CN107359330B - 一种石墨烯掺杂的二氧化铱基多孔电极及其制备方法 - Google Patents

一种石墨烯掺杂的二氧化铱基多孔电极及其制备方法 Download PDF

Info

Publication number
CN107359330B
CN107359330B CN201710536518.0A CN201710536518A CN107359330B CN 107359330 B CN107359330 B CN 107359330B CN 201710536518 A CN201710536518 A CN 201710536518A CN 107359330 B CN107359330 B CN 107359330B
Authority
CN
China
Prior art keywords
graphene
foam
metal oxide
plate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710536518.0A
Other languages
English (en)
Other versions
CN107359330A (zh
Inventor
邵艳群
张帅
黄善锋
王艳鸿
何建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201710536518.0A priority Critical patent/CN107359330B/zh
Publication of CN107359330A publication Critical patent/CN107359330A/zh
Application granted granted Critical
Publication of CN107359330B publication Critical patent/CN107359330B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于电极材料技术领域,具体涉及一种石墨烯掺杂的IrO2基多孔电极及其制备方法。本发明将氯铱酸与石墨烯进行负载,然后再将其与非贵金属氧化物复合,制得一种复合型电极材料。本发明通过结合石墨烯的高导电性、贵金属氧化物的导电性和活性以及非贵金属氧化物材料独特的外层电子结构,制备一种新型高比电容、高电解质选择性的多孔金属氧化物/石墨烯复合电极。

Description

一种石墨烯掺杂的二氧化铱基多孔电极及其制备方法
技术领域
本发明属于电极材料技术领域,具体涉及一种石墨烯掺杂的IrO2基多孔电极及其制备方法。
背景技术
以IrO2和RuO2为代表的金属氧化物阳极因其具有良好的耐蚀性能、活性和电容性能倍受关注。添加非贵金属氧化物提高其电化学性能并降低成本是研究重点,几乎包含了所有的非贵金属氧化物。近些年,以活性炭、碳纳米管和石墨烯为代表的导电导热良好碳材料又成为电极材料的研究热点。然而,添加非贵金属氧化物可以有效提高以IrO2为基氧化物材料的电容性能,但是导电性较差,而且在充放电过程中体积膨胀严重,造成电极粉化和崩塌。单纯的碳材料电极活化困难,制备过程中容易发生团聚,往往得不到理想的电容性能。此外,电极材料的使用电解质不同,其电化学性能有很大差异。如以H2SO4为代表的酸性电解质通常选IrO2基氧化物材料,最典型的为IrO2-Ta2O5氧化物电极;以NaCl为代表的中性电解质首选RuO2基氧化物材料,最典型的为RuO2(摩尔分数30%)-TiO2氧化物电极;以KOH为代表的碱性电解质通常以泡沫镍为基体制备的镍钴复合氧化物(尖晶石型)电极材料。本发明意在结合石墨烯的高导电性、贵金属氧化物的导电性和活性以及非贵金属氧化物材料独特的外层电子结构,制备一种新型高比电容、高电解质选择性的多孔金属氧化物/石墨烯复合电极。
发明内容
本发明的目的在于提供一种石墨烯掺杂的IrO2基多孔电极及其制备方法。只要采用最简单的热分解法就可以获得高比电容、高电解质选择性的多孔金属氧化物/石墨烯复合电极。
常规IrO2基等电极常用作析氧电极,如IrO2-Ta2O5电极,当IrO2为 摩尔分数50%时可达到最好的电极性能。这些电极的表面微观形貌为龟裂状裂纹而非多孔。
所述石墨烯掺杂的IrO2基多孔电极的制备方法为:
(1)采用喷砂后的TA2钛板或泡沫Ni为基体,除油,刻蚀,用去离子水冲洗后,放入乙醇溶液中备用;
(2)按照铱的重量(载量)0.2-0.6mg/cm2取氯铱酸溶解于无水乙醇中超声震荡完全溶解;
(3)按照0.2-0.6g/cm2称取石墨烯并加入盐酸对石墨烯进行酸化处理,将酸化后的石墨烯混合到氯铱酸溶液,继续超声振荡;
(4)取非贵金属氧化物的前驱体溶解于无水乙醇/正丁醇等醇液中;
(5)将上述添加了石墨烯的氯铱酸溶液和非贵金属氧化物前驱体超声振荡混合直到完全溶解成为金属离子浓度为30wt%的涂液。将涂液涂刷到钛板或泡沫Ni上,红外灯下烘干,置于300℃的马弗炉中预氧化10min,空冷后重复上述涂覆过程,直到所有涂液用完,最后在300~380℃处理1~6h,可获得高比电容、高电解质选择性的多孔金属氧化物/石墨烯复合电极。
步骤(4)中的非贵金属氧化物的前驱体为CeCl3、TiCl3、SnCl2、SnCl4中的任意一种或几种。
步骤(4)非贵金属氧化物的前驱体与氯铱酸的金属离子摩尔比为4:1~1:4。
本发明的显著优点在于:贵金属含量可降低到0.2-0.6mg/cm2,涂层形貌为多孔结构,在酸、碱和盐溶液中都具有很好的电催化性能,电极可用于多种溶液。以泡沫Ni为基体时的比电容可高达3000F/g以上。
附图说明
图1 实施例1制得的多孔金属氧化物/石墨烯复合电极的不同放大倍数形貌。
图2-a为保温时间1h的多孔金属氧化物/石墨烯复合电极的吸脱附曲线和孔径分布图; 图2-b图为保温时间2h的多孔金属氧化物/石墨烯复合电极的吸脱附曲线和孔径分布图;图2-c为保温时间3h的多孔金属氧化物/石墨烯复合电极的吸脱附曲线和孔径分布图; 图2-d为保温时间4h的多孔金属氧化物/石墨烯复合电极的吸脱附曲线和孔径分布图;图2-e为保温时间5h的多孔金属氧化物/石墨烯复合电极的吸脱附曲线和孔径分布图;图2-f为保温时间6h的多孔金属氧化物/石墨烯复合电极的吸脱附曲线和孔径分布图。
图3不同保温时间Ti/IrO2-CeO2-G电极的吸脱附曲线、孔径分布、总孔体积和BET。
图4不同涂覆载量制备的Ir-Ce-G电极比电容图。
具体实施方式
为进一步公开而不是限制本发明,以下结合实例对本发明作进一步的详细说明。
具体实施例1
采用喷砂后的TA2钛板为基体,除油,刻蚀,用去离子水冲洗后,放入乙醇溶液中备用。按照铱载量0.6mg/cm2取氯铱酸溶于无水乙醇中超声震荡完全溶解。按0.6g/cm2称取石墨烯加入到0.5ml/cm2浓盐酸中对石墨烯进行酸化处理,将酸化后的石墨烯混合到氯铱酸溶液,继续超声振荡。取非贵金属氧化物的前驱体CeCl3按氯铱酸:CeCl3的金属离子摩尔比3:1溶解于无水乙醇。将上述溶液超声振荡混合直到完全溶解成为金属离子浓度为30wt%的涂液。将涂液涂刷到钛板上,红外灯下烘干,置于300℃的马弗炉中预氧化10min,空冷后重复上述涂覆过程,直到所有涂液用完,最后在340℃热处理1~6h,可获得多孔金属氧化物/石墨烯复合电极。
将该电极分别在1.0M H2SO4、1 .0M Na2SO4和 1.0 M NaOH电解液中测试其比电容行为,比电容最高可分别达550.05F/g、390.84F/g和578 F/g,比退火1h的电极材料都有提高2倍以上。
Ti/IrO2-CeO2-G电极在1.0M H2SO4、1 .0 M Na2SO4和 1.0 M NaOH电解液中在500mV/s循环8000次后仍具有优良的循环稳定性。除了退火1h的电极比电容下降,其它电极的比电容均有所上升。
具体实施例2
采用喷砂后的TA2钛板为基体,除油,刻蚀,用去离子水冲洗后,放入乙醇溶液中备用。按每平方厘米钛上铱载量分别为0.2、0.4、0.6、0.8、1.0、1.2、1.4和1.6毫克溶于无水乙醇中超声震荡完全溶解。按0.4g/cm2称取石墨烯加入到0.5ml/cm2浓盐酸对石墨烯进行酸化处理,将酸化后的石墨烯混合到氯铱酸溶液,继续超声振荡。取非贵金属氧化物的前驱体CeCl3按氯铱酸:CeCl3的金属离子摩尔比3:1溶解于无水乙醇。将上述溶液超声振荡混合直到完全溶解为止成为涂液。将涂液涂刷到钛板上,红外灯下烘干然后放在红外光下干燥10min,接着在380℃箱式炉中热氧化10min后出炉空冷。该涂敷-烘干-烧结-冷却过程反复多次直到达到所需涂覆载量为止,最后一次在380℃恒温烧结5h。
将该电极分别在1.0M H2SO4电解液中测试其比电容行为,比电容最高可达507 F/g。如图4。
具体实施例3
按照铱载量0.4mg/cm2将氯铱酸和四氯化锡按金属离子摩尔比(7:3)溶于无水乙醇,超声混合均匀,静置得金属离子浓度为30wt%溶液。称取0.4g/cm2的石墨烯加到上述混合液中,超声混合均匀静置。取该溶液涂覆在泡沫Ni板上,然后放在红外光下烘烤至干燥,接着在380℃箱式炉中热氧化10min后出炉空冷。完全冷至室温后继续涂敷-烘干-烧结-冷却过程,反复多次直到达到所需涂覆铱载量0.4mg/cm2为止,最后一次在380℃恒温烧结5h。其比电容可高达3123.89F/g。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (2)

1.一种石墨烯掺杂的IrO2基多孔电极的制备方法,其特征在于:具体制备步骤为:
按照铱载量0.4mg/cm2将氯铱酸和四氯化锡按金属离子摩尔比7:3溶于无水乙醇,超声混合均匀,静置得金属离子浓度为30wt%溶液;称取0.4g/cm2的石墨烯加到上述混合液中,超声混合均匀静置;取该溶液涂覆在泡沫Ni板上,然后放在红外光下烘烤至干燥,接着在380℃箱式炉中热氧化10min后出炉空冷;完全冷至室温后继续涂敷-烘干-烧结-冷却过程,反复多次直到达到所需涂覆铱载量0.4mg/cm2为止,最后一次在380℃恒温烧结5h。
2.一种如权利要求1所述的方法制备的石墨烯掺杂的IrO2基多孔电极。
CN201710536518.0A 2017-07-04 2017-07-04 一种石墨烯掺杂的二氧化铱基多孔电极及其制备方法 Expired - Fee Related CN107359330B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710536518.0A CN107359330B (zh) 2017-07-04 2017-07-04 一种石墨烯掺杂的二氧化铱基多孔电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710536518.0A CN107359330B (zh) 2017-07-04 2017-07-04 一种石墨烯掺杂的二氧化铱基多孔电极及其制备方法

Publications (2)

Publication Number Publication Date
CN107359330A CN107359330A (zh) 2017-11-17
CN107359330B true CN107359330B (zh) 2020-05-08

Family

ID=60292229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710536518.0A Expired - Fee Related CN107359330B (zh) 2017-07-04 2017-07-04 一种石墨烯掺杂的二氧化铱基多孔电极及其制备方法

Country Status (1)

Country Link
CN (1) CN107359330B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037645B (zh) * 2018-08-09 2021-07-20 哈尔滨工业大学 一步制备金属氧化物@氯掺杂石墨烯锂离子电池负极材料的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102051634A (zh) * 2011-01-26 2011-05-11 西北有色金属研究院 以多孔钛为基体的钛电极材料及其制备方法
CN104087970A (zh) * 2014-04-04 2014-10-08 武汉丽辉新技术有限公司 一种表面富含二氧化铱的氧化铜掺杂二氧化铱钛阳极及其制备方法
CN104746097A (zh) * 2015-04-28 2015-07-01 中国船舶重工集团公司第七二五研究所 一种石墨烯掺杂金属氧化物阳极的制备方法
CN106637291A (zh) * 2017-01-17 2017-05-10 嘉兴学院 一种石墨烯复合金属氧化物电极及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102051634A (zh) * 2011-01-26 2011-05-11 西北有色金属研究院 以多孔钛为基体的钛电极材料及其制备方法
CN104087970A (zh) * 2014-04-04 2014-10-08 武汉丽辉新技术有限公司 一种表面富含二氧化铱的氧化铜掺杂二氧化铱钛阳极及其制备方法
CN104746097A (zh) * 2015-04-28 2015-07-01 中国船舶重工集团公司第七二五研究所 一种石墨烯掺杂金属氧化物阳极的制备方法
CN106637291A (zh) * 2017-01-17 2017-05-10 嘉兴学院 一种石墨烯复合金属氧化物电极及其制备方法和应用

Also Published As

Publication number Publication date
CN107359330A (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
Ensafi et al. Engineering onion-like nanoporous CuCo 2 O 4 hollow spheres derived from bimetal–organic frameworks for high-performance asymmetric supercapacitors
Hong et al. Conducting polymer with metal oxide for electrochemical capacitor: poly (3, 4-ethylenedioxythiophene) RuO x electrode
CN105239094B (zh) 一种掺石墨烯和镧改性的钛基二氧化铅电极及其制备方法
JP2002505506A5 (zh)
WO2022094871A1 (zh) 一种超级电容器用复合电极材料及其制备方法和超级电容器
CN108520945B (zh) 纳米管阵列/碳布复合材料、柔性电极、锂离子电池及其制备方法
JP5037133B2 (ja) 電極の調製方法及び電極
WO2006057455A1 (en) Porous anode body for solid electrolytic capacitor, production mehtod thereof and solid electrolytic capacitor
CN105244191A (zh) 一种钴酸锰多孔纳米片/泡沫镍复合电极材料的制备方法
CN103996545A (zh) 一种氮掺杂的有序介孔碳/碳纤维复合材料的制备方法
CN104355334B (zh) 具有超高比电容特性的水钠锰矿型氧化锰粉体及其制备方法与应用
CN102664103A (zh) 钴酸锌纳米棒/泡沫镍复合电极、制备方法及其应用
Yuan et al. Cu-doped NiO for aqueous asymmetric electrochemical capacitors
KR101390654B1 (ko) 알칼리 수 전해용 금속 혼합 산화물 전극의 제조방법
CN109678208A (zh) 一种用于锌离子电池的空心五氧化二钒材料及其制备方法
Liang et al. Fabrication and characterization of a nanoporous NiO film with high specific energy and power via an electrochemical dealloying approach
CN103310994B (zh) 一种双电层电容器电极材料及其制备方法
CN107359330B (zh) 一种石墨烯掺杂的二氧化铱基多孔电极及其制备方法
CN105206432B (zh) 聚苯胺纳米管阵列/氧化铜/二氧化锰复合材料电极及其制备方法和应用
CN109346691A (zh) 一种锂硫电池正极材料的制备方法
Chang et al. Nitrogen and sulfur co-doped glucose-based porous carbon materials with excellent electrochemical performance for supercapacitors
Long et al. A Carbon‐Free and Free‐Standing Cathode From Mixed‐Phase TiO2 for Photo‐Assisted Li–CO2 Battery
CN105271438A (zh) 一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法
CN110655150A (zh) 一种新型钛基氧化锡阳电极及其制备方法
CN116605911A (zh) 一种纤维状α型或石钟乳状δ型二氧化锰及其低温制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200508