CN107370392B - 面向中高压智能配电网的电力电子变压器 - Google Patents

面向中高压智能配电网的电力电子变压器 Download PDF

Info

Publication number
CN107370392B
CN107370392B CN201710542198.XA CN201710542198A CN107370392B CN 107370392 B CN107370392 B CN 107370392B CN 201710542198 A CN201710542198 A CN 201710542198A CN 107370392 B CN107370392 B CN 107370392B
Authority
CN
China
Prior art keywords
converter
isolation type
module
low
modular multi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710542198.XA
Other languages
English (en)
Other versions
CN107370392A (zh
Inventor
陈武
薛晨炀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201710542198.XA priority Critical patent/CN107370392B/zh
Publication of CN107370392A publication Critical patent/CN107370392A/zh
Application granted granted Critical
Publication of CN107370392B publication Critical patent/CN107370392B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load

Abstract

本发明公开了一种面向中高压智能配电网的电力电子变压器,包括位于高压侧的模块化多电平变流器、中间侧的输入串联输出并联隔离型DC‑DC变换器和低压侧的变流器;模块化多电平变流器输出的正极连接第一个隔离型DC‑DC变换器模块的输入侧逆变桥前一桥臂的中间点,负极连接最后一个隔离型DC‑DC变换器模块的输入电容负端;相邻两个隔离型DC‑DC变换器模块的连接方式为前一模块的输入电容负端连接后一模块的逆变桥前一桥臂的中间点。本发明可以避免在MMC模块输出电压短路的情况下,ISOP输入电容短路的问题;ISOP模块间采用交错控制的调节方式,使得输入电流纹波减小,有利于降低系统体积;成本较低,便于进一步的推广应用。

Description

面向中高压智能配电网的电力电子变压器
技术领域
本发明涉及一种电力电子变压器,尤其涉及一种面向中高压智能配电网的电力电子变压器。
背景技术
智能电网及其相关技术的推广应用有力的推动了我国在能源领域的节能,促进风能太阳能等可再生能源的并网发电,使未来电网朝着更加智能、灵活、互动的方向发展。而未来智能电网的各项目标和功能,如高供电质量、便于可再生能源发电接入等功能能否实现,很大程度上取决于电网中电气设备的性能和智能化水平。
配电变压器是配电网中最重要和应用最普遍的一类设备,其作用一般是将6~35kV的配电电压降至400V左右输出给用户。我国配电变压器的年产量达5000万kVA左右,约占变压器总年产量的1/3。因此,配电变压器的技术性能与经济指标都会直接影响未来智能电网的供电电能质量和智能化程度。然而,传统的配电变压器与智能电网的智能、兼容、高供电质量等要求有很大差距。
在此背景下,将电气隔离、电压变换、无功补偿等功能集于一身的电力电子变压器成为对传统变压器及电力电子设备进行集成优化、提高电网设备智能化水平的重要设备。
中国科学院电工研究所提出了一种新型的电力电子变压器的结构,该变压器由高压交流侧的模块化多电平变流器(modular multilevel converter,MMC)、中间输入串联输出并联(input series output parallel,ISOP)隔离型DC-DC变换器和低压侧的三相四桥臂逆变器构成。但是,此变压器中ISOP隔离型DC-DC变换器系统输入端采用电容直接串联的方法将每个模块相连接的方法从而实现输入端的串联,此种方法在MMC模块输出电压短路时会导致所有的分压电容一起短路从而会烧坏元器件。
发明内容
发明目的:针对以上问题,本发明提出一种面向中高压智能配电网的电力电子变压器,ISOP隔离型DC-DC变换器系统输入端采用新的输入串联方式,在MMC模块输出电压短路时避免电容短路问题。
技术方案:为实现本发明的目的,本发明所采用的技术方案是:一种面向中高压智能配电网的电力电子变压器,包括位于高压侧的模块化多电平变流器、中间侧的输入串联输出并联隔离型DC-DC变换器和低压侧的变流器;模块化多电平变流器用于将三相交流变换成高压直流;隔离型DC-DC变换器用于将模块化多电平变流器得到的高压直流变换成低压直流;变流器用于将低压直流变换成负载需要的电流;模块化多电平变流器输出的正极连接第一个隔离型DC-DC变换器模块的输入侧逆变桥前一桥臂的中间点,负极连接最后一个隔离型DC-DC变换器模块的输入电容负端;相邻两个隔离型DC-DC变换器模块的连接方式为前一模块的输入电容负端连接后一模块的逆变桥前一桥臂的中间点。
进一步,低压侧为三相四桥臂逆变器;三相四桥臂逆变器用于将低压直流变换成三相四线交流。
进一步,高压侧的模块化多电平变流器采用基于电网电压的定向矢量控制策略;中间侧的输入串联输出并联隔离型DC-DC变换器采用双极性调制方式;低压侧的变流器采用双闭环控制策略。
一种面向中高压智能配电网的电力电子变压器,包括位于高压侧的模块化多电平变流器、中间侧的输入串联输出并联隔离型DC-DC变换器和低压侧的负载;模块化多电平变流器用于将三相交流变换成高压直流;隔离型DC-DC变换器用于将模块化多电平变流器得到的高压直流变换成低压直流;模块化多电平变流器输出的正极连接第一个隔离型DC-DC变换器模块的输入侧逆变桥前一桥臂的中间点,负极连接最后一个隔离型DC-DC变换器模块的输入电容负端;相邻两个隔离型DC-DC变换器模块的连接方式为前一模块的输入电容负端连接后一模块的逆变桥前一桥臂的中间点。
有益效果:相对于现有技术,本发明具有如下优点:可以避免在MMC模块输出电压短路的情况下,ISOP输入电容短路的问题;ISOP模块间采用交错控制的调节方式,使得输入电流纹波减小,有利于降低系统体积;成本较低,便于进一步的推广应用。
附图说明
图1是本发明所述的电力电子变压器主电路原理图;
图2是高压交流侧模块化多电平变流器的控制策略流程图;
图3是低压侧三相四桥臂逆变器的控制策略流程图;
图4是本发明所述的电力电子变压器的一种拓扑延伸。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明。
如图1所示是本发明所述的电力电子变压器(power electronic transformer,PET)主电路原理图,包括高压交流侧的模块化多电平变流器(modular multilevelconverter,MMC)、中间输入串联输出并联(input series output parallel,ISOP)隔离型DC-DC变换器和低压侧的三相四桥臂逆变器。
模块化多电平变流器的作用是将高压侧的三相交流电压变化成高压直流udcH。由于MMC中功率模块为串联连接,便于不同电压等级的拓展。中间的ISOP隔离型DC-DC变换器是将MMC变换得到的高压直流电压udcH变换成低压udcL,以供低压侧三相逆变器使用。同时,中间的DC-DC变换器也实现了高压侧与低压侧的电气隔离。
低压侧的三相四桥臂逆变器是将低压侧直流电压udcL逆变为三相四线的交流电压,以供用户使用。如果低压侧只需要单相交流电或只需要直流电,则可以将低压侧的三相四桥臂逆变器替换为相应功能的变流器或直流负载即可。
高压交流侧的MMC模块和低压侧的三相四桥臂逆变器模块与现有技术相同未做变化,中间ISOP隔离型DC-DC变换器的输入端采用了一种新的串联方式,模块化多电平变流器输出的正极连接第一个隔离型DC-DC变换器模块的输入侧逆变桥前一桥臂的中间点,负极连接最后一个隔离型DC-DC变换器模块的输入电容负端;相邻两个隔离型DC-DC变换器模块的连接方式为前一模块的输入电容负端连接后一模块的逆变桥前一桥臂的中间点A,能有效避免在上一级电压短路时输入电容完全短路的问题。
以下对三个模块的控制策略具体的分析。
如图2所示是高压交流侧模块化多电平变流器的控制策略流程图,采用的是基于电网电压的定向矢量控制策略。在dq坐标系中,即,同步旋转坐标系中实施控制策略,外环为高压直流电压控制环,内环为电网电流控制环。为减少d轴和q轴电流在动态过程中的相互影响,电流环中加入解耦环节。udcH *为udcH的参考值;igq *为的igq参考值;ed为电网电压的d轴分量;eq为电网电压的q轴分量;igd为电网电流的d轴分量;igq为电网电流的q轴分量。MMC控制中,外环和内环均采用比例积分(proportional integral,PI)调节器。此外,由于电网侧功率因数为1,所以本文中高压交流电网的无功电流igq的给定值为零。
中间的多个隔离型的DC-DC变换器有串联谐振的双H桥构成,其功率可以双向流动。采用输入串联输出并联的连接方式,高压侧的每个变换器通过并联在一起的低压侧交换能量,因而能实现高压侧电容CH和低压侧电容CL上直流电压的自动均衡。此外,采用串联谐振电路,实现所有IGBT处于零电流开关(ZCS)状态,可以降低系统损耗。另外,由于输入端串联方式并非直接串联,而是将前一模块输入电容负端连接到后一模块的逆变桥前一桥臂中间点,能有效避免在上一级电压短路时输入电容完全短路的问题。在此种拓扑下,采用占空比恒为50%的控制方式,输入电容两端承受的电压为每个模块承受平均的电压的2倍。DC-DC变换器采用开环控制的方式,即变压器的高压测和低压侧电压均为占空比50%的方波,且相位完全相同,即变压器高压侧和低压侧的H桥的调制方式为双极性调制。
如图3所示是低压侧三相四桥臂逆变器的控制策略流程图,低压侧三相四桥臂逆变器存在4个桥臂(a,b,c,n),n桥臂的电压与负载电流无关。所以,a,b,c三相的输出电压可以作为3个单相逆变器独立控制。本文采用传统的双闭环控制策略,即外环电压环加上内环电感电流控制环。其中,外环的调节器为比例谐振(proportional resonant,PR)控制器,内环的调节器为比例(proportional,P)调节器。
除此以外,在隔离级部分,此系统在拓扑方面还可以做进一步地延伸,比如,原先的全桥结构可以替换为三电平结构,如图4。另外,本文中级联部分采用的串联谐振电路,直接用DAB结构也是可以正常运行的,这应当属于本发明的保护范围。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种面向中高压智能配电网的电力电子变压器,其特征在于:包括位于高压侧的模块化多电平变流器、中间侧的输入串联输出并联隔离型DC-DC变换器和低压侧的变流器;
其中,模块化多电平变流器用于将三相交流变换成高压直流;隔离型DC-DC变换器用于将模块化多电平变流器得到的高压直流变换成低压直流;变流器用于将低压直流变换成负载需要的电流;
模块化多电平变流器输出的正极连接第一个隔离型DC-DC变换器模块的输入侧逆变桥前桥臂的中间点,负极连接最后一个隔离型DC-DC变换器模块的输入电容负端;相邻两个隔离型DC-DC变换器模块的连接方式为前一模块的输入电容负端连接后一模块的逆变桥前桥臂的中间点;
隔离型DC-DC变换器模块的逆变桥包括前桥臂和后桥臂。
2.根据权利要求1所述的面向中高压智能配电网的电力电子变压器,其特征在于:包括位于高压侧的模块化多电平变流器、中间侧的输入串联输出并联隔离型DC-DC变换器和低压侧的三相四桥臂逆变器;
其中,模块化多电平变流器用于将三相交流变换成高压直流;隔离型DC-DC变换器用于将模块化多电平变流器得到的高压直流变换成低压直流;三相四桥臂逆变器用于将低压直流变换成三相四线交流。
3.根据权利要求1所述的面向中高压智能配电网的电力电子变压器,其特征在于:高压侧的模块化多电平变流器采用基于电网电压的定向矢量控制策略。
4.根据权利要求1所述的面向中高压智能配电网的电力电子变压器,其特征在于:中间侧的输入串联输出并联隔离型DC-DC变换器采用双极性调制方式。
5.根据权利要求1所述的面向中高压智能配电网的电力电子变压器,其特征在于:低压侧的变流器采用双闭环控制策略。
6.一种面向中高压智能配电网的电力电子变压器,其特征在于:包括位于高压侧的模块化多电平变流器、中间侧的输入串联输出并联隔离型DC-DC变换器和低压侧的负载;
其中,模块化多电平变流器用于将三相交流变换成高压直流;隔离型DC-DC变换器用于将模块化多电平变流器得到的高压直流变换成低压直流;
模块化多电平变流器输出的正极连接第一个隔离型DC-DC变换器模块的输入侧逆变桥前桥臂的中间点,负极连接最后一个隔离型DC-DC变换器模块的输入电容负端;相邻两个隔离型DC-DC变换器模块的连接方式为前一模块的输入电容负端连接后一模块的逆变桥前桥臂的中间点;
隔离型DC-DC变换器模块的逆变桥包括前桥臂和后桥臂。
CN201710542198.XA 2017-07-05 2017-07-05 面向中高压智能配电网的电力电子变压器 Active CN107370392B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710542198.XA CN107370392B (zh) 2017-07-05 2017-07-05 面向中高压智能配电网的电力电子变压器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710542198.XA CN107370392B (zh) 2017-07-05 2017-07-05 面向中高压智能配电网的电力电子变压器

Publications (2)

Publication Number Publication Date
CN107370392A CN107370392A (zh) 2017-11-21
CN107370392B true CN107370392B (zh) 2019-03-29

Family

ID=60306345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710542198.XA Active CN107370392B (zh) 2017-07-05 2017-07-05 面向中高压智能配电网的电力电子变压器

Country Status (1)

Country Link
CN (1) CN107370392B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370396A (zh) * 2017-08-16 2017-11-21 南通鑫源电器制造有限公司 一种串联式中高压电网的电力电子变压器及其变压方法
CN109873571A (zh) * 2017-12-04 2019-06-11 邹晓灵 一种通用逆变器及其控制方法
CN108306318B (zh) * 2018-01-11 2019-12-27 北京交通大学 基于模块化多电平变换器的对称储能系统
CN109039072B (zh) * 2018-08-21 2020-09-08 南京南瑞继保电气有限公司 一种双极双向直流变换器及其控制方法和控制装置
CN110719046B (zh) * 2019-09-27 2021-03-30 中南大学 一种用于老化电源装置的控制方法
CN110829845A (zh) * 2019-09-27 2020-02-21 西安交通大学 具有功率自平衡能力的电力电子变压器拓扑及其控制方法
CN111106754B (zh) * 2020-01-13 2022-02-08 湖南大学 一种高压输电线路取电功率变换系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105490552A (zh) * 2016-01-12 2016-04-13 中国电力科学研究院 一种基于mmc的固态变压器以及控制方法
CN205389177U (zh) * 2016-01-15 2016-07-20 湖南大学 一种新型的模块化多电平型固态变压器
CN106533189A (zh) * 2016-11-25 2017-03-22 中国科学院电工研究所 电力电子变压器及其控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853886B2 (en) * 2010-06-09 2014-10-07 Tigo Energy, Inc. System for use of static inverters in variable energy generation environments

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105490552A (zh) * 2016-01-12 2016-04-13 中国电力科学研究院 一种基于mmc的固态变压器以及控制方法
CN205389177U (zh) * 2016-01-15 2016-07-20 湖南大学 一种新型的模块化多电平型固态变压器
CN106533189A (zh) * 2016-11-25 2017-03-22 中国科学院电工研究所 电力电子变压器及其控制方法

Also Published As

Publication number Publication date
CN107370392A (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
CN107370392B (zh) 面向中高压智能配电网的电力电子变压器
CN107370391B (zh) 面向中高压智能配电网的桥臂复用电力电子变压器
CN101316074B (zh) 风力发电系统的背靠背三电平中点箝位变流器
CN104852583A (zh) 一种用于中低压直流配电的高频链多电平直流变压器
CN107888073B (zh) 一种全方位软开关的交直流混合能量路由器
CN105119516A (zh) 一种高升压增益准z源逆变器
CN201584899U (zh) 一种电力电子变压器的拓扑结构
CN104601003A (zh) 一种基于模块化多电平变换器的电力电子变压器
CN103094918A (zh) 一种改善电能质量的单相并网装置
CN105186919A (zh) 非隔离并网变换器、空调系统及变换器控制方法
CN104779807B (zh) 一种应用在分布式电源中的llc谐振变换器
CN102025162A (zh) 基于三电平半桥结构的高速铁路功率调节器
CN105978376A (zh) 并网逆变电路及其控制方法
CN207053406U (zh) 一种串联式中高压电网的电力电子变压器
CN110061645B (zh) 一种电容缩减的高压柔性直流装置
CN204578373U (zh) 一种用于中低压直流配电的高频链多电平直流变压器
CN208433914U (zh) 一种多电平隔离式双向dcdc变换电路
CN201018416Y (zh) 隔离式高频双向直流电路
CN107370396A (zh) 一种串联式中高压电网的电力电子变压器及其变压方法
CN106655738A (zh) 一种无电解电容的准单级逆变器及其控制方法
CN108683353A (zh) 变电站多功能节能型一体化充放电装置及控制方法
CN201966809U (zh) 一种基于简易pfc的电力电子变压器
CN214707171U (zh) 一种含有变压器隔离的低频输电系统
CN210405078U (zh) 三相多重工频隔离型光伏并网逆变器
CN101924481A (zh) 一种pfc整流电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant