CN107347256A - 包含多晶化学气相沉积钻石的化合物半导体装置结构 - Google Patents

包含多晶化学气相沉积钻石的化合物半导体装置结构 Download PDF

Info

Publication number
CN107347256A
CN107347256A CN201580068731.2A CN201580068731A CN107347256A CN 107347256 A CN107347256 A CN 107347256A CN 201580068731 A CN201580068731 A CN 201580068731A CN 107347256 A CN107347256 A CN 107347256A
Authority
CN
China
Prior art keywords
diamond
nanometers
device structure
nanocrystal
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580068731.2A
Other languages
English (en)
Other versions
CN107347256B (zh
Inventor
菲洛兹·纳瑟-菲利
丹尼尔·法兰西斯
法兰克扬蒂斯·劳
丹尼尔詹姆斯·推辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RFHIC Corp Korea
Original Assignee
RFHIC Corp Korea
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RFHIC Corp Korea filed Critical RFHIC Corp Korea
Publication of CN107347256A publication Critical patent/CN107347256A/zh
Application granted granted Critical
Publication of CN107347256B publication Critical patent/CN107347256B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/024Group 12/16 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02444Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1602Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明揭露了一种半导体装置结构,其包含:化合物半导体材料层;以及多晶化学气相沉积钻石材料层,其中多晶化学气相沉积钻石材料层是通过直接接合到化合物半导体材料层的纳米结晶钻石层来接合到化合物半导体材料层,纳米结晶钻石具有5至50纳米的范围的厚度,并且配置为使通过化合物半导体材料层与多晶化学气相沉积钻石材料层之间的接面处的瞬态热反射所测量的有效热边界电阻(TBReff)不超过50(m2K/GW)。

Description

包含多晶化学气相沉积钻石的化合物半导体装置结构
技术领域
本发明的某些实施例涉及化合物半导体装置结构和制造方法,其包含在化合物半导体和多晶化学气相沉积钻石之间具有低热边界电阻的多晶化学气相沉积钻石。本发明的主要应用是大功率电子和光电装置的热管理。
背景技术
半导体装置和电路中的热管理是任何可制造且具有成本效益的电子和光电产品(如光生成和电信号放大)的关键设计元素。高效热设计的目标是降低这种电子或光电装置的工作温度,同时最大限度地提高性能(功率和速度)和可靠性。这种装置的实例是微波电晶体,发光二极管和半导体激光器。根据操作频率和功率要求,这些装置通常由硅(silicon)、砷化镓(GaAs)、磷化铟(InP)制造,且近年来也由氮化镓(GaN)、氮化铝(AlN)及其他间隙半导体制造。特别地,氮化镓材料系统产生具有高电子迁移率(高速操作所必需的)、高击穿电压(高功率所必需的)和高于砷化镓,磷化铟或硅的热导率的微波电晶体,因此有利于在大功率应用中使用。氮化镓也用于制造蓝光和紫外线激光器和发光二极管。尽管具有高温性能,但由于通常用于生长氮化镓的基板的相对较低的耐热性(thermalresistance),氮化镓电子和光电子装置的性能受到限制。这种缺陷在大功率微波及毫米波电晶体以及放大器中最为显著,其中减少冷却要求和更长的装置寿命都受益于较低的接面温度(junction temperature),这是非常关键的需求。在大功率蓝光和紫外激光器中也出现了类似的需求,其中几微米宽的激光模槽条(cavity stripe)通过低导热性材料将功率耗散到晶片中。
众所周知,当考虑等向行为(isotropic behaviors)时,钻石是人类在室温下已知的最导热的物质。因此,自从1980年代通过化学气相沉积技术商业化人造钻石,半导体工业一直采用钻石散热器和散热器来改良热管理。最佳热管理的目标是使钻石散热器或钻石层紧靠电子或光电装置中的热源。这意味着在薄的晶片上构建装置,并安装在钻石散热器、具有钻石层的涂层装置上、或将装置外延层(epilayers,即外延生长的半导体层)转移到钻石上。
钻石氮化镓(GaN-on-diamond)技术和所得到的装置(描述于美国专利7,595,507中)涉及具有从化学气相沉积钻石基板小于1微米的氮化镓外延层的结构。该技术可将最佳热导体(钻石)与基于氮化镓(GaN)和氮化镓相关化合物的电子和光电子装置接合在一起,同时最小化与例如更常见的半导体-焊料-钻石(semiconductor-solder-diamond)附着相关联的任何热障碍方案。由于氮化镓的固有高临界电场和宽带隙(bandgap),氮化镓装置对于高功率电子和光电子应用是比较理想的,例如高功率RF电晶体和放大器、功率管理装置(肖特基二极管(Schottky diodes)和开关电晶体)以及高功率蓝光和紫外线激光器或发光二极管。
氮化镓目前在几种不同的基板上生长:蓝宝石、硅、碳化硅、氮化铝、单晶钻石和氮化镓基板。除了氮化镓基板之外,所有其它材料都具有不同于氮化镓和氮化铝镓(AlGaN)的晶格常数(lattice constants)。天然钻石是一种优秀的热导体,但是由于其可用面积、低纯度人造钻石的热性能降低、以及成本,因此这些应用尚不可用。目前,人造钻石的制造具有不同程度的结晶度。通过化学气相沉积(CVD)沉积的多晶钻石适用于半导体工业,因为其导热率接近于单晶钻石,其可以提供电隔离、具有低介电损耗、并且可以制成透明的。用于半导体工业的化学气相沉积钻石基板可以形成为具有标准直径的圆形晶片。钻石晶片通过三种主要方法之一的化学气相沉积制造:等离子体增强钻石化学气相沉积,其中解离反应物的能量来自微波源;热辅助钻石化学气相沉积,其中解离气体的能量来自热丝;以及等离子体使用高直流电压加速离子。在这些方法中,人造钻石生长在非钻石基板之上,例如硅、氮化硅、碳化硅和不同的金属。
化学气相沉积钻石生长过程在真空室中进行,在真空室内设置有在其上生长钻石的基板。将基板暴露于解离在基板表面上形成钻石所需的前驱气体分子所需的能量源。钻石的化学气相沉积中所需的前驱气体是在氢气(H2)中稀释的碳源。典型的碳载气体是甲烷(CH4)、乙烷(C2H6)、一氧化碳(CO)和乙炔(C2H2),其中甲烷(CH4)是最常用的。高效钻石沉积所需的气体组合在氢中含有少量(几%)的碳载气成分,并且可以通过添加氧或氧前驱体如CO或CO2来进一步辅助反应。根据碳载气流量和氢气流量的莫耳比率(molar ratio),给出了指定气流配方的最常用参数。例如,以[CH4]/[H2]的百分比计,其中[CH4]和[H2]通常以每分钟标准立方厘米(sccm)测量的莫耳流速。沉积过程中的典型基板温度为550℃至1200℃,沉积速率通常以每小时微米(μm)测量。
人造钻石在非钻石基板上的生长包含表面制备阶段和成核(nucleation)阶段,其中调整条件以增强主体(非钻石)基板上的钻石晶体的生长。这通常是通过以受控和可重复的方式用钻石粉末接种(与基板划伤相连)的表面来完成的。在生长阶段,人造钻石的颗粒尺寸增加,结果人造钻石薄膜在沉积后固有地粗糙。钻石的成核通常以非常小的钻石域嵌入非钻石矩阵中开始,其在近基板区域中的导热性差。在现有技术中已经讨论了各种接种,包含机械、超声波和超声波接种在各种基板和晶片上的成核层。
基于氮化镓的高电子迁移率电晶体(GaN-based HEMTs)中增加的高功率密度使热管理非常重要。具有高导热性的化学气相沉积多晶钻石与现有技术的碳化硅基板相比,在装置接面附近提供了优异的除热能力。最新的钻石氮化镓高电子迁移率电晶体已经表现出优异的装置特性[D.C.Dumka et al.,IEEE Electron Lett.49(20),1298(2013)],并可扩展到4英寸晶圆[D.Francis et al.,Diamond Rel.Mater.19(2-3),229(2010)]。这种钻石氮化镓技术从硅或碳化硅上的金属有机化学气相沉积(MOCVD)生长的氮化铝镓/氮化镓外延层开始,并且涉及沉积薄的介电接种层(dielectric seeding layer,例如非晶碳化硅、硅、氮化硅、氮化铝、氧化镁、氮化硼或氧化铍)和暴露的氮化镓上的化学气相沉积钻石,在去除天然氮化镓生长基板和过渡层之后[D.C.Dumka et al.,IEEE Electron Lett.49(20),1298(2013);D.Francis et al.,Diamond Rel.Mater.19(2-3),229(2010)]。介电接种层既用作钻石材料的成核层,也用作钻石生长期间的氮化镓的保护层。因此,介电接种层必须足够厚以实现这些功能。然而,钻石生长的介电中间层和初始成核层在氮化镓/钻石接面处产生有效的热边界电阻(TBReff),这是限制钻石全部热效益的主要热障[J.W.Pomeroyet al.,Appl.Phys.Lett.104(8),083513(2014)]。
迄今为止,钻石在氮化镓上的直接生长是有问题的。这主要是由于原子氢与暴露的氮化镓的反应以及随后的氮化镓基板的退化(degradation)和还原(reduction)。用于规避本领域技术人员已知的问题的典型方法是在如上所述用作氮化镓的保护层和钻石成核层的氮化镓的顶部上生长介电中间层。虽然这种方法在保护氮化镓层方面已经取得了成功,但是它引入了多个热边界,这些热边界对总体热耐性产生负面影响,并且具有高导电性基板的全部优点。另外,对氮化镓和钻石之间的介电中间层的要求将额外的表面制备和沈积步骤引入到制程中,这增加了制程的复杂性和成本。
实现钻石与氮化镓的密切整合的一个重大挑战在于平衡由于氮化镓和钻石接面处的各种层面引起的热边界电阻(TBR)的降低,其实现了适当的接种水平以牢固地粘附到成核层,并且当在其上沉积化学气相沉积钻石时为下面的氮化镓提供足够的保护,以便不会不利地影响氮化镓外延层结构的电子性能。本发明人已经研究了介电中间层厚度对氮化镓/钻石接面处的有效热边界电阻(TBReff)的影响。本发明人之前已经发现,在化学气相沉积钻石生长期间,需要至少约35纳米厚度的介电中间层来保护氮化镓基板。然而,这导致氮化镓和钻石之间的有效热边界电阻为下限。
发明内容
本发明人开发了一种钻石种子技术,其允许完全消除介电接种层,同时仍允许在化合物半导体基板上生长钻石而不损坏化合物半导体材料。该方法使用超纳米结晶体超声处理来形成具有受控厚度的基本上无空隙的纳米结晶钻石成核层。这导致半导体装置结构包含:化合物半导体材料层;以及多晶化学气相沉积钻石材料层,其中所述多晶化学气相沉积钻石材料层系通过直接接合到所述化合物半导体材料层的纳米结晶钻石层来接合到所述化合物半导体材料层,所述纳米结晶钻石层具有5至50纳米之范围的厚度,并且配置来使通过化合物半导体材料层与多晶化学气相沉积钻石材料层之间的接面处的瞬态热反射所测量的有效热边界电阻(TBReff)不超过50m 2K/GW。
本发明的实施例提供了直接的钻石化合物半导体(例如氮化镓)接面,其间没有设置介电中间层并且不损坏化合物半导体。因此,可以优化装置结构的热及电子特性。此外,通过消除对钻石和化合物半导体层之间的介电中间层的要求,可以通过少量表面制备和沉积步骤来简化制程。
制造如上所述的半导体装置结构的方法包含:提供包含化合物半导体材料层的基板;在化合物半导体材料层上形成厚度在5至50纳米范围内的纳米结晶钻石种子层;以及使用化学气相沉积(CVD)技术在所述种子层上生长一层多晶化学气相沉积钻石。
已知可以使用纳米结晶钻石粉末的胶态悬浮液和施加声波功率形成合适的种子层,其具有选择的粒度、沉积时间和声波功率以实现所需的有效热边界电阻(TBReff),同时确保种子层在化学气相沉积钻石生长期间用作有效的保护屏障,使得下面的化合物半导体不被过度损坏。此外,令人惊奇地发现,这样的种子层不能防止化学气相沉积钻石层与化合物半导体基板的粘合。这是非常令人惊讶的,因为人们会认为在基板上提供相对厚的纳米结晶种子颗粒层将防止化学气相沉积钻石层粘附到化合物半导体基板上。也就是说,人们会认为化学气相沉积钻石层将接合到纳米结晶种颗粒层,但是纳米结晶种子颗粒将不会接合到下面的化合物半导体基板。虽然不受理论束缚,但是看起来如果使化合物半导体层足够平坦和光滑,并且使用纳米尺寸的钻石种子颗粒,则纳米尺寸的钻石颗粒将静电粘合到化合物半导体层。可以以这种方式形成令人惊讶之厚的纳米尺寸的钻石颗粒层。与较大微米尺寸的钻石种子颗粒相比,其不以这种方式静电键合。此外,再次没有被理论束缚,似乎纳米结晶钻石种子层的气相渗透可能在钻石生长的早期阶段发生,导致纳米结晶种子颗粒接合到下面的化合物半导体基板且彼此形成相干接合(coherent bonded)纳米结晶钻石层,且基本上不会损坏下面的化合物半导体基板。
附图说明
为了更好地理解本发明并且示出如何实施本发明,现在将通过参考附图的方式来描述本发明的实施例,其中:
图1示出了用于测量化合物半导体材料层和多晶化学气相沉积钻石材料层之间的接面处的有效热边界电阻(TBReff)的瞬态热电反射测量装置的示意图;
图2标出了在钻石晶片上的反射光谱,证明了在532纳米的探针激光波长处的反射变化和表面温度调制之间的线性近似的有效性;
图3示出了具有不同厚度的介电接种层的钻石氮化镓晶片的标准化瞬态反射,其使用两种钻石生长方法:热丝(HF)化学气相沉积;以及微波(MW)等离子体化学气相沉积(插图示出了样本层结构的示意图)。
图4显示氮化镓/钻石接面的有效热边界电阻作为介电接种层厚度的函数,对应的电晶体峰值通道温升在右垂直轴上表示;
图5示出了超纳米结晶种子层的透射电子显微照片(TEM)横截面,其指示具有可辨别的钻石种子且没有接面空隙的明确定义的纳米结晶钻石接面;以及
图6示出了包含化合物半导体材料层、纳米结晶钻石层和微米结晶钻石层的三层结构的示意图。
具体实施方式
在描述根据本发明实施例之用于实现低热边界电阻的钻石氮化镓产品的改良种子技术之前,下面给出了用于探测这种产品之热边界电阻的新测量技术的描述。
测量技术包含瞬态热电反射方法来表征钻石上的钻石有效热边界电阻。这种完全非接触式技术不需要任何额外的沉积,并且可以在装置制造之前在生长晶片上使用。晶圆热电阻的快速评估使得钻石氮化镓晶圆制造商能够改善电晶体热性能的生长条件。
纳秒瞬态热反射法是一种基于激光的泵浦探针(laser-based pump-probe)技术[J.W.Pomeroy et al.,IEEE Electron Device Lett.35(10),1007(2014)]。使用高于氮化镓带隙的10纳秒、355纳米脉冲激光(Nd:YAG的三次谐波)作为泵浦光束来冲击加热氮化铝镓/氮化镓(AlGaN/GaN)表面。该温度升高引起了与线性温度相关的表面反射的变化。使用532纳米CW激光(Nd:YAG的二次谐波)作为探针光束来监测时域中的反射(以及温度)变化。由于热扩散到氮化镓层和钻石基板中,表面温度会松弛,从而可以从温度瞬变(temperature transient)中提取包含效热边界电阻在内的热性能。两个激光束同轴地引导到标准显微镜,以方便晶片映像。放大的硅光电检测器用于记录从样本表面反射的探针激光的强度。实验装置的示意图如图1所示。
在特定条件下,当探头激光波长在总反射光谱的最大值或最小值附近时部分相干的内部反射(coherent internal reflections),反射变化可能不与表面温度调制成正比。这里选择的探针激光波长(532纳米)不会落入这些“非线性”区域,如图2所示。60℃的温升相当于反射的10纳米波长偏移,使用氮化镓折射率的波长[[N.A.Sanford et al.,J.Appl.Phys.94(5),2980(2003)]和温度[N.Watanabe,et al.,J.Appl.Phys.104(10),106101(2008)]的依赖性。在这些测量中,在反射变化和表面温度升高之间的线性近似有效的区域内,最高温度调制小于60℃。此外,在具有和不具有金传感器的晶片上获得相同的热反射衰减[J.W.Pomeroy et al.,IEEE Electron Device Lett.35(10),1007(2014)],证实反应确实来自表面温度。
图3标出了一系列氮化镓-钻石晶片的时间解析的标准化反射变化,每个具有28纳米至100纳米的介电接种层的标称厚度(nominal thickness),以及通过热丝(HF)生长的钻石基板、化学气相沉积或微波(MW)等离子体化学气相沉积。随着热量更有效地扩散到钻石基板中,瞬态中快速衰减(因此表面温度)表示较低的有效热边界电阻。该测量对有效热边界电阻最敏感,因为氮化镓/钻石接面是主要的热障。然而,钻石基板的影响也有助于温度瞬态,如第3图中的长时间尺度所示。瞬态超过500纳秒的分离表明,不透明的铪(HF)钻石具有比半透明的微波(MW)钻石更小的热导率。
使用有限元热模型(element thermal model)拟合测量的瞬变,并将提取的有效热边界电阻绘制为图4中的介电中间层厚度的函数。有效热边界电阻与介电层厚度大致呈线性关系;这些偏差可能是由于晶圆与晶圆之间不同的钻石成核面的贡献。使用多指电晶体热模型[J.W.Pomeroy et al.,IEEE Electron Device Lett.35(10),1007(2014)],计算对应于每个有效热边界电阻的峰值信道温升,并显示在右垂直轴上。这突出了减少有效热边界电阻降低装置热阻的重要性。通过将有效热边界电阻从50m2K/GW降低到12m2K/GW,电晶体通道温升可以降低30%。然而,已发现使用标准钻石接种技术需要至少约35纳米厚度的陶瓷中间层,以在化学气相沉积钻石生长期间保护氮化镓基板。从图4可以看出,这导致有效热边界电阻的下限为约20至25m2K/GW。
鉴于上述,本发明人已经研究了在化合物半导体基板和其上形成多晶化学气相沉积钻石层生长之间提供更好接面的不同方法。在这样做时,本发明人开发了一种优化的钻石种子技术,其允许完全消除介电接种层,同时仍然允许化合物半导体基板上的钻石生长而不损坏化合物半导体。该方法使用声波处理(sonication)及/或电化学沉积纳米及/或超纳米结晶钻石以形成受控厚度的实质上无空隙的钻石成核层。这导致半导体装置结构包含:化合物半导体材料层;以及多晶化学气相沉积钻石材料层,其中所述多晶化学气相沉积钻石材料层通过直接接合到所述化合物半导体材料层的纳米结晶钻石层来接合到所述化合物半导体材料层,所述纳米结晶钻石层具有5至50纳米的范围的厚度,并且配置为使通过化合物半导体材料层与多晶化学气相沉积钻石材料层之间的接面处的瞬态热反射所测量的有效热边界电阻(TBReff)不超过50m2K/GW、40m2K/GW或30m2K/GW。
不包含钻石材料和化合物半导体材料之间的附加介电中间层的该装置结构避免了对化合物半导体晶片进行高温并且可能影响产量和/或成本的附加陶瓷沉积步骤的要求。此外,对于包含薄介电中间层的装置结构,通过消除额外的介电中间层,这开启了进一步降低钻石材料和化合物半导体材料之间的有效热边界电阻向下降到理论最小值3m2K/GW的机会,或者至少与上述大于10m2K/GW的数值相匹配,例如在20至30m 2K/GW的范围内。
已经发现,可以使用纳米结晶钻石粉末的胶体悬浮液和施加声波功率形成合适的种子层,其具有选择的粒度、沉积时间和声波功率以实现所需的有效热边界电阻(TBReff),同时还确保种子层在化学气相沉积钻石生长期间用作有效的保护屏障,使得下面的化合物半导体不被过度损坏。一种替代方案是使用电化学方法,其控制钻石/晶片相对电位以产生均匀和共形沉积。此外,令人惊奇地发现,这样的种子层不能防止化学气相沉积钻石层与化合物半导体基板的粘合。
虽然之前已经描述了包含胶体悬浮液、纳米结晶钻石粉末和声波功率或电化学沉积的施加技术用于高成核密度钻石的种子和生长,但是用于提高钻石化合物半导体接面之钻石热障电阻(thermal barrier resistance)的方法之前没有被证明。本发明人已经设计了一种涂布化合物半导体基板的方法,其允许调整分散在半导体基板上的种子堆叠的厚度和密度,从而控制与先前实现的结果相比形成这种堆叠的热边界电阻。通过调整例如时间、声波功率和接种介质,本发明人已经证明了对叠层的厚度和分散体的密度的控制,以便优化与这种氮化镓和钻石之间的层有关的热边界电阻。特别地,本发明人通过用相对较厚的(于接种术语中)和用于成核的导热超纳米和/或纳米结晶钻石涂层替代介电中间层,消除了两个热接面和一个热挑战的成核/保护层。
多晶化学气相沉积钻石材料层可以通过具有5至50纳米、10至40纳米或15至30纳米范围内的层厚度的纳米结晶钻石接合到化合物半导体材料层。可以使用螺旋深度分析来建立超纳米结晶种子层(一个实例中种子层的厚度为约25纳米)。
图5示出了超纳米结晶种子层的透射电子显微照片(TEM)的横截面,其指示具有可辨别的钻石种子且没有接面空隙的明确定义的纳米结晶钻石接面。纳米结晶钻石层可具有不超过10%、8%、6%或4%的透射电子显微镜影像测量的空隙体积分数。或者另外,在包含至少200纳米×100纳米的面积的代表性样本中,纳米结晶钻石层可以没有大于20纳米、15纳米、10纳米或5纳米厚度的空隙。优选地,在包含至少200纳米×100纳米的面积的代表性样本中,纳米结晶钻石层在透射电子显微镜影像中没有可见空隙。
如上所述的种子层使多晶化学气相沉积钻石材料定向沉积在化合物半导体基板上而不需要介电中间层。虽然本发明可应用于一系列化合物半导体,但根据某些实施方案,化合物半导体材料层包含III-V族化合物半导体材料,例如氮化镓。
种子层上生长的多晶化学气相沉积钻石材料层可以具有至少5微米、10微米、20微米、30微米、50微米、80微米、100微米、200微米、300微米或500微米的厚度。当种子层包含纳米结晶钻石颗粒时,种子层上生长的覆盖多晶化学气相沉积钻石材料优选包含微米级晶粒(grains,即多晶化学气相沉积钻石材料层包含尺寸大于1微米的晶粒),并且优选为微波等离子体化学气相沉积钻石材料,因为这种类型的多晶化学气相沉积钻石材料具有比热丝多晶化学气相沉积钻石和/或纳米多晶化学气相沉积钻石更高的热导率。
图6示出了如上所述的三层结构的示意图,其包含化合物半导体材料层70,纳米结晶钻石层72和微米结晶钻石层74。
制造如上所述的半导体装置结构的方法包含:提供包含化合物半导体材料层的基板;在所述基板的表面上形成层厚度为5~50纳米、10~40纳米、或15~30纳米的纳米结晶钻石种子层;以及使用化学气相沉积(CVD)技术在所述种子层上生长多晶化学气相沉积钻石层。
种子层可以使用平均颗粒尺寸不超过15纳米或10纳米和/或不小于1纳米的纳米结晶钻石粉末形成。在接种步骤中使用的纳米结晶钻石粉末的D90颗粒尺寸可以不超过40纳米、30纳米或20纳米。此外,可使用纳米结晶钻石粉末的胶体悬浮液形成种子层,并且可控制诸如沉积时间和声波功率的沉积参数以实现所需的有效热边界电阻(TBReff)。
制备化合物半导体基板的一种方法是将硅晶片上的氮化镓键合到载体硅晶片,然后蚀刻出离开接合晶片的生长硅晶片。在移除生长硅晶片之后,暴露氮化镓材料的背面。然后将该暴露的表面浸入到具有纳米钻石晶种的罐中,并将整个罐超声波接种10分钟。通过调整接种的确切时间来调整种子层的厚度。这个确切的时间取决于颗粒的密度和尺寸。然后将化合物半导体基板从罐中取出并旋转干燥以除去不良附着的种子。酒精干燥后得到的晶片准备进行钻石沉积。
纳米结晶层用作化合物半导体基板的成核层和保护层。这导致低的热边界电阻与良好的氮化镓电子性质的保留相接合,亦即由于纳米结晶钻石种子层的存在,氮化镓不会被化学气相沉积钻石生长制程过度损坏。因此,本发明提供了第一次成功证明将钻石直接附接到氮化镓而不损坏氮化镓的合成途径。例如,化合物半导体外延层结构可以具有一个或多个以下特性,同时直接接合到钻石散热层:电荷迁移率(charge mobility)至少为1200cm2V-1s-1、400cm2V-1s-1或1600cm2V-1s-1;片电阻(sheet resistance)不超过700Ω/平方、600Ω/平方或500Ω/平方;漏电流不超过10-5安培、10-6安培、10-7安培;以及最大功率至少为5W/mm、6W/mm或7W/mm。
虽然已经参考实施例具体示出和描述了本发明,但是本领域技术人员将理解,在不脱离权利要求所限定的本发明的范围的情况下,可以对形式和细节进行各种改变。

Claims (18)

1.一种半导体装置结构,其包含:
化合物半导体材料层;以及
多晶化学气相沉积钻石材料层,
其中所述多晶化学气相沉积钻石材料层是通过直接接合到所述化合物半导体材料层的纳米结晶钻石层与所述化合物半导体材料层接合,所述纳米结晶钻石层的厚度在5至50纳米的范围内,并且配置为使通过化合物半导体材料层与多晶化学气相沉积钻石材料层之间的接口处的瞬态热反射所测量的有效热边界电阻(TBReff)不超过50m2K/GW。
2.根据权利要求1所述的半导体装置结构,其特征在于,所述纳米结晶钻石层的厚度在10-40纳米的范围内。
3.根据权利要求1所述的半导体装置结构,其特征在于,所述纳米结晶钻石层的厚度在15-30纳米的范围内。
4.根据前述权利要求中任一项所述的半导体装置结构,其特征在于,所述纳米结晶钻石层具有的使用透射电子显微镜影像测量而得的空隙体积分数不超过10%。
5.根据权利要求4所述的半导体装置结构,其特征在于,所述纳米结晶钻石层中的所述空隙体积分数系不超过8%、6%或4%。
6.根据前述权利要求中任一项所述的半导体装置结构,其特征在于,在包含至少200纳米×100纳米的面积的代表性样本中,所述纳米结晶钻石层没有厚度大于20纳米的空隙。
7.根据权利要求6所述的半导体装置结构,其特征在于,在包含至少200纳米×100纳米的面积的代表性样本中,所述纳米结晶钻石层不包含厚度大于15纳米、10纳米或5纳米的空隙。
8.根据前述权利要求中任一项所述的半导体装置结构,其特征在于,在包含至少200纳米×100纳米的面积的代表性样本中,所述纳米结晶钻石层系在透射电子显微镜影像中没有可见空隙。
9.根据前述权利要求中任一项所述的半导体装置结构,其特征在于,所述多晶化学气相沉积钻石材料层具有至少5微米、10微米、20微米、30微米、50微米、80微米、100微米、200微米、300微米或500微米的厚度。
10.根据前述权利要求中任一项所述的半导体装置结构,其特征在于,所述多晶化学气相沉积钻石材料层包括尺寸大于1微米的晶粒。
11.根据前述权利要求中任一项所述的半导体装置结构,其特征在于,通过所述化合物半导体材料层与所述多晶化学气相沉积钻石材料层之间的所述接口处的所述瞬态热反射所测量的所述有效热边界电阻(TBReff)不超过40m2K/GW或不超过30m2K/GW。
12.根据前述权利要求中任一项所述的半导体装置结构,其特征在于,所述化合物半导体材料层包含III-V族化合物半导体材料。
13.根据权利要求12所述的半导体装置结构,其特征在于,所述III-V族化合物半导体材料是氮化镓。
14.根据前述权利要求中任一项所述的半导体装置结构,其特征在于,所述化合物半导体层具有一个或多个以下特征:
电荷迁移率至少为1200cm2V-1s-1、400cm2V-1s-1或1600cm2V-1s-1
片电阻系不超过700Ω/平方、600Ω/平方或500Ω/平方
漏电流不超过10-5安培、10-6安培、10-7安培;以及
最大功率至少为5W/mm、6W/mm或7W/mm。
15.一种制造根据前述权利要求中任一项所述的半导体装置结构的方法,该方法包括:
提供包括化合物半导体材料层的基板;
在所述化合物半导体材料层上形成厚度在5至50nm范围内的纳米结晶钻石的种子层;以及
使用化学气相沉积技术在所述种子层上生长多晶化学气相沉积钻石层。
16.根据权利要求15所述的方法,其特征在于,使用平均颗粒尺寸不超过15纳米或10纳米和/或不小于1纳米的纳米结晶钻石粉末来形成所述种子层。
17.根据权利要求16所述的方法,其特征在于,在所述接种步骤中,使用的所述纳米结晶钻石粉末的D90颗粒尺寸不超过40纳米、30纳米或20纳米。
18.根据权利要求15至17中任一项所述的方法,其特征在于,所述种子层使用所述纳米结晶钻石粉末的胶体悬浮液形成,控制所述胶体悬浮液的沉积参数以实现所需的有效热边界电阻(TBReff)。
CN201580068731.2A 2014-12-18 2015-12-09 化合物半导体装置结构及其制造方法 Active CN107347256B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462093717P 2014-12-18 2014-12-18
US62/093,717 2014-12-18
GB201502954A GB201502954D0 (en) 2015-02-23 2015-02-23 Compound semiconductor device structures comprising polycrystalline CVD diamond
GB1502954.9 2015-02-23
PCT/EP2015/079054 WO2016096551A1 (en) 2014-12-18 2015-12-09 Compound semiconductor device structures comprising polycrystalline cvd diamond

Publications (2)

Publication Number Publication Date
CN107347256A true CN107347256A (zh) 2017-11-14
CN107347256B CN107347256B (zh) 2020-09-22

Family

ID=52822004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580068731.2A Active CN107347256B (zh) 2014-12-18 2015-12-09 化合物半导体装置结构及其制造方法

Country Status (7)

Country Link
US (2) US10319580B2 (zh)
EP (1) EP3234984B1 (zh)
JP (2) JP6556842B2 (zh)
KR (1) KR101990578B1 (zh)
CN (1) CN107347256B (zh)
GB (2) GB201502954D0 (zh)
WO (1) WO2016096551A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110164766A (zh) * 2019-04-23 2019-08-23 西安电子科技大学 一种基于金刚石衬底的氮化镓器件及其制备方法
CN113224200A (zh) * 2021-05-08 2021-08-06 西北核技术研究所 一种氮化镓半导体辐射探测器及其制备方法和检测设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201502954D0 (en) * 2015-02-23 2015-04-08 Element Six Technologies Ltd Compound semiconductor device structures comprising polycrystalline CVD diamond
US10594298B2 (en) * 2017-06-19 2020-03-17 Rfhic Corporation Bulk acoustic wave filter
US10128107B1 (en) * 2017-08-31 2018-11-13 Rfhic Corporation Wafers having III-Nitride and diamond layers
GB201809206D0 (en) * 2018-06-05 2018-07-25 Pontificia Univ Catolica Madre Y Maestra Autopista Duarte Km 1 1/2 Sp3-bonded carbon materials, methods of manufacturing and uses thereof
WO2020263845A1 (en) * 2019-06-24 2020-12-30 Akash Systems, Inc. Material growth on wide-bandgap semiconductor materials
KR102393733B1 (ko) * 2020-05-07 2022-05-06 한국세라믹기술원 반도체용 다이아몬드 박막 제조방법
RU2750234C1 (ru) * 2020-07-24 2021-06-24 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения поликристаллических алмазных пленок
KR102528990B1 (ko) * 2020-12-28 2023-05-03 알에프에이치아이씨 주식회사 다이아몬드 기판, 다이아몬드 커버, 다이아몬드 플레이트 및 반도체 패키지의 제조 공정, 및 이를 이용하여 제조된 반도체 패키지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506451B1 (en) * 1994-08-05 2003-01-14 Daimlerchrysler Ag Composite structure and process for producing it
WO2010010176A1 (fr) * 2008-07-25 2010-01-28 Commissariat A L'energie Atomique Procede de microstructuration d'une couche de diamant
CN103132048A (zh) * 2013-02-05 2013-06-05 廊坊西波尔钻石技术有限公司 一种多晶金刚石磨料及化学气相沉积(cvd)制作方法
US20140110722A1 (en) * 2012-10-24 2014-04-24 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Semiconductor Structure or Device Integrated with Diamond

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7132309B2 (en) 2003-04-22 2006-11-07 Chien-Min Sung Semiconductor-on-diamond devices and methods of forming
JP4009090B2 (ja) 2001-11-08 2007-11-14 株式会社神戸製鋼所 ダイヤモンド被覆非ダイヤモンド炭素部材の製造方法
WO2006113539A2 (en) 2005-04-13 2006-10-26 Group4 Labs, Llc Semiconductor devices having gallium nitride epilayers on diamond substrates
FR2898657B1 (fr) * 2006-03-16 2008-04-18 Novatec Sa Procede de mise en oeuvre d'un support intercalaire universel
US8236594B2 (en) 2006-10-20 2012-08-07 Chien-Min Sung Semiconductor-on-diamond devices and associated methods
WO2008091910A2 (en) 2007-01-22 2008-07-31 Group4 Labs, Llc Composite wafers having bulk-quality semiconductor layers
US8039301B2 (en) * 2007-12-07 2011-10-18 The United States Of America As Represented By The Secretary Of The Navy Gate after diamond transistor
ES2736731T3 (es) * 2008-07-18 2020-01-07 Suneeta Neogi Método para producir recubrimientos de diamante nanocristalino sobre piedras preciosas
DE102010062873A1 (de) * 2010-12-13 2012-06-14 Sb Limotive Company Ltd. Lithium-Ionen-Zelle, Lithium-Ionen-Akkumulator sowie Kraftfahrzeug mit einem Lithium-Ionen-Akkumulator
JP5777962B2 (ja) 2011-07-14 2015-09-16 日本バイリーン株式会社 ダイヤモンド膜の製造方法
GB201121666D0 (en) * 2011-12-16 2012-01-25 Element Six Ltd Synthetic diamond coated compound semiconductor substrates
GB201319117D0 (en) * 2013-10-30 2013-12-11 Element Six Technologies Us Corp Semiconductor device structures comprising polycrystalline CVD Diamond with improved near-substrate thermal conductivity
US20160161991A1 (en) * 2014-12-08 2016-06-09 Rubicon Technology, Inc. Ultra-Thin, Passively Cooled Sapphire Windows
GB201502954D0 (en) * 2015-02-23 2015-04-08 Element Six Technologies Ltd Compound semiconductor device structures comprising polycrystalline CVD diamond

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506451B1 (en) * 1994-08-05 2003-01-14 Daimlerchrysler Ag Composite structure and process for producing it
WO2010010176A1 (fr) * 2008-07-25 2010-01-28 Commissariat A L'energie Atomique Procede de microstructuration d'une couche de diamant
US20140110722A1 (en) * 2012-10-24 2014-04-24 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Semiconductor Structure or Device Integrated with Diamond
CN103132048A (zh) * 2013-02-05 2013-06-05 廊坊西波尔钻石技术有限公司 一种多晶金刚石磨料及化学气相沉积(cvd)制作方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110164766A (zh) * 2019-04-23 2019-08-23 西安电子科技大学 一种基于金刚石衬底的氮化镓器件及其制备方法
CN110164766B (zh) * 2019-04-23 2021-01-15 西安电子科技大学 一种基于金刚石衬底的氮化镓器件及其制备方法
CN113224200A (zh) * 2021-05-08 2021-08-06 西北核技术研究所 一种氮化镓半导体辐射探测器及其制备方法和检测设备
CN113224200B (zh) * 2021-05-08 2022-11-04 西北核技术研究所 一种氮化镓半导体辐射探测器及其制备方法和检测设备

Also Published As

Publication number Publication date
US20190252183A1 (en) 2019-08-15
JP2018506167A (ja) 2018-03-01
GB2534674A (en) 2016-08-03
GB201502954D0 (en) 2015-04-08
JP6556842B2 (ja) 2019-08-07
JP6827020B2 (ja) 2021-02-10
JP2018201039A (ja) 2018-12-20
US20170263448A1 (en) 2017-09-14
KR20170095879A (ko) 2017-08-23
EP3234984B1 (en) 2021-05-19
US10319580B2 (en) 2019-06-11
EP3234984A1 (en) 2017-10-25
CN107347256B (zh) 2020-09-22
KR101990578B1 (ko) 2019-06-19
US10699896B2 (en) 2020-06-30
GB201521646D0 (en) 2016-01-20
GB2534674B (en) 2017-05-10
WO2016096551A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
CN107347256A (zh) 包含多晶化学气相沉积钻石的化合物半导体装置结构
US10446468B2 (en) Method of fabricating compound semiconductor device structures having polycrstalline CVD diamond
Sang Diamond as the heat spreader for the thermal dissipation of GaN-based electronic devices
US9679764B2 (en) Semiconductor device structures comprising polycrystalline CVD diamond with improved near-substrate thermal conductivity
Pomeroy et al. Contactless thermal boundary resistance measurement of GaN-on-diamond wafers
Liu et al. Graphene‐Assisted Epitaxy of Nitrogen Lattice Polarity GaN Films on Non‐Polar Sapphire Substrates for Green Light Emitting Diodes
Park et al. Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy
FR2898606A1 (fr) Film monocristallin semi-conducteur a base de nitrure
US20040077165A1 (en) Hafnium nitride buffer layers for growth of GaN on silicon
Feng et al. Investigation of β‐Ga2O3 Film Growth Mechanism on c‐Plane Sapphire Substrate by Ozone Molecular Beam Epitaxy
Mantarcı et al. Physical properties of RF magnetron sputtered GaN/n-Si thin film: impacts of RF power
Lee et al. Microphotoluminescence spectroscopy of single CdTe/ZnTe quantum dots grown on Si (001) substrates
Fareed et al. Migration enhanced metal organic chemical vapor deposition of AlN/GaN/InN-based heterostructures
JP2003347212A (ja) SiC/Si間ヘテロ接合素子の作製方法及び同方法で作製した素子
Kim et al. Fabrication of freestanding GaN by HVPE and optically pumped stimulated emission at room temperature
Singh et al. (SiC) x (AlN) 1-x solid-solution grown by physical vapor transport (PVT) method
Yoshida et al. Excitonic emission on CuInS2 epitaxial films by pulse laser deposition
Yamaguchi et al. Surface morphology of (100) ZnTe: P layer homoepitaxially grown by horizontal MOVPE technique
Okazaki et al. Lasing characteristics from optically-pumped ZnO nanocrystals for ultraviolet laser diode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant