CN107359219A - 磷化铟扩散方法 - Google Patents

磷化铟扩散方法 Download PDF

Info

Publication number
CN107359219A
CN107359219A CN201710401346.6A CN201710401346A CN107359219A CN 107359219 A CN107359219 A CN 107359219A CN 201710401346 A CN201710401346 A CN 201710401346A CN 107359219 A CN107359219 A CN 107359219A
Authority
CN
China
Prior art keywords
diffusion
indium phosphide
temperature
disk
hydrogen atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710401346.6A
Other languages
English (en)
Other versions
CN107359219B (zh
Inventor
于浩
张宇
陈宏泰
车相辉
王晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 13 Research Institute
Original Assignee
CETC 13 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 13 Research Institute filed Critical CETC 13 Research Institute
Priority to CN201710401346.6A priority Critical patent/CN107359219B/zh
Publication of CN107359219A publication Critical patent/CN107359219A/zh
Application granted granted Critical
Publication of CN107359219B publication Critical patent/CN107359219B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • H01L21/2233Diffusion into or out of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)

Abstract

本发明公开了一种磷化铟扩散方法,涉及半导体器件的制作方法技术领域。所述方法包括如下步骤:将磷化铟待扩散圆片放入MOCVD设备中,调节MOCVD的反应室总气体流量至所需值,氮气气氛转换为氢气气氛后升温,进行表面保护,继续升温并恒温保持一段时间;通入二甲基锌流量调节至所需值,控制MOCVD设备的温度进行线性下降,进行锌扩散;温度降至430℃‑470℃以下时切断保护气体,在氢气气氛下降温至室温,氢气气氛转换为氮气后取出所述圆片。所述方法可以精确控制不同扩散深度的扩散浓度,达到圆片表面2e18高空穴浓度,圆片内部5e17低空穴浓度,扩散均一性稳定,适用于大批量生产。

Description

磷化铟扩散方法
技术领域
本发明涉及半导体器件的制作方法技术领域,尤其涉及一种磷化铟扩散方法。
背景技术
磷化铟基雪崩探测器属于半导体探测器的一种,在光通信领域中应用于光信号接收端,其性能影响到光通信的效率和质量。
相对于目前已经大量应用的锗基探测器、磷化铟基PIN探测器,由于磷化铟基雪崩探测器是使用雪崩击穿原理进行光线信号转化,具有更高的响应度,高的光电转化效率,也因为InP基材料优异的高频特性,工作频率可以做的更高。因此磷化铟基雪崩探测器在目前光通信市场上的需求越来越大,其市场地位也越来越高。
对于磷化铟基雪崩探测器而言,其结构的核心是为光信号提供放大功能的倍增层,这部分的结构对于磷化铟基雪崩探测器的响应度、光电转化效率和工作条件有决定性的影响。目前在生产中普遍采用管式炉,使用开管或者闭管的方式通过锌扩散工艺进行倍增结构的生产。这一锌扩散工艺方法存在控制困难,可控但不可精确调节,不能按照探测器设计精确控制不同深度空穴浓度等问题,并且还存在管式炉扩散工艺破坏外延材料结构,圆片均一性差等问题。
对于目前采用MOCVD设备进行锌扩散的工艺,达到高空穴浓度需要采用很高的二甲基锌流量,扩散速度快不易控制扩散深度,达到低空穴浓度需要采用低的二甲基锌流量,扩散速度很慢,经过长时间的锌扩散工艺处理后表面晶体质量退化,影响器件长时间工作稳定性。
发明内容
本发明所要解决的技术问题是如何提供一种可以精确控制不同扩散深度的扩散浓度,达到圆片表面2e18高空穴浓度,圆片内部5e17低空穴浓度,扩散均一性稳定,适用于大批量生产的磷化铟扩散方法。
为解决上述技术问题,本发明所采取的技术方案是:一种磷化铟扩散方法,其特征在于包括如下步骤:
将磷化铟待扩散圆片放入MOCVD设备中,调节MOCVD的反应室总气体流量至所需值,氮气气氛转换为氢气气氛后升温,通入保护气体进行表面保护,继续升温并恒温保持一段时间;
通入二甲基锌,流量调节至所需值,控制MOCVD设备的温度进行线性下降,进行锌扩散;
温度降至430℃-470℃以下时切断保护气体,在氢气气氛下降温至室温,氢气气氛转换为氮气后取出所述圆片。
优选的,将磷化铟待扩散圆片放入MOCVD设备中,调节MOCVD的反应室总气体流量至所需值,氮气气氛转换为氢气气氛后升温,温度升到430℃-470℃后通入磷烷进行表面保护,继续升温升至560℃-600℃,并恒温保持1.5min-3min。
优选的,反应室总气体流量为20000sccm-50000sccm,反应室压力为50mbar-500mbar。
优选的,所述磷烷流量为50sccm-500sccm。
优选的,温度升到450℃后通入磷烷进行表面保护,继续升温升至580℃,并恒温保持2min。
优选的,通入二甲基锌流量调节至所需值,控制温度从560℃-600℃到480℃-520℃线性下降,进行锌扩散。
优选的,所述二甲基锌流量为20sccm-200sccm。
优选的,通入二甲基锌,流量调节至所需值,控制温度从580℃到500℃线性下降,进行锌扩散。
优选的,温度降至450℃以下时切断磷烷保护,在氢气气氛下降温至室温,氢气气氛转换为氮气后取出所述圆片。
采用上述技术方案所产生的有益效果在于:通过所述方法制备的圆片可以在短时间内使InP层达到表面空穴浓度在2e18,内部空穴浓度5e17的连续变化的空穴分布,缩短了扩散过程的时间,保证了扩散工艺不对破坏圆片晶体质量造成破坏,满足InP基雪崩探测器不同设计条件下对于锌扩散工艺的要求。扩散开始前580摄氏度恒温2min使整个圆片不同部位的扩散均一性得到改善,整个圆片扩散深度波动在 2%以内,保证了圆片的成品率。
附图说明
图1是本发明实施例所述方法的流程图;
图2是本发明所述方法制备的圆片进行ECV测试扩散后不同深度的空穴浓度分布图;
图3是本发明所述方工艺应用到雪崩击穿探测器工艺生产得到的圆片成品图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
总体的,如图1所示,本发明公开了一种磷化铟扩散方法,包括如下步骤:
S101:将磷化铟待扩散圆片放入MOCVD设备中,调节MOCVD的反应室总气体流量至所需值,氮气气氛转换为氢气气氛后升温,通入保护气体进行表面保护,继续升温并恒温保持一段时间;
S102:通入二甲基锌流量调节至所需值,控制MOCVD设备的温度进行线性下降,进行锌扩散;
S103:温度降至430℃-470℃以下时切断保护气体,在氢气气氛下降温至室温,氢气气氛转换为氮气后取出所述圆片。
通过所述方法制备的圆片可以在短时间内使InP层达到表面空穴浓度在2e18,内部空穴浓度5e17的连续变化的空穴分布,缩短了扩散过程的时间,保证了扩散工艺不对破坏圆片晶体质量造成破坏,满足InP基雪崩探测器不同设计条件下对于锌扩散工艺的要求。扩散开始前580摄氏度恒温2min使整个圆片不同部位的扩散均一性得到改善,整个圆片扩散深度波动在 2%以内,保证了圆片的成品率。其中,图2是本发明所述方法制备的圆片进行ECV测试扩散后不同深度的空穴浓度分布图;图3是本发明所述方工艺应用到雪崩击穿探测器工艺生产得到的圆片成品图。
实施例一
本发明公开了一种磷化铟扩散方法,包括如下步骤:
S201:将磷化铟待扩散圆片放入MOCVD设备中,调节反应室总气体流量至20000-50000sccm、反应室压力50-500mbar,氮气气氛转换为氢气气氛后升温,温度升到470℃后通入磷烷进行表面保护,磷烷流量为500sccm,继续升温升至600℃,恒温保持3min。
S202:通入二甲基锌,二甲基锌流量为200sccm,控制温度从600℃到500℃线性下降,进行锌扩散。
S203:自然降温,温度降至470℃以下时切断磷烷保护,在氢气气氛下降温至室温,氢气气氛转换为氮气后取出圆片。
实施例二
本发明公开了一种磷化铟扩散方法,包括如下步骤:
S301:将磷化铟待扩散圆片放入MOCVD设备中,调节反应室总气体流量至20000-50000sccm、反应室压力50-500mbar,氮气气氛转换为氢气气氛后升温,温度升到450℃后通入磷烷进行表面保护,磷烷流量为250sccm,继续升温升至580℃,恒温保持2min。
S302:通入二甲基锌,二甲基锌流量为100sccm,控制温度从580℃到500℃线性下降,进行锌扩散。
S303:自然降温,温度降至450℃以下时切断磷烷保护,在氢气气氛下降温至室温,氢气气氛转换为氮气后取出圆片。
实施例三
本发明公开了一种磷化铟扩散方法,包括如下步骤:
S401:将磷化铟待扩散圆片放入MOCVD设备中,调节反应室总气体流量至20000-50000sccm、反应室压力50-500mbar,氮气气氛转换为氢气气氛后升温,温度升到430℃后通入磷烷进行表面保护,磷烷流量为50sccm,继续升温升至560℃,恒温保持1.5min。
S402:通入二甲基锌,二甲基锌流量为20sccm,控制温度从560℃到500℃线性下降,进行锌扩散。
S403:自然降温,温度降至430℃以下时切断磷烷保护,在氢气气氛下降温至室温,氢气气氛转换为氮气后取出圆片。

Claims (9)

1.一种磷化铟扩散方法,其特征在于包括如下步骤:
将磷化铟待扩散圆片放入MOCVD设备中,调节MOCVD的反应室总气体流量至所需值,氮气气氛转换为氢气气氛后升温,通入保护气体进行表面保护,继续升温并恒温保持一段时间;
通入二甲基锌,流量调节至所需值,控制MOCVD设备的温度进行线性下降,进行锌扩散;
温度降至430℃-470℃以下时切断保护气体,在氢气气氛下降温至室温,氢气气氛转换为氮气后取出所述圆片。
2.如权利要求1所述的磷化铟扩散方法,其特征在于:将磷化铟待扩散圆片放入MOCVD设备中,调节MOCVD的反应室总气体流量至所需值,氮气气氛转换为氢气气氛后升温,温度升到430℃-470℃后通入磷烷进行表面保护,继续升温升至560℃-600℃,并恒温保持1.5min-3min。
3.如权利要求2所述的磷化铟扩散方法,其特征在于:反应室总气体流量为20000sccm-50000sccm,反应室压力为50mbar-500mbar。
4.如权利要求2所述的磷化铟扩散方法,其特征在于:所述磷烷流量为50sccm-500sccm。
5.如权利要求2所述的磷化铟扩散方法,其特征在于:温度升到450℃后通入磷烷进行表面保护,继续升温升至580℃,并恒温保持2min。
6.如权利要求1所述的磷化铟扩散方法,其特征在于:通入二甲基锌,流量调节至所需值,控制温度从560℃-600℃到480℃-520℃线性下降,进行锌扩散。
7.如权利要求6所述的磷化铟扩散方法,其特征在于:所述二甲基锌流量为20sccm-200sccm。
8.如权利要求6所述的磷化铟扩散方法,其特征在于:通入二甲基锌流量调节至所需值,控制温度从580℃到500℃线性下降,进行锌扩散。
9.如权利要求1所述的磷化铟扩散方法,其特征在于:温度降至450℃以下时切断磷烷保护,在氢气气氛下降温至室温,氢气气氛转换为氮气后取出所述圆片。
CN201710401346.6A 2017-05-31 2017-05-31 磷化铟扩散方法 Active CN107359219B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710401346.6A CN107359219B (zh) 2017-05-31 2017-05-31 磷化铟扩散方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710401346.6A CN107359219B (zh) 2017-05-31 2017-05-31 磷化铟扩散方法

Publications (2)

Publication Number Publication Date
CN107359219A true CN107359219A (zh) 2017-11-17
CN107359219B CN107359219B (zh) 2019-04-09

Family

ID=60271761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710401346.6A Active CN107359219B (zh) 2017-05-31 2017-05-31 磷化铟扩散方法

Country Status (1)

Country Link
CN (1) CN107359219B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020076871A1 (en) * 2000-09-13 2002-06-20 Shusaku Yanagawa Manufacturing method for semiconductor device
CN101567407A (zh) * 2009-06-03 2009-10-28 武汉华工正源光子技术有限公司 基于mocvd系统的制作铟镓砷光电探测器芯片的渐变型锌扩散方法
CN105355545A (zh) * 2015-12-10 2016-02-24 中国电子科技集团公司第十三研究所 提高p型铟镓砷薄膜掺杂浓度的方法、薄膜的制备方法及其应用
CN105780127A (zh) * 2016-04-05 2016-07-20 盐城阿特斯协鑫阳光电力科技有限公司 一种晶体硅太阳能电池的磷扩散方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020076871A1 (en) * 2000-09-13 2002-06-20 Shusaku Yanagawa Manufacturing method for semiconductor device
CN101567407A (zh) * 2009-06-03 2009-10-28 武汉华工正源光子技术有限公司 基于mocvd系统的制作铟镓砷光电探测器芯片的渐变型锌扩散方法
CN105355545A (zh) * 2015-12-10 2016-02-24 中国电子科技集团公司第十三研究所 提高p型铟镓砷薄膜掺杂浓度的方法、薄膜的制备方法及其应用
CN105780127A (zh) * 2016-04-05 2016-07-20 盐城阿特斯协鑫阳光电力科技有限公司 一种晶体硅太阳能电池的磷扩散方法

Also Published As

Publication number Publication date
CN107359219B (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN103215633B (zh) 一种多晶硅的铸锭方法
CN103215632B (zh) 一种大尺寸c取向蓝宝石单晶的生长方法
US8017862B2 (en) Solar-cell single-crystal silicon substrate, solar cell element, and method for producing the same
EP3617351B1 (en) Silicon wafer horizontal growth device and method
CN103060892A (zh) 一种类单晶硅铸锭用籽晶拼接方法
CN103014842A (zh) 一种用于泡生法生长蓝宝石晶体的旋转放肩工艺
CN103451728B (zh) N型晶体硅及其制备方法
CN102569039A (zh) 一种金属-碳化硅欧姆接触快速退火方法
CN101537666A (zh) 大偏角籽晶的加工方法
CN103088406A (zh) 一种籽晶的制备方法及类单晶硅锭的铸造方法
SG191518A1 (en) Silicon single crystal substrate and method of manufacturing the same
KR101680215B1 (ko) 실리콘 단결정 잉곳 제조 방법 및 그 제조방법에 의해 제조된 실리콘 단결정 잉곳
CN102691098B (zh) 泡生法制备蓝宝石晶体的生长方法
CN107359219B (zh) 磷化铟扩散方法
CN109326333B (zh) 利用微下拉法快速生长稀土晶体光纤的方法
US10030317B2 (en) Apparatus and method for controlling thickness of a crystalline sheet grown on a melt
CN106350866A (zh) 一种超薄黑硅硅片的制作设备及方法
CN102122023A (zh) 一种可调谐啁啾光纤光栅的制作方法
CN105489478B (zh) 重掺磷衬底薄层外延过渡区的调控方法
CN104328486B (zh) 一种泡生法蓝宝石长晶设备的冷却水压力闭环控制系统
CN103065944B (zh) 一种便携式器件晶圆的制造方法
CN103320848B (zh) 一种多晶铸锭炉
CN101515544B (zh) 一种多晶栅的生长方法
CN104480528B (zh) 一种泡生法蓝宝石长晶设备的自动氩气充填工艺
CN103400752A (zh) 离子注入工艺在ccd制作中的应用及ccd制作工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant