CN107352758B - 一种耦合微生物燃料电池的芬顿流化床污水处理系统及其处理污水的方法 - Google Patents

一种耦合微生物燃料电池的芬顿流化床污水处理系统及其处理污水的方法 Download PDF

Info

Publication number
CN107352758B
CN107352758B CN201710790851.4A CN201710790851A CN107352758B CN 107352758 B CN107352758 B CN 107352758B CN 201710790851 A CN201710790851 A CN 201710790851A CN 107352758 B CN107352758 B CN 107352758B
Authority
CN
China
Prior art keywords
fluidized bed
fenton
inlet
fuel cell
microbial fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710790851.4A
Other languages
English (en)
Other versions
CN107352758A (zh
Inventor
刘伟凤
朱益民
唐晓佳
陈涛
尹琳
李小艺
金琪
周子皓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maoyuan Technology Co ltd
Shaoxing Jiujiu Environment Technology Co ltd
Dalian Maritime University
Original Assignee
Dalian Maoyuan Technology Co ltd
Shaoxing Jiujiu Environment Technology Co ltd
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maoyuan Technology Co ltd, Shaoxing Jiujiu Environment Technology Co ltd, Dalian Maritime University filed Critical Dalian Maoyuan Technology Co ltd
Priority to CN201710790851.4A priority Critical patent/CN107352758B/zh
Publication of CN107352758A publication Critical patent/CN107352758A/zh
Application granted granted Critical
Publication of CN107352758B publication Critical patent/CN107352758B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明涉及一种耦合微生物燃料电池的芬顿流化床污水处理系统及其处理污水的方法,属于污水处理领域。本系统包括芬顿流化床、微生物燃料电池;芬顿流化床的出口与三通阀的入口连接,三通阀的出口Ⅰ与微生物燃料电池的阴极室入口连接,微生物燃料电池的阴极室出口与芬顿流化床的入口Ⅲ连接,微生物燃料电池的阳极室出口与芬顿流化床的入口Ⅱ连接,阳极室内设有附着有产电微生物的阳极电极。本系统将Fe3+还原为Fe2+、H2O2和O2还原为H2O,阴极室反应后液体中含有芬顿反应所需的Fe2+和硫酸,再次参与芬顿反应可提高硫酸和硫酸亚铁的利用率,减少硫酸和硫酸亚铁的加入量,从而节约处理成本。

Description

一种耦合微生物燃料电池的芬顿流化床污水处理系统及其处理污水的方法
技术领域
本发明涉及一种耦合微生物燃料电池的芬顿流化床污水处理系统及其处理污水的方法,属于污水处理领域。
背景技术
芬顿氧化技术是目前国内外广泛应用的一种废水处理高级氧化技术。该技术所应用的芬顿试剂具有强氧化能力,因为,其中含有Fe2+和H2O2,H2O2被亚铁离子催化分解生成大量具有极强氧化性的羟基自由基(·OH),由于·OH具有高氧化电位和无选择性,因此,可以降解氧化多种有机污染物。芬顿流化床技术将芬顿反应应用于流化床反应器体系,具有氧化效率高、运行费用低、反应产物无毒无害等优势。
然而在利用芬顿流化床处理污水的过程中,硫酸亚铁作为芬顿反应的催化剂,需要不断添加来维持体系的正常运行,而硫酸亚铁最终会随着芬顿反应后液体流出,导致其利用率低且药剂消耗量大。由于硫酸亚铁的大量投加,体系反应过程中会产生大量含铁污泥,不仅容易堵塞管道,而且后续需要经过中和、曝气氧化、絮凝沉淀处理,处理成本高,易造成二次污染。此外,芬顿流化床处理效果不稳定,对含低浓度污染物的污水处理效果较好,但对含高浓度污染物的污水处理效果不佳,进水水质的稳定性也很容易影响处理效果。
发明内容
本发明通过在传统芬顿流化床中引入微生物燃料电池,解决了上述问题。
本发明提供了一种耦合微生物燃料电池的芬顿流化床污水处理系统,所述系统包括芬顿流化床、微生物燃料电池;所述芬顿流化床内设有穿孔板,所述穿孔板将芬顿流化床分为下区和上区,所述下区内设有旋流式布水器,所述旋流式布水器与进水管连接,所述进水管设有入口Ⅰ、入口Ⅱ、入口Ⅲ,所述上区内设有流化床填料,所述上区的上部设有入口Ⅳ,所述上区的顶部设有溢流堰一体式出水管;所述微生物燃料电池内设有质子交换膜,所述质子交换膜将微生物燃料电池分为阴极室和阳极室,所述阴极室内设有阴极电极,所述阳极室内设有附着有产电微生物的阳极电极,所述阴极电极通过外电阻与阳极电极连接,所述溢流堰一体式出水管与三通阀的入口连接,所述三通阀的出口Ⅰ与阴极室的入口连接,所述阴极室的出口与进水管的入口Ⅲ连接,所述阳极室设有污水入口,所述阳极室的出口与进水管的入口Ⅱ连接。
本发明所述芬顿流化床的下区内优选设有pH测试点。
本发明所述微生物燃料电池阳极室的出口优选通过泵Ⅱ与进水管的入口Ⅱ连接。
本发明所述三通阀的出口Ⅰ优选通过流量控制阀、泵Ⅰ与阴极室的入口连接。
本发明所述微生物燃料电池阴极室的出口优选通过泵Ⅲ与进水管的入口Ⅲ连接。
本发明另一目的是提供一种利用上述系统处理污水的方法,所述方法包括如下步骤:
①将污水泵入微生物燃料电池阳极室内,经阳极室反应后,阳极室反应后液体由进水管的入口Ⅱ进入芬顿流化床的下区,与同时由进水管的入口Ⅰ进入芬顿流化床的下区的硫酸、硫酸亚铁混匀,混匀后与由上区的入口Ⅳ进入芬顿流化床的上区的双氧水进行芬顿反应;
②一部分经芬顿反应后液体进入微生物燃料电池阴极室内再反应,阴极室反应后液体由进水管的入口Ⅲ进入芬顿流化床的下区,与同时由进水管的入口Ⅱ进入芬顿流化床的下区的阳极室反应后液体混匀,重复步骤①再次进行芬顿反应。
在与双氧水进行芬顿反应前,将本发明所述污水的pH值优选为调节至2-4。
本发明的原理为:先将污水泵入微生物燃料电池阳极室,附着在阳极电极上的产电微生物催化氧化污水中的有机污染物,降低污水中的有机污染物浓度,同时产生的电子转移至阴极电极上;阳极电极上微生物降解有机污染物的速率与有机污染物的浓度相关,有机污染物浓度高,阳极电极上微生物活性高降解速度快,反之,有机污染物浓度低,阳极电极上微生物活性低降解速度慢,因此,阳极电极对污水水质具有缓冲作用。阳极室反应后液体进入进水管,与硫酸、硫酸亚铁在进水管内混匀,调节pH至2-4,通过旋流式布水器调匀水质,进入芬顿流化床的上区与双氧水混匀,进行芬顿反应,催化降解有机污染物。反应过程中一部分Fe2+被氧化成Fe3+,一部分H2O2分解产生O2,未反应的硫酸、Fe2+、H2O2及反应副产物Fe3+、O2随芬顿反应后液体流出。一部分芬顿反应后液体通过三通阀的出口Ⅱ进行后续中和、曝气氧化、絮凝沉淀处理,另一部分芬顿反应后液体进入微生物燃料电池阴极室,芬顿反应后液体中的Fe3+、H2O2和O2在阴极电极与电子及芬顿反应后液体中的质子结合,发生如下还原反应:
Fe3++e-→Fe2+
H2O2+2H++2e-→2H2O
O2+4H++4e-→2H2O
还原反应后Fe3+被还原成Fe2+,双氧水及氧气被还原成水,硫酸仅有少量消耗,得到的阴极室反应后液体中仅含有Fe2+、硫酸及未反应的有机污染物,阴极室反应后液体进入进水管与阳极室反应后液体混匀,不再需要或仅仅需要少量硫酸和硫酸亚铁即可进行芬顿反应,提高了硫酸和硫酸亚铁的利用率,减少了硫酸和硫酸亚铁的加入量,同时,减少了含铁污泥的产生量,节约了后续中和、曝气氧化、絮凝沉淀、污泥处理等工艺成本。
本发明有益效果为:
①本发明所述系统将Fe3+还原为Fe2+、H2O2和O2还原为H2O,阴极室反应后液体中含有芬顿反应所需的Fe2+和硫酸,再次参与芬顿反应可提高硫酸和硫酸亚铁的利用率,减少硫酸和硫酸亚铁的加入量,从而节约处理成本;
②本发明所述系统将Fe2+再次利用,减少了含铁污泥的产生量,既节约后续中和、曝气氧化、絮凝沉淀的药剂投加,又防止管道堵塞,节省含铁污泥处理成本;
③本发明所述系统耐负荷冲击能力强,污水处理效果稳定,污水先通过微生物燃料电池阳极室处理,一方面降低芬顿流化床的有机污染物负荷,另一方面对芬顿流化床的进水水质具有缓冲调节作用,使芬顿流化床保持稳定的污水处理效果。
附图说明
本发明附图1幅,
图1为实施例1所述耦合微生物燃料电池的芬顿流化床污水处理系统的结构示意图;
其中,1、芬顿流化床,101、芬顿流化床的下区,102、芬顿流化床的上区,103、芬顿流化床的入口Ⅳ,2、穿孔板,3、旋流式布水器,4、进水管,401、进水管的入口Ⅰ,402、进水管的入口Ⅱ,403、进水管的入口Ⅲ,5、溢流堰一体式出水管,6、微生物燃料电池,601、阴极室,602、阳极室,603、阴极室的入口,604、阴极室的出口,605、污水入口,606、阳极室的出口,7、质子交换膜,8、阴极电极,9、阳极电极,10、外电阻,11、pH测试点,12、泵Ⅱ,13、三通阀,1301、三通阀的出口Ⅰ,1302、三通阀的出口Ⅱ,14、流量控制阀,15、泵Ⅰ,16、泵Ⅲ。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
实施例1
一种耦合微生物燃料电池的芬顿流化床污水处理系统,所述系统包括芬顿流化床1、微生物燃料电池6;所述芬顿流化床1内设有穿孔板2,所述穿孔板2将芬顿流化床1分为芬顿流化床的下区101和芬顿流化床的上区102,所述芬顿流化床的下区101内设有旋流式布水器3与pH测试点11,所述旋流式布水器3与进水管4连接,所述进水管4设有进水管的入口Ⅰ401、进水管的入口Ⅱ402、进水管的入口Ⅲ403,所述芬顿流化床的上区102内设有流化床填料,所述芬顿流化床的上区102的上部设有芬顿流化床的入口Ⅳ103,所述芬顿流化床的上区102的顶部设有溢流堰一体式出水管5;所述微生物燃料电池6内设有质子交换膜7,所述质子交换膜7将微生物燃料电池6分为阴极室601和阳极室602,所述阴极室601内设有阴极电极8,所述阳极室602内设有附着有产电微生物Geobacter spp.的阳极电极9,所述阴极电极8通过外电阻10与阳极电极9连接,所述溢流堰一体式出水管5与三通阀13的入口连接,所述三通阀的出口Ⅰ1301通过流量控制阀14、泵Ⅰ15与阴极室601的入口连接,所述阴极室601的出口通过泵Ⅲ16与进水管的入口Ⅲ403连接,所述阳极室602设有污水入口605,所述阳极室的出口606通过泵Ⅱ12与进水管的入口Ⅱ402连接。
实施例2
一种利用实施例1所述系统处理制药废水的方法,所述方法包括如下步骤:
①将制药废水泵入阳极室602内反应0.5h,阳极室反应后液体以100m3/h流量由进水管的入口Ⅱ402进入芬顿流化床的下区101,与同时由进水管的入口Ⅰ401进入芬顿流化床的下区101的硫酸、硫酸亚铁混匀,硫酸与硫酸亚铁为制药废水重量的0.05%,调节pH值至2.5,混匀后与由芬顿流化床的入口Ⅳ103进入芬顿流化床的上区102的双氧水进行芬顿反应,双氧水为制药废水重量的0.045%;
②一部分芬顿反应后液体通过三通阀的出口Ⅱ1302进行后续中和、曝气氧化、絮凝沉淀处理,另一部分芬顿反应后液体进入阴极室601内再反应0.5h,阴极室反应后液体以60m3/h流量由进水管的入口Ⅲ403进入芬顿流化床的下区101,与同时由进水管的入口Ⅱ402进入芬顿流化床的下区101的阳极室反应后液体混匀,重复步骤①再次进行芬顿反应。
上述系统可使制药废水的CODCr从520mg/L降至68mg/L,去除率为86.9%,含铁污泥的产生量为0.25t/d;而同样的双氧水加入量,使用现有的芬顿流化床处理该制药废水,硫酸与硫酸亚铁为制药废水重量的0.15%,制药废水的CODCr从520mg/L降至241mg/L,去除率仅为53.7%,含铁污泥的产生量为0.6t/d;与现有的芬顿流化床相比,采用上述系统处理制药废水,使硫酸与硫酸亚铁的加入量减少了66.7%,制药废水处理效率提高了33.2%,含铁污泥的产生量降低了58.3%。

Claims (7)

1.一种耦合微生物燃料电池的芬顿流化床污水处理系统,其特征在于:所述系统包括芬顿流化床、微生物燃料电池;所述芬顿流化床内设有穿孔板,所述穿孔板将芬顿流化床分为下区和上区,所述下区内设有旋流式布水器,所述旋流式布水器与进水管连接,所述进水管设有入口Ⅰ、入口Ⅱ、入口Ⅲ,所述上区内设有流化床填料,所述上区的上部设有入口Ⅳ,所述上区的顶部设有溢流堰一体式出水管;所述微生物燃料电池内设有质子交换膜,所述质子交换膜将微生物燃料电池分为阴极室和阳极室,所述阴极室内设有阴极电极,所述阳极室内设有附着有产电微生物的阳极电极,所述阴极电极通过外电阻与阳极电极连接,所述溢流堰一体式出水管与三通阀的入口连接,所述三通阀的出口Ⅰ与阴极室的入口连接,所述阴极室的出口与进水管的入口Ⅲ连接,所述阳极室设有污水入口,所述阳极室的出口与进水管的入口Ⅱ连接。
2.根据权利要求1所述的系统,其特征在于:所述芬顿流化床的下区内设有pH测试点。
3.根据权利要求1所述的系统,其特征在于:所述微生物燃料电池阳极室的出口通过泵Ⅱ与进水管的入口Ⅱ连接。
4.根据权利要求1所述的系统,其特征在于:所述三通阀的出口Ⅰ通过流量控制阀、泵Ⅰ与阴极室的入口连接。
5.根据权利要求1所述的系统,其特征在于:所述微生物燃料电池阴极室的出口通过泵Ⅲ与进水管的入口Ⅲ连接。
6.一种利用权利要求1、2、3、4或5所述系统处理污水的方法,其特征在于:所述方法包括如下步骤:
①将污水泵入微生物燃料电池阳极室内,经阳极室反应后,阳极室反应后液体由进水管的入口Ⅱ进入芬顿流化床的下区,与同时由进水管的入口Ⅰ进入芬顿流化床的下区的硫酸、硫酸亚铁混匀,混匀后与由上区的入口Ⅳ进入芬顿流化床的上区的双氧水进行芬顿反应;
②一部分经芬顿反应后液体进入微生物燃料电池阴极室内再反应,阴极室反应后液体由进水管的入口Ⅲ进入芬顿流化床的下区,与同时由进水管的入口Ⅱ进入芬顿流化床的下区的阳极室反应后液体混匀,重复步骤①再次进行芬顿反应。
7.根据权利要求6所述的处理污水的方法,其特征在于:在与双氧水进行芬顿反应前,将所述污水的pH值调节至2-4。
CN201710790851.4A 2017-09-05 2017-09-05 一种耦合微生物燃料电池的芬顿流化床污水处理系统及其处理污水的方法 Active CN107352758B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710790851.4A CN107352758B (zh) 2017-09-05 2017-09-05 一种耦合微生物燃料电池的芬顿流化床污水处理系统及其处理污水的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710790851.4A CN107352758B (zh) 2017-09-05 2017-09-05 一种耦合微生物燃料电池的芬顿流化床污水处理系统及其处理污水的方法

Publications (2)

Publication Number Publication Date
CN107352758A CN107352758A (zh) 2017-11-17
CN107352758B true CN107352758B (zh) 2023-04-07

Family

ID=60290760

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710790851.4A Active CN107352758B (zh) 2017-09-05 2017-09-05 一种耦合微生物燃料电池的芬顿流化床污水处理系统及其处理污水的方法

Country Status (1)

Country Link
CN (1) CN107352758B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109533265B (zh) * 2019-01-29 2023-09-12 大连海事大学 一种船舶生活污水浓缩处理系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645515B (zh) * 2009-08-20 2011-05-11 华南理工大学 一种微生物燃料电池及其制备方法和应用
CN102496733A (zh) * 2011-12-27 2012-06-13 中国海洋大学 一种海底有机污染物的微生物燃料电池催化加速降解方法
TWI520427B (zh) * 2014-12-09 2016-02-01 王金燦 具瑕燒氧化鋅光觸媒之微生物燃料電池
CN105884091B (zh) * 2016-05-19 2018-07-03 南京赛佳环保实业有限公司 一种无固废产生的电芬顿与电催化氧化相耦合的废水处理装置
CN207243688U (zh) * 2017-09-05 2018-04-17 大连海事大学 一种耦合微生物燃料电池的芬顿流化床污水处理系统

Also Published As

Publication number Publication date
CN107352758A (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
CN102992453B (zh) 双相循环催化氧化装置
CN110156146B (zh) 一种同时去除水中硝酸氮和微量有机物的生物膜电化学反应器
CN112047438A (zh) 一种利用双阴极电芬顿连续流处理有机废水的方法
CN203530001U (zh) 过硫酸盐活化高级氧化反应器
CN110877956A (zh) 处理芬顿铁泥的装置和方法
CN204752450U (zh) 一种用于废水处理的温和催化氧化装置
CN105198131A (zh) 双催化氧化工艺处理废水方法及其装置
CN204689706U (zh) 一种多级外循环式臭氧接触反应装置
CN109205954A (zh) 微电解催化氧化、生化处理高浓度废水工艺
CN211471183U (zh) 处理芬顿铁泥的装置
CN105330088B (zh) 一种乙烯废碱液的处理方法
CN211946615U (zh) 一种电化学耦合臭氧微纳米气泡处理系统
CN104860397A (zh) 一种电化学-生物流化床反应器及其废水处理方法
CN205740594U (zh) 一种应用多相催化氧化耦合技术处理污水的系统
CN107352758B (zh) 一种耦合微生物燃料电池的芬顿流化床污水处理系统及其处理污水的方法
CN113955899A (zh) 一种高效的涂料生产废水处理系统以及工艺
CN107055943A (zh) 酸性有机废水处理装置及处理方法
CN111925072A (zh) 一种生化法处理硫酸盐的处理系统及工艺、应用
CN207243688U (zh) 一种耦合微生物燃料电池的芬顿流化床污水处理系统
CN208716927U (zh) 高级氧化处理废水的一体化装置
CN214141733U (zh) 一种利用水处理中o3尾气原位产生h2o2的废水处理装置
CN114873851B (zh) 一种高盐高氨氮废水自养脱氮与全量化处理装置和方法
CN216549758U (zh) 一种新型芬顿反应器
CN204737787U (zh) 一种电化学-生物流化床反应器
CN109336332A (zh) 一种适用于高cod有机污水的处理方法及有机污水处理装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant