CN107356920A - 借助雷达传感器的方位角确定 - Google Patents

借助雷达传感器的方位角确定 Download PDF

Info

Publication number
CN107356920A
CN107356920A CN201710315465.XA CN201710315465A CN107356920A CN 107356920 A CN107356920 A CN 107356920A CN 201710315465 A CN201710315465 A CN 201710315465A CN 107356920 A CN107356920 A CN 107356920A
Authority
CN
China
Prior art keywords
reception antenna
antenna
azimuth
reception
radar sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710315465.XA
Other languages
English (en)
Other versions
CN107356920B (zh
Inventor
B·勒施
V·格罗斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN107356920A publication Critical patent/CN107356920A/zh
Application granted granted Critical
Publication of CN107356920B publication Critical patent/CN107356920B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

雷达传感器包括发射天线、具有相同垂直高度的多个第一接收天线以及一个具有与所述第一接收天线的垂直高度不同的垂直高度的第二接收天线。一种用于确定对象相对于所述雷达传感器的方位角的方法包括:基于所有接收天线的信号,在粗略栅格中确定方位角的近似值的步骤,以及在围绕所述近似值的范围中,基于所述第一接收天线的信号,在精细栅格中确定方位角的步骤。

Description

借助雷达传感器的方位角确定
背景技术
可以确定对象相对于雷达传感器的相对位置,其方式为:由雷达传感器发射雷达信号并且又接收其在对象处的反射。通常,基于仰角、方位角和距离来说明对象的位置。例如可以在机动车上使用雷达传感器,以便检测在行驶方向上在机动车前方的对象。在此,通常由一种机动车固定的坐标系出发。相对于机动车的纵向轴线,方位角通常围绕高度轴线确定。以相应的方式,仰角围绕横向轴线相对于机动车的纵向轴线确定。
尤其在近程区域中,当对象位于与机动车相距小于大约100米远时,经常借助SIMO(Single Input,Multiple Output:单输入多输出)确定方位角。在此,雷达信号由雷达天线发射并且由多个水平移位的接收天线又接收。接收天线的信号之间的相位差指示方位角。视接收天线的所需要的水平聚焦而定,可以仅彼此相对远地放置所述接收天线,其中,通常使用所使用的雷达信号的波长的范围中的距离。因为,通常,接收天线的数量和用于接收天线的场地受限,所以能够仅以受限的准确性和可分离性确定方位角并且可能出现多义性(Mehrdeutigkeit)(mehrdeutige多义的解)。
US 8,436,763 B2示出在用于确定所发生反射的对象的方位角的雷达传感器上的均匀地水平移位的接收天线的布置。
可以设置附加的接收天线,所述附加的接收天线具有与其余接收天线不同的垂直高度。由此可以确定对象的仰角。如果考虑附加的接收天线用于确定对象的方位角,那么在所确定的方位角中出现系统的角度误差。
发明内容
本发明所基于的任务在于,说明一种用于借助雷达传感器确定对象的方位角的改善的技术。本发明解决所述任务。再给出优选实施方式。
雷达传感器包括发射天线、具有相同垂直高度的多个第一接收天线以及一个具有与所述第一接收天线的垂直高度不同的垂直高度的第二接收天线。一种用于确定对象相对于雷达传感器的方位角的方法包括:基于所有接收天线的信号,在粗略栅格中确定方位角的近似值的步骤,并且在围绕所述近似值的范围中,基于第一接收天线的信号,在精细栅格中确定方位角的步骤。
第一和第二接收天线的布置可以具有放大的口径,从而角度准确性或可分离性被改善。通过所描述的两阶段方法,可以以减小的计算功率或增大的处理速度找到对象的方位角。在第一步骤中,已经可以排除多义的解,并且在第二步骤中,可以细化正确的解。
在另一实施方式中,也可以使用多个第二接收天线,其垂直高度可以彼此相同或不同。由此总体上可以使用具有垂直不均匀对齐的接收天线的雷达传感器。可以如此改善地使用已知的雷达传感器。可以灵活地使所述方法适配于不同的雷达传感器。
优选地是,方位角或其近似值的确定借助确定性最大似然法实现(deterministisches Maximum-Likelihood-Verfahren)。在此,尤其可以将所使用的接收天线的信号的矢量与接收天线的用于参考信号的存储的矢量进行比较。通常根据矢量的归一化实现所述比较,以便将信号强度从所述比较中去除。所述比较相应于归一化的复矢量的标量积的互相关(Kreuzkorrelation)。天线图——即针对天线设计的(antennenspezifisch)参考信号的矢量——通常确定用于预确定的角度的数量,所述预确定的角度遵循预确定的栅格。栅格越精细,则搜寻空间越大,从而角度确定会需求更多的存储器和/或更多的处理功率。通过使用两个不同大小的栅格,可以在第一步骤中在粗略栅格上执行简化的搜寻并且在第二步骤中基于在第一步骤中所确定的近似值来限界搜寻范围。总体上,由此可以需要较少的比较。可以更简单并且更快速地执行所述确定。
另外优选的是,粗略栅格至少是精细栅格的三倍大。由此可以在第一步骤中找到节省系统资源与误差自由度之间的良好的妥协。
尤其有利的是,粗略栅格位于大约1-2°的范围中并且精细栅格位于大约0.1-0.5°的范围中。方位角可以如此在第一步骤中准确地近似到大约1-2°并且在第二步骤中准确确定到大约0.1-0.5°。
计算机程序产品包括用于当所述计算机程序产品在处理装置上运行时或在计算机可读的数据载体上存储时执行上面所描述的方法的程序代码单元。
雷达传感器包括一个发射天线、具有相同垂直高度的多个第一接收天线、一个具有与第一接收天线的垂直高度不同的垂直高度的第二接收天线、以及处理装置,该处理装置用于基于所有接收天线的信号在粗略栅格中确定方位角的近似值并且在围绕所述近似值的范围中基于第一接收天线的信号在精细栅格中确定方位角。
处理装置尤其可以设置用于执行上面所描述的方法。对此,处理装置尤其可以包括可编程的微型计算机或微型控制器并且所述方法可以作为计算机程序产品存在。
雷达传感器可以以减少的处理资源实现对象的方位角的快速并且准确的确定。
优选地是,这些天线中的至少一个是由单贴片场阵(Feld von Einzel-Patches)构成的天线阵列(patch antenna array)。单贴片场阵尤其可以棒状地构造,从而单贴片场阵可以在垂直方向上比在水平方向上长很多倍。天线的相位中心定义其相对于参考坐标系的垂直高度。
另外优选的是,第二接收天线的垂直高度与第一接收天线的高度的差别小于第二接收天线的垂直延伸。尤其由选的是,该差别小于第二接收天线的垂直延伸的一半。以这种方式可以使用接收天线的布置以进一步改善的方式用于对象的方位角和仰角的确定。
附图说明
现在参考附图更准确地描述本发明。在附图中示出:
图1一种雷达传感器的方框图;
图2用于图1的雷达传感器的示例性天线装置;
图3一种用于借助图1的雷达传感器确定方位角的方法的流程图;
图4在根据不同方法确定方位角时的异常值概率;
图5在根据不同方法确定方位角时的均方根差。
具体实施方式
图1示出一种示例性的雷达传感器100,所述雷达传感器尤其可以设置用于机动车上的用途。借助雷达传感器100,应该检测对象105的位置。在此,通常确定对象105的仰角、方位角和距离。在其他实施方式中,也可以确定对象105的尺寸和运动。但是以下仅仅更准确地描述对象105的方位角的确定。为此,以一种坐标系统作为前提,所述坐标系统通常相对于机动车展开。坐标系统包括纵向轴线110、高度轴线115和横向轴线120,所述轴线相交于共同的点并且两两之间围成90°的角。对象105的方位角125在图1中示例性表明。
雷达传感器100通常包括装置130和处理装置135。天线装置130一般包括一个发射天线140和多个接收天线。在所示出的实施方式中设置两个第一接收天线145和一个第二接收天线150。第一接收天线145在横向轴线120上的高度相同,而第二接收天线150的高度是不同的。还可以设置另外的第二接收天线150,它们与横向轴线120或与第一接收天线145的高度的垂直距离155可以相同或不同。
天线140、145和150与处理装置135连接,所述处理装置借助天线140、145、150控制雷达信号的生成和接收并且基于天线信号确定方位角125并且优选将所述方位角提供给接口160。
为了扫描对象105,借助发射天线140发射雷达信号,并且借助接收天线145、150又接收所述雷达信号。借助搜寻方法充分使用接收天线145、150的天线信号之间的相位差,以便确定对象105的方位角125并且如有必要确定对象的仰角。
图2示出一种用于图1的雷达传感器100的示例性天线装置130。除了发射天线140之外,设置第一和第二远程发射天线205。除此之外,在所示出的实施方式中设置三个第一接收天线145和一个第二接收天线150。天线140、145、150、205的相位中心分别标示为暗的。图2的图示的垂直方向与高度轴线115平行延伸并且图示的水平方向与横向轴线120平行延伸。
所示出的所有天线140、145、150、205优选实施为相控阵(phasengesteuerteFelder)、尤其条形相控阵天线(Phased-Array-Antennen)。由此可以简单地实施用于雷达信号的预期的方向性。第一接收天线145的垂直高度是相同的,其中,三个所示出的天线的水平距离可以是不同的。可以在多输入多输出(MIMO)方法中,在对象105的远程区域中将远程发射天线205与发射天线140一起使用。在近程区域中,优选不使用发射天线205并且借助唯一的发射天线140执行SIMO方法。发射天线140的垂直高度可以相对于第一接收天线145或第二接收天线150的高度移位。
图3示出借助图1的雷达传感器100确定方位角125的方法300的流程图。方法300尤其可以在处理装置135上运行。
在第一步骤305中,借助发射天线140向对象105的方向发射雷达信号。在步骤310中,借助接收天线145、150接收所发射的雷达信号的反射。如果已知接收天线145、150中的一个接收天线的失调(Dejustage),那么在基于所有接收天线145、150的天线信号在粗略栅格中确定方位角125的近似值之前,可以使用该已知失调的接收天线。尤其借助最大似然法执行所述确定,其中,将天线图与测量信号进行比较。这相应于归一化的复矢量的标量积的互相关。在此,假定角度栅格,所述角度栅格在步骤310中是相对粗略的并且优选位于大约1-2°的范围中。
在步骤320中,然后在精细栅格中在围绕步骤315的之前所确定的近似值的范围中执行方位角125的确定。精细栅格例如可以大约为0.1-0.5°。因为必须仅在围绕之前所确定的近似值的例如±5°的预确定的范围中执行步骤320中的搜寻,所以可以以较少的开销顺利地执行所述步骤。
接下来可以提供所确定的方位角125,也就是说例如借助接口160进行。
图3和图4示出图3的方法300与第一比较方法405和第二比较方法410相比的模拟的结果,在所述第一比较方法中,以经典的方式无差别地借助接收天线145和150确定方位角125,在所述第二比较方法中,仅仅基于接收天线145的信号确定仰角125。在此,图2的天线装置130的几何分布基于所述模拟。在图4和图5中分别示出9张图,所述图基于不同的相位差Δф,所述不同的相位差分别在每个图上说明。9°的相位差Δф在此相应于大约1°的仰角。在水平方向上分别绘制信噪比(SNR)。在图4中,在垂直方向上以百分比绘制异常值概率,并且在图5中,绘制均方根差(RMSE:Root Mean Square Error)。
显而易见的是,与两种比较方法405和410相比,只要相位差不再大于大约45°,所提出的方法300就提供更好的结果。

Claims (8)

1.一种用于确定对象相对于具有一个发射天线(140)和多个接收天线(145,150)的雷达传感器(100)的方位角(125)的方法,其中,多个第一接收天线(145)具有相同的垂直高度,并且一个第二接收天线(150)具有与所述第一接收天线的垂直高度不同的垂直高度,并且所述方法(300)包括以下步骤:
基于所有接收天线(145,150)的信号,在粗略栅格中确定(315)所述方位角(125)的近似值;
在围绕所述近似值的范围中,基于所述第一接收天线(145)的信号,在精细栅格中确定(320)所述方位角(125)。
2.根据权利要求1所述的方法(300),其中,所述方位角(125)或所述近似值的确定(315,320)借助确定性最大似然法(300)实现。
3.根据权利要求2所述的方法(300),其中,所述粗略栅格是所述精细栅格的至少三倍大。
4.根据上述权利要求中任一项所述的方法(300),其中,所述粗略栅格位于大约1-2°的范围中并且所述精细栅格位于大约0.1-0.5°的范围中。
5.一种计算机程序产品,其具有用于当所述计算机程序产品在处理装置(135)上运行或在计算机可读的数据载体上存储时执行根据上述权利要求中任一项所述的方法(300)的程序代码单元。
6.一种雷达传感器(100),所述雷达传感器包括:
一个发射天线(140);
在相同垂直高度中的多个第一接收天线(145);
一个在与所述第一接收天线的垂直高度不同的垂直高度中的第二接收天线(150);
处理装置(135),其用于基于所有接收天线(145,150)的信号在粗略栅格中确定(315,320)所述方位角(125)的近似值;并且在围绕所述近似值的范围中基于所述第一接收天线(145)的信号在精细栅格中确定所述方位角(125)。
7.根据权利要求6所述的雷达传感器(100),其中,这些天线(140,145,150)中的至少一个是由单贴片场阵构成的天线阵列。
8.根据上述权利要求中任一项所述的雷达传感器(100),其中,所述第二接收天线(150)的垂直高度与所述第一接收天线(145)的高度的差别(155)小于所述第二接收天线(150)的垂直延伸。
CN201710315465.XA 2016-05-09 2017-05-08 借助雷达传感器的方位角确定 Active CN107356920B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016207871.2 2016-05-09
DE102016207871.2A DE102016207871A1 (de) 2016-05-09 2016-05-09 Azimutbestimmung mittels eines Radarsensors

Publications (2)

Publication Number Publication Date
CN107356920A true CN107356920A (zh) 2017-11-17
CN107356920B CN107356920B (zh) 2023-07-21

Family

ID=60119178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710315465.XA Active CN107356920B (zh) 2016-05-09 2017-05-08 借助雷达传感器的方位角确定

Country Status (3)

Country Link
US (1) US10768288B2 (zh)
CN (1) CN107356920B (zh)
DE (1) DE102016207871A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110412575A (zh) * 2018-04-27 2019-11-05 罗伯特·博世有限公司 雷达传感器装置
CN112639519A (zh) * 2018-07-19 2021-04-09 阿尔贝机器人有限公司 雷达系统中的两阶段信号处理的装置和方法
CN113030942A (zh) * 2020-02-28 2021-06-25 加特兰微电子科技(上海)有限公司 目标物的方位角确定方法、装置、计算机设备和存储介质
US11852747B2 (en) 2018-07-19 2023-12-26 Arbe Robotics Ltd. Apparatus and method of eliminating settling time delays in a radar system
US11921195B2 (en) 2018-07-19 2024-03-05 Arbe Robotics Ltd. Apparatus and method of RF built in self-test (RFBIST) in a radar system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10935650B2 (en) * 2017-12-22 2021-03-02 Waymo Llc Radar based three dimensional point cloud for autonomous vehicles
DE102018200752A1 (de) * 2018-01-18 2019-07-18 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bewertung einer Winkelposition eines Objekts, und Fahrerassistenzsystem
KR102192436B1 (ko) * 2018-03-05 2020-12-16 주식회사 만도 레이다 기반의 타겟 각도 결정 장치 및 방법
DE102018207686A1 (de) 2018-05-17 2019-11-21 Robert Bosch Gmbh MIMO-Radarsensor für Kraftfahrzeuge
DE102018124503A1 (de) * 2018-10-04 2020-04-09 HELLA GmbH & Co. KGaA Radarsystem für ein Fahrzeug
US11087115B2 (en) 2019-01-22 2021-08-10 Infineon Technologies Ag User authentication using mm-Wave sensor for automotive radar systems
JP2022545001A (ja) * 2019-08-19 2022-10-24 華為技術有限公司 信号送信方法および装置、信号処理方法および装置、ならびにレーダシステム
DE102021200520A1 (de) * 2021-01-21 2022-07-21 Robert Bosch Gesellschaft mit beschränkter Haftung MIMO-Radarsensor mit synchronisierten Hochfrequenzchips

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104346A (en) * 1998-11-06 2000-08-15 Ail Systems Inc. Antenna and method for two-dimensional angle-of-arrival determination
US20110074620A1 (en) * 2008-07-02 2011-03-31 Adc Automotive Distance Control Systems Gmbh Radar System With Elevation Measuring Capability
US8121225B1 (en) * 2008-06-24 2012-02-21 L-3 Services, Inc. Estimating the angle of arrival of a signal received by an array of commutated antenna elements
CN104698452A (zh) * 2013-12-09 2015-06-10 株式会社万都 车辆的雷达系统和用于测量该雷达系统中的方位角的方法
CN105487068A (zh) * 2014-10-07 2016-04-13 罗伯特·博世有限公司 用于确定对象的位置角的方法和mimo 雷达设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ523022A (en) * 2000-05-09 2004-06-25 Advanced Navigation & Position Vehicle surveillance system
US6483459B1 (en) * 2001-04-05 2002-11-19 Neoreach, Inc. Direction of arrival angle tracking algorithm for smart antennas
US7298314B2 (en) * 2002-08-19 2007-11-20 Q-Track Corporation Near field electromagnetic positioning system and method
DE10261027A1 (de) * 2002-12-24 2004-07-08 Robert Bosch Gmbh Winkelauflösendes Antennensystem
WO2013112955A1 (en) * 2012-01-27 2013-08-01 The Regents Of The University Of California Sub-carrier successive approximation millimeter wave radar for high-accuracy 3d imaging
US9606224B2 (en) * 2014-01-14 2017-03-28 Alstom Transport Technologies Systems and methods for vehicle position detection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104346A (en) * 1998-11-06 2000-08-15 Ail Systems Inc. Antenna and method for two-dimensional angle-of-arrival determination
US8121225B1 (en) * 2008-06-24 2012-02-21 L-3 Services, Inc. Estimating the angle of arrival of a signal received by an array of commutated antenna elements
US20110074620A1 (en) * 2008-07-02 2011-03-31 Adc Automotive Distance Control Systems Gmbh Radar System With Elevation Measuring Capability
CN102066970A (zh) * 2008-07-02 2011-05-18 Adc汽车远程控制系统有限公司 具有正面和侧面辐射的雷达传感器
CN104698452A (zh) * 2013-12-09 2015-06-10 株式会社万都 车辆的雷达系统和用于测量该雷达系统中的方位角的方法
CN105487068A (zh) * 2014-10-07 2016-04-13 罗伯特·博世有限公司 用于确定对象的位置角的方法和mimo 雷达设备

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110412575A (zh) * 2018-04-27 2019-11-05 罗伯特·博世有限公司 雷达传感器装置
CN112639519A (zh) * 2018-07-19 2021-04-09 阿尔贝机器人有限公司 雷达系统中的两阶段信号处理的装置和方法
US11808881B2 (en) 2018-07-19 2023-11-07 Arbe Robotics Ltd. Apparatus and method of two-stage signal processing in a radar system
US11852747B2 (en) 2018-07-19 2023-12-26 Arbe Robotics Ltd. Apparatus and method of eliminating settling time delays in a radar system
US11921195B2 (en) 2018-07-19 2024-03-05 Arbe Robotics Ltd. Apparatus and method of RF built in self-test (RFBIST) in a radar system
CN112639519B (zh) * 2018-07-19 2024-05-14 阿尔贝机器人有限公司 雷达系统中的两阶段信号处理的装置和方法
CN113030942A (zh) * 2020-02-28 2021-06-25 加特兰微电子科技(上海)有限公司 目标物的方位角确定方法、装置、计算机设备和存储介质
CN113030942B (zh) * 2020-02-28 2024-06-11 加特兰微电子科技(上海)有限公司 目标物的方位角确定方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
US10768288B2 (en) 2020-09-08
DE102016207871A1 (de) 2017-11-09
CN107356920B (zh) 2023-07-21
US20170322295A1 (en) 2017-11-09

Similar Documents

Publication Publication Date Title
CN107356920A (zh) 借助雷达传感器的方位角确定
US10197671B2 (en) Virtual radar configuration for 2D array
CN103907242B (zh) 具有改善的校准可能性的用于道路车辆的雷达系统
KR102516365B1 (ko) 차량용 radar 제어 방법 및 장치
US20180052230A1 (en) Road information detection apparatus and road information detection method
CN108333588A (zh) 用来获得角度模糊度解析的迭代方法
CN104515979B (zh) 车辆用探知传感器补正装置及其方法
CN102193080A (zh) 用于估计到达角的方法和设备
US20150198705A1 (en) Method, antenna array, radar system and vehicle
US20120313820A1 (en) System technique for conical geo-location of radio frequency sources
CN103323845B (zh) 一种非均匀采样综合孔径辐射计的图像反演方法
CN104237874A (zh) 雷达装置及天线装置
CN110441794A (zh) 用于检查车辆卫星导航的电离层校正参数的方法和设备
CN110764059B (zh) 一种收发垂直波束三坐标相控阵雷达方法
CN109031305A (zh) 两阶段波束形成
CN110741272B (zh) 无线电信标系统
CN110501702A (zh) 无人机的实时飞行高度测量方法、装置、设备和存储介质
CN109116295A (zh) 基于相控阵选取基线的无源测向算法
CN106405485A (zh) 一种校正源位置未知的天线阵列幅相误差动中校方法
WO2020125958A1 (en) System and method for alignment measurement of an array antenna system
CN109983359A (zh) 用于估计到达方向的装置及相应方法
CN113378694B (zh) 生成目标检测和定位系统及目标检测和定位的方法及装置
CN109932709A (zh) Rfid定位系统和定位方法
CN103493293B (zh) 用于提供改进的tcas方位测量的系统和方法
CN109444561A (zh) 一种用于阵列天线校准的天线面测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant