4,6,8,10mm。
通过补缩,制件的裂纹等缺陷逐渐消失,在补缩量为2mm和4mm时,在制件的直壁与底部的转角处仍然有裂纹产生;当补缩量达到6mm时宏观缺陷消失,制件表面质量良好。
补缩量对负重轮制件的组织性能均匀化的影响
为研究补缩量对制件性能的影响规律,并找出参数,下面通过对复合加载负重轮液锻件取样进行金相观察、密度和力学性能的测试来分析和评定制件组织和性能的均匀性。
补缩量对负重轮制件的组织的影响
不同补缩量的制件金相组织。有补缩时制件直壁的组织与简单加载时(无补缩)相比有明显的改善,晶粒得到细化,且组织均匀,而制件底部的组织变化不明显。制件直壁的晶粒度随补缩量S的增加变得细小,当补缩量S为10mm 时,其组织形貌与底部几无差别。由此可见,通过复合加载和局部补缩量可以使制件的整体组织变得均匀。
补缩量对负重轮制件的密度的影响
负重轮的直壁部分的密度随着碟簧补缩量的增加而增加。在没有补缩即简单加载时,负重轮的直壁部分密度值较低,明显低于负重轮底部位置的密度。在局部加载补缩的情况下,负重轮直壁部分的密度随补缩量增大,在补缩量为 6mm时,直壁部分的密度值已经和底部的密度值接近,再进一步增加补缩量,直壁部分的密度变化不明显。
负重轮制件底部两部位的密度值接近,说明负重轮的底部密度主要受上模压力的影响,底部的密度基本没有变化。
采用局部加载可以使负重轮直壁和热节处的密度增大,且随补缩量的增加其密度逐渐接近底部,在补缩量为6mm时,负重轮整体的密度区域一致,进一步增加补缩量,密度值变化不明显。
补缩量对负重轮制件的力学性能的影响
对复合加载成形负重轮制件取样,进行T6处理,制成拉伸试样。将复合加载与简单加载成形制件(补缩量为0)力学性能进行比较,研究补缩量对负重轮制件的力学性能的影响规律。
负重轮制件的直壁的抗拉强度低于底部。在简单加载时,直壁部分抗拉强度较低,与底部相差较大。直壁部分的抗拉强度在复合加载方式下增加较为明显,增加幅度随补缩量的增大而逐渐减小。在补缩量为8mm时,制件直壁部分的抗拉强度已经接近底部的抗拉强度,进一步增加补缩量,直壁部分的抗拉强度的变化不明显。负重轮制件底部两部位取样的抗拉强度值接近,随补缩量的变化不明显。
采用复合加载液锻可以明显提高负重轮制件直壁部分的力学性能,随补缩量的增加制件直壁部分的力学性能逐渐接近制件底部的力学性能,在补缩量为 8-10mm时,制件各部位的力学性能基本一致。抗拉强度平均为352MPa,延伸率平均为8%。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

1.一种负重轮复合加载液态模锻工艺,其特征在于,所述的负重轮利用成型模锻系统加工而成,所述的成型模锻系统包括:铝基复合材料的制备装置,负重轮成型模具,用于提供负重轮成型模具冲头压力的液压机;所述负重轮成型模具至少包括:下模,外冲头、内冲头组成的上模,内冲头与上模板之间设有碟簧,所述碟簧用于控制内冲头与上模板之间的距离;
所述的负重轮成型工艺包括:
将机械搅拌法制备的铝基复合材料;
将机械搅拌法制备的铝基复合材料定量浇注于负重轮成形腔内,采用复合加载方法进行模锻成型,所述复合加载模锻成型具体包括:加载前,调整碟簧的预紧量使内冲头离开上模垫板一定的距离S,S称为补缩量;在这种状态下进行加载成形,上模下行,内冲头碟簧力的作用下使金属充满型腔,在负重轮直壁处充满金属的高度较零件设计尺寸高出S,继续加压,底部开始凝固,内冲头趋于静止,碟簧产生压缩变形,这时外冲头相对内冲头向下移动,压力机的总压力除克服碟簧力,剩余压力全部作用在制件正在凝固的直壁处,使其在压力下凝固,同时将压力传递到最后凝固区热节处,加压的同时,将充填时直壁多出S高度的金属补缩给直壁和热节处,通过对直壁和热节处的局部加载和补缩,并产生塑性变形;
负重轮液态模锻成形工艺参数选择如下:
金属液浇注温度选择浇注温度为720℃;
模具预热温度:下模300℃,上模200℃。
比压:40~60MPa;
加压速度:15mm/s;
开始加压时间:浇注完毕后立即开始加压;
保压时间:25-30s。
所述的铝基复合材料的制备方法包括:
材料选择:基体材料为2A50锻铝合金,增强体材料为SiCp颗粒,SiCp颗粒颗粒度为7μm,体积分数10%;
对SiCp颗粒进行预处理,得到备用的增强体颗粒;
熔炼2A50铝合金:用坩埚熔炼铝合金到640℃~660℃,加入精炼剂,精炼5分钟后除渣,除渣时对铝合金液进行搅拌,并上、下移动;
在铝合金液中加入1.5wt%~2wt%的纯Mg;
SiCp颗粒预热:将SiCp颗粒用10g铝箔包裹起来,放入加热炉的坩埚中加热至600℃,并保温30min至60min;
先将预热后的SiCp颗粒加入搅拌坩埚内,然后加入铝合金液,进行加热,搅拌温度610℃~615℃搅拌速度875r/min;搅拌时间40min~60min,搅拌时,依据坩埚内的材料含量调节搅拌棒的上下位置,每搅拌3至8分钟后改变搅拌棒旋转方向。
2.根据权利要求1所述的负重轮复合加载液态模锻工艺,其特征在于,还包括将触变模锻负重轮制件进行T6热处理,其热处理工艺为:在500℃固溶处理3小时,放入水中淬火20min,然后在160℃时效处理10小时,取出负重轮空冷至室温。
3.根据权利要求1所述的负重轮复合加载液态模锻工艺,其特征在于,对SiCp颗粒进行预处理具体包括:
酸洗:用10%的HF溶液浸泡SiCp颗粒24h进行酸洗;
清洗:对酸洗24h后的SiCp悬浊液用大量蒸馏水多次清洗,每1~2小时换一次蒸馏水,直至溶液达到中性;
烘干:把SiCp液体表面的清水除去,在烘干箱中140℃~160℃的条件下烘干24h~28h;
研磨:烘干后的SiCp出现结块现象,用研钵进行研磨,使其成为粉末状,研磨之后密封保存;
烧结:经过上述过程处理的SiCp需要在800℃±5℃高温下烧结2~3小时。
4.根据权利要求3所述的负重轮复合加载液态模锻工艺,其特征在于,所述的烧结过程具体为:将坩埚放入加热炉中随炉预热到100℃~150℃,将SiCp颗粒放入坩埚中随炉加热到300℃~400℃,保温30min左右,并不断搅拌;加热到800℃进行烧结,烧结过程中需要不断搅拌;随炉冷却至室温。
5.根据权利要求1所述的负重轮复合加载液态模锻工艺,其特征在于,所述铝基复合材料的制备系统包括:加热炉、对加热炉内物料进行搅拌的搅拌装置以及对加热炉进行温度控制的温控箱,所述搅拌装置包括搅拌棒、驱动所述搅拌棒圆周旋转的动力装置,其中,所述搅拌棒的一端部连接所述动力装置,所述搅拌棒的另一端部设有搅拌叶片,所述叶片为沿搅拌棒轴线上、下布置的两排,各排叶片沿搅拌棒的圆周方向布置,所述叶片呈矩形结构,所述叶片与水平面成15°夹角,搅拌棒上排的叶片和下排的叶片交错设置;
所述动力装置包括摇臂钻床以及设置在所述摇臂钻床上的搅拌电机,所述搅拌电机的动力端与所述搅拌棒连接,所述搅拌棒表面涂有耐高温防腐陶瓷材料。
6.根据权利要求1所述的负重轮复合加载液态模锻工艺,其特征在于,所述温控箱通过热电偶获取加热炉的温度,所述加热炉侧壁中间位置下部的侧壁上设有热电偶测温孔,所述热电偶设置在所述热电偶测温孔上。
7.根据权利要求1所述的负重轮复合加载液态模锻工艺,其特征在于,所述加热炉包括外壳、加热炉密封盖以及设置在所述外壳内的坩埚,其中所述加热炉密封盖为两个相拼的半圆形外盖,外盖设有移动耳朵,中间开一用作搅拌棒通道的圆孔。
8.根据权利要求2所述的负重轮复合加载液态模锻工艺,其特征在于,所述坩埚为圆柱状,上部设有法兰外圈,在外法兰处焊接有两个长度不超过炉子外盖内径的短圆柱。
9.根据权利要求1所述的负重轮复合加载液态模锻工艺,其特征在于,所述的模具工作零件材料均选用5CrNiMo热模具钢;模具单边间隙为0.15mm;脱模斜度为2°~3°;在冲头中心处开带有斜度的排气孔。
10.根据权利要求1所述的负重轮复合加载液态模锻工艺,其特征在于,补缩量为8-10mm。
CN201710311826.3A 2017-04-13 2017-05-05 负重轮复合加载液态模锻工艺 Pending CN107377936A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710240299 2017-04-13
CN2017102402991 2017-04-13

Publications (1)

Publication Number Publication Date
CN107377936A true CN107377936A (zh) 2017-11-24

Family

ID=60338857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710311826.3A Pending CN107377936A (zh) 2017-04-13 2017-05-05 负重轮复合加载液态模锻工艺

Country Status (1)

Country Link
CN (1) CN107377936A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109249002A (zh) * 2018-11-28 2019-01-22 吴江伟 一种灯壳铝合金压铸模具
CN110029296A (zh) * 2019-05-31 2019-07-19 义乌月落自动化设备有限公司 一种具有节能功效的门窗用铝合金型材的热处理工艺
CN111451473A (zh) * 2020-04-10 2020-07-28 扬州华厦机械有限公司 一种机器人铸件铸造设备及其铸造方法
CN112775413A (zh) * 2021-01-07 2021-05-11 北京北方车辆集团有限公司 一种带有溢流槽的液态模锻挤压模具
CN113046584A (zh) * 2021-03-11 2021-06-29 科曼车辆部件系统(苏州)有限公司 一种薄壁电池仓端板的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
曹广祥: "铝合金负重轮液态模锻成型的组织性能", 《工程科技I辑》 *
贾海萌: "SIC颗粒增强铝基复合材料履带板成形的研究", 《工程科技I辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109249002A (zh) * 2018-11-28 2019-01-22 吴江伟 一种灯壳铝合金压铸模具
CN110029296A (zh) * 2019-05-31 2019-07-19 义乌月落自动化设备有限公司 一种具有节能功效的门窗用铝合金型材的热处理工艺
CN111451473A (zh) * 2020-04-10 2020-07-28 扬州华厦机械有限公司 一种机器人铸件铸造设备及其铸造方法
CN111451473B (zh) * 2020-04-10 2022-01-18 扬州华厦机械有限公司 一种机器人铸件铸造设备及其铸造方法
CN112775413A (zh) * 2021-01-07 2021-05-11 北京北方车辆集团有限公司 一种带有溢流槽的液态模锻挤压模具
CN113046584A (zh) * 2021-03-11 2021-06-29 科曼车辆部件系统(苏州)有限公司 一种薄壁电池仓端板的制备方法

Similar Documents

Publication Publication Date Title
CN107377936A (zh) 负重轮复合加载液态模锻工艺
CN102019353B (zh) 一种复杂薄壁件的精密铸造成型方法
CN1265914C (zh) 铸钢支承辊整体铸造方法
CN106825496B (zh) 一种变形铝合金工件铸锻合一成型工艺
CN104209497A (zh) 一种大型复杂薄壁镁合金件石膏型铸造方法
CN104525829B (zh) 径向锻应变诱发制备空调压缩机铝合金曲轴的半固态工艺
CN104741552B (zh) 一种制备大规格超高强铝合金连续铸锭的装置及方法
CN104475693A (zh) 一种大型钢锭的还原浇铸复合方法及其装置
CN106636797A (zh) 镁铝合金汽车发动机支架的挤压铸造制备方法
CN104439124A (zh) 一种抑制大型钢锭宏观偏析的方法
CN110438371A (zh) 一种高钨高钴铸态镍合金的低偏析控制及塑性提升方法
CN104001906A (zh) 薄层快速凝固成型装置及方法
Ružbarský et al. Techniques of Die casting
CN107138707A (zh) 采用复合加载‑局部补缩消除金属制件裂纹的工艺
CN104174820B (zh) 一种海洋平台爬升机二级行星架的铸造工艺
CN107138708A (zh) 一体化模锻成型工艺
CN201342480Y (zh) 一种抑制大型钢锭宏观偏析的内冷装置
CN108889924A (zh) 铁磁性合金真空熔铸短流程精密铸造方法
CN105798261B (zh) 一种制备高结构强度铝合金轮毂的成形装置和方法
CN107150109A (zh) 一种双向冷却动态浇注复合铸锭的方法及其装置
Zyska et al. Optimization of squeeze parameters and modification of AlSi7Mg alloy
CN206215878U (zh) 一种制备镁合金铸锭试样的重力金属型铸造模具
CN204584228U (zh) 一种高结构强度铝合金轮毂流变挤压铸造成形模具
CN106734999B (zh) 一种镍铝金属间化合物锭的真空铸造装置
CN206435734U (zh) 一种合金半固态旋压增材制备装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171124

RJ01 Rejection of invention patent application after publication