CN107326320B - 一种高体分SiCp/Al与铋酸盐玻璃复合材料及其制备方法 - Google Patents

一种高体分SiCp/Al与铋酸盐玻璃复合材料及其制备方法 Download PDF

Info

Publication number
CN107326320B
CN107326320B CN201710319570.0A CN201710319570A CN107326320B CN 107326320 B CN107326320 B CN 107326320B CN 201710319570 A CN201710319570 A CN 201710319570A CN 107326320 B CN107326320 B CN 107326320B
Authority
CN
China
Prior art keywords
sicp
bismuthate glass
preparation
glass
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710319570.0A
Other languages
English (en)
Other versions
CN107326320A (zh
Inventor
屈盛官
王斌
马梦阳
李小强
杨超
李元元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710319570.0A priority Critical patent/CN107326320B/zh
Publication of CN107326320A publication Critical patent/CN107326320A/zh
Priority to PCT/CN2017/111337 priority patent/WO2018205538A1/zh
Application granted granted Critical
Publication of CN107326320B publication Critical patent/CN107326320B/zh
Priority to ZA2020/01015A priority patent/ZA202001015B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/02Dies; Inserts therefor; Mounting thereof; Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/34Heating or cooling presses or parts thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)
  • Ceramic Products (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

本发明公开了一种高体分SiCp/Al与铋酸盐玻璃复合材料及其制备方法,首先对对高体分SiCp/Al及铋酸盐玻璃待焊接表面进行预处理,然后将高体分SiCp/Al及铋酸盐玻璃放入焊接模具中,再将装有高体分SiCp/Al与铋酸盐玻璃的焊接模具放入真空热压炉内,对复合材料进行真空热压复合操作,制得高体分SiCp/Al与铋酸盐玻璃复合材料。高体分SiCp/Al与铋酸盐玻璃复合材料焊接结合性好,复合材料的机械牢固性高,有很好的气密性和抗温度冲击性。

Description

一种高体分SiCp/Al与铋酸盐玻璃复合材料及其制备方法
技术领域
本发明属于合金金属材料技术领域,具体涉及一种高体分SiCp/Al与铋酸盐玻璃复合材料及其制备方法。
背景技术
高体分SiCp/Al复合材料具有优异的结构承载功能、热控功能以及防共振功能。高体分SiCp/Al复合材料的比模量可达到铝合金和钛合金的三倍,热膨胀系数低于钛合金,热导率远高于铝合金,平均谐振频率比铝、钛、钢材料的高出60%以上。这种复合材料作为新型的功能材料与工程材料,在航空航天精密仪器结构件、微电子器件封装元件等领域有着广阔的应用前景。由于铋酸盐玻璃的热膨胀系数(12.029×10-06K-1,)与高体分SiCp/Al的热膨胀系数相近,高体分SiCp/Al铋酸盐玻璃复合材料光学性能好,广泛用于航空航天、真空器件、激光器、红外线器件和光源等领域。
然而,对于高体分SiCp/Al和铋酸盐玻璃的复合材料对封接技术要求很高,不仅要求有一定的机械强度,而且要求在真空的情况下,有极好的气密性和导电性。而采用传统的金属玻璃焊接方法对于高体分SiCp/Al进行焊接,其复合材料的性能难以满足上述要求。另外,传统的金属封装材料不能满足所有这些要求:铁镍钴合金(Kovar)热导率低,密度高;Mo和W的热导率高于铁镍钴合金,但仍比低于Cu,且密度高;Al和Cu的热膨胀系数高,而玻璃的热膨胀系数(CTE)低。因此,采用上述几种封装材料,很难封接高体分SiCp/Al复合材料。
发明内容
为解决上述问题,本发明在于提供一种高体分SiCp/Al与铋酸盐玻璃复合材料及其制备方法,并提供一种焊接装置。
本发明的目的是通过下述技术方案实现的:一种高体分SiCp/Al与铋酸盐玻璃复合材料的制备方法,包括以下步骤:(1)对高体分SiCp/Al待焊接表面进行氧化处理,使其表面产生一层氧化膜;(2)对铋酸盐玻璃待焊接表面进行打磨和抛光,对抛光后的玻璃进行清洗;(3)将高体分SiCp/Al及铋酸盐玻璃放入焊接模具中,高体分SiCp/Al放置在下部、铋酸盐玻璃在上部,使两者的待焊接表面紧密贴合;(4)将装有高体分SiCp/Al与铋酸盐玻璃的焊接模具放入真空热压炉内,对复合材料进行真空热压复合操作,制得高体分SiCp/Al与铋酸盐玻璃复合材料。
进一步地,所述步骤(1)中的高体分SiCp/Al的体积分数为60~75%,氧化膜厚度为0.37μm以上,氧化时间为1~10小时。氧化的处理工艺过程设置为:首先以2.79℃/min的升温速率进行加热,升温到560℃后,进行保温,保温时间为60-600min,随后随炉冷却。
进一步地,所述步骤(2)中的铋酸盐玻璃的组成成分为Bi2O3:68.7~72.7wt.%,B2O3:15wt.%,BaO:10wt.%,Li2O:2.3~6.3wt.%。清洗为在酒精中超声清洗,功率为300W、频率40KHz,清洗时间为30min。经打磨抛光后的铋酸盐玻璃的表面粗糙度为2μm以下。
进一步地,所述步骤(4)中进行真空热压复合的步骤及参数如下:抽真空至真空度为5.0×10-2~1.33×10-4Pa,升温至460~560℃后,施加压力,保持压力值为1~3MPa,保持时间为1~8h,随后随炉冷却至室温。
一种高体分SiCp/Al与铋酸盐玻璃复合材料,该复合材料由体积分数为60~75%的高体分SiCp/Al及组成成为Bi2O3:68.7~72.7wt.%,B2O3:15wt.%,BaO:10wt.%,Li2O:2.3~6.3wt.%的铋酸盐玻璃复合而成。
一种高体分SiCp/Al与铋酸盐玻璃复合材料焊接模具,包括凸模,凹模;其特征在于:还包括炉膛,凸模,凹模,真空压力表,加热电阻丝,真空泵及阀门;所述凹模放在炉腔内,所述凸模通过连接装置设置于炉膛上,凹模与凸模间隙配合;所述加热电阻丝设置于炉腔的侧周壁上;炉腔上设置有真空压力表;真空泵连接所述炉腔,所述阀门设置在真空泵与炉腔的连接管上;铋酸盐玻璃叠放在高体分SiCp/Al的上部,并放置在凸模和凹模之间。
本发明与现有技术相比,具有以下优点:
(1)高体分SiCp/Al与铋酸盐玻璃复合材料的焊接界面结合紧密,无缝隙存在,其过渡层厚度达到了9μm,保证复合材料的界面的良好结合,使得其界面反应进行得更加充分,对于传统的结合方式做出了重要的改进。
(2)高体分SiCp/Al与铋酸盐玻璃复合结合性好,抗剪切力强,材料之间相互作用力强,达到良好的焊接结合的作用效果。复合后的材料机械强度高,有很好的气密性和导电性。
(3)高体分SiCp/Al复合材料可扩散到铋酸盐玻璃,并且SiCp/Al材料在铋酸盐玻璃中的扩散效果好,SiCp/Al微粒覆盖了铋酸盐玻璃表面,一致性、均匀性较好,微观组织均匀、性能稳定。
(4)采用本发明中的焊接模具,其结构简单,装置结构合理,采用该装置的制备方法简单、便捷,易于推于高体分SiCp/Al与铋酸盐玻璃复合材料的产业化。
附图说明
图1为是高体分SiCp/Al的焊接表面氧化处理后的微观结构图;
图2为高体分SiCp/Al进行氧化处理时的氧化工艺图;
图3为焊接模具的结构示意图;
图4为高体分SiCp/Al与铋酸盐玻璃的真空热压炉的工艺图;
图5显示高体分SiCp/Al与铋酸盐玻璃的焊接界面过渡层的微观示意图;
图6为高体分SiCp/Al与铋酸盐玻璃复合后,进行剪切试验的断口二次电子扫描图。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1:高体分SiCp/Al与铋酸盐玻璃复合材料的制备方法包括以下步骤:
(1)、选取体积分数为75%高体分SiCp/Al试样,该试样尺寸为直径75mm、厚度15mm,并对试样的待焊接表面进行预处理,具体为对其表面进行氧化处理,使其表面产生一层氧化膜,氧化膜的厚度0.37μm以上,如图1所示。氧化处理采用马沸炉,氧化时间为1h~10h,其氧化工艺如图2所示。氧化工艺可设置为:首先以2.79℃/min的升温速率进行加热,升温到560℃后,进行保温,保温时间为60-600min,随后随炉冷却。
(2)选取尺寸为直径75mm、厚度6mm的铋酸盐玻璃试样,其化学组成成分为Bi2O3:72.7wt.%,B2O3:15%wt.%,BaO:10wt.%,Li2O:2.3wt.%。对试样的待焊接表面采用磨床和砂纸进行打磨和抛光,使其表面粗糙度达到2μm以下,然后放入酒精中超声清洗30min,超声功率300W、频率40KHz。
(3)将高体分SiCp/Al及铋酸盐玻璃放入焊接模具中,且高体分SiCp/Al放置在下部、铋酸盐玻璃在上部,并且使两者的待焊接表面紧密贴合。
(4)将装有高体分SiCp/Al与铋酸盐玻璃的焊接模具放入真空热压炉内,然后抽真空至真空度为1.33×10-4Pa,以5℃/min的升温速率进行加热,待升温至500℃后施加压力,压力值为3MPa,并保温保压4h,随后随炉冷却至室温,即完成高体分SiCp/Al与铋酸盐玻璃的真空热压复合。
此外,本制备方法中所使用的焊接模具的结构如图3所示。该焊接模具包括:炉膛(1),凸模(2),凹模(3),真空压力表(4),加热电阻丝(5),真空泵(6)及阀门(7)。所述凹模(3)放在炉腔(1)内,所述凸模(2)通过连接装置设置于炉膛上,凹模(3)与凸模(2)呈间隙配合。所述加热电阻丝(5)设置于炉腔的侧周壁上,用于为材料的焊接升温。炉腔上设置有真空压力表(5),用于检测和监测炉内的压力值保持在固定水平。真空泵(6)连接所述炉腔,所述阀门(7)设置在真空泵与炉腔的连接管上。铋酸盐玻璃(8)叠放在高体分SiCp/Al(9)的上部,并放置在凸模(2)和凹模(3)之间。
本实施例制备的高体分SiCp/Al与铋酸盐玻璃复合材料的焊接界面过渡层结构表征如图5所示。从图中可看出,经过表面氧化处理的高体分SiCp/Al与经过抛光处理过的铋酸盐玻璃的界面结合非常紧密,无缝隙存在。使用1000倍的二次电子扫描电镜观察到了两者之间存在过渡层,过渡层最大厚度达到了大约9μm。通过检测,两者之间形成的界面抗剪强度最大达到5.53MPa。充分说明该制备方法所制备的复合材料保证两者之间的界面呈现良好的结合状态。
高体分SiCp/Al与铋酸盐玻璃复合后再进行剪切试验,剪断后的断口二次电子扫描如图6所示。图6(a)为高体分SiCp/Al一侧,从图中可看到高体分SiCp/Al侧的断口呈现有凹坑,凹坑进一步表明高体分SiCp/Al结合较好性。由于结合性强,所以材料在剪切破坏过程中被牵扯拔出而形成凹坑。图6(b)的铋酸盐玻璃一侧,从图中可看出铋酸盐玻璃的断口侧SiC颗粒被拉拔出的现象;这表明高体分SiCp/Al复合材料已经扩散到铋酸盐玻璃侧;从整体看,SiCp/Al材料在铋酸盐玻璃中的扩散效果好,覆盖了整个表面,一致性、均匀性较好。
实施例2:
高体分SiCp/Al与铋酸盐玻璃复合材料的制备方法包括以下步骤:
(1)、选取体积分数为60%高体分SiCp/Al试样,该试样尺寸为直径75mm、厚度15mm,并对试样待焊接表面进行预处理,具体为对其表面进行氧化处理,使其表面产生一层氧化膜,氧化膜的厚度0.37μm以上,如图1所示。氧化处理采用马沸炉,氧化时间为1h~10h,其氧化工艺如图2所示。氧化工艺可设置为:首先以2.79℃/min的升温速率进行加热,升温到560℃后,进行保温,保温时间为60-600min,随后随炉冷却。
步骤(2)~(4)与实施例1相同。
实施例3:
高体分SiCp/Al与铋酸盐玻璃复合材料的制备方法包括以下步骤:
(1)、选取体积分数为65%高体分SiCp/Al试样,该试样尺寸为直径75mm、厚度15mm,并对试样待焊接表面进行预处理,具体为对其表面进行氧化处理,使其表面产生一层氧化膜,氧化膜的厚度0.37μm以上,如图1所示。氧化处理采用马沸炉,氧化时间为1h~10h,其氧化工艺如图2所示。氧化工艺可设置为:首先以2.79℃/min的升温速率进行加热,升温到560℃后,进行保温,保温时间为60~600min,随后随炉冷却。
步骤(2)~(4)与实施例1相同。
实施例4:
高体分SiCp/Al与铋酸盐玻璃复合材料的制备方法包括以下步骤:
(1)、选取体积分数为70%高体分SiCp/Al试样,该试样尺寸为直径75mm、厚度15mm,并对试样待焊接表面进行预处理,具体为对其表面进行氧化处理,使其表面产生一层氧化膜,氧化膜的厚度0.37μm以上,如图1所示。氧化处理采用马沸炉,氧化时间为1h~10h,其氧化工艺如图2所示。氧化工艺可设置为:首先以2.79℃/min的升温速率进行加热,升温到560℃后,进行保温,保温时间为60-600min,随后随炉冷却。
步骤(2)~(4)与实施例1相同。
实施例5:
高体分SiCp/Al与铋酸盐玻璃复合材料的制备方法包括以下步骤:
步骤(1)~(3)与实施例1相同。
步骤(4)将装有高体分SiCp/Al与铋酸盐玻璃的焊接模具放入真空热压炉内,然后抽真空至真空度为1.33×10-4Pa,以5℃/min的升温速率进行加热,待升温至460℃后施加压力,压力值为3MPa,并保温保压4h,随后随炉冷却至室温,即完成高体分SiCp/Al与铋酸盐玻璃的真空热压复合。
实施例6:
高体分SiCp/Al与铋酸盐玻璃复合材料的制备方法包括以下步骤:
步骤(1)~(3)与实施例1相同。
步骤(4)将装有高体分SiCp/Al与铋酸盐玻璃的焊接模具放入真空热压炉内,然后抽真空至真空度为1.33×10-4Pa,以5℃/min的升温速率进行加热,待升温至560℃后施加压力,压力值为3MPa,并保温保压4h,随后随炉冷却至室温,即完成高体分SiCp/Al与铋酸盐玻璃的真空热压复合。
实施例7:
高体分SiCp/Al与铋酸盐玻璃复合材料的制备方法包括以下步骤:
步骤(1)~(3)与实施例1相同。
步骤(4)将装有高体分SiCp/Al与铋酸盐玻璃的焊接模具放入真空热压炉内,然后抽真空至真空度为1.33×10-4Pa,以5℃/min的升温速率进行加热,待升温至500℃后施加压力,压力值为1MPa,并保温保压4h,随后随炉冷却至室温,即完成高体分SiCp/Al与铋酸盐玻璃的真空热压复合。
实施例8:
高体分SiCp/Al与铋酸盐玻璃复合材料的制备方法包括以下步骤:
步骤(1)~(3)与实施例1相同。
步骤(4)将装有高体分SiCp/Al与铋酸盐玻璃的焊接模具放入真空热压炉内,然后抽真空至真空度为1.33×10-4Pa,以5℃/min的升温速率进行加热,待升温至500℃后施加压力,压力值为2MPa,并保温保压4h,随后随炉冷却至室温,即完成高体分SiCp/Al与铋酸盐玻璃的真空热压复合。
实施例9:
高体分SiCp/Al与铋酸盐玻璃复合材料的制备方法包括以下步骤:
步骤(1)~(3)与实施例1相同。
步骤(4)将装有高体分SiCp/Al与铋酸盐玻璃的焊接模具放入真空热压炉内,然后抽真空至真空度为1.33×10-4Pa,以5℃/min的升温速率进行加热,待升温至500℃后施加压力,压力值为3MPa,并保温保压1h,随后随炉冷却至室温,即完成高体分SiCp/Al与铋酸盐玻璃的真空热压复合。
实施例10:
高体分SiCp/Al与铋酸盐玻璃复合材料的制备方法包括以下步骤:
步骤(1)~(3)与实施例1相同。
步骤(4)将装有高体分SiCp/Al与铋酸盐玻璃的焊接模具放入真空热压炉内,然后抽真空至真空度为1.33×10-4Pa,以5℃/min的升温速率进行加热,待升温至500℃后施加压力,压力值为3MPa,并保温保压8h,随后随炉冷却至室温,即完成高体分SiCp/Al与铋酸盐玻璃的真空热压复合。
实施例11:
高体分SiCp/Al与铋酸盐玻璃复合材料的制备方法包括以下步骤:
步骤(1)(3)(4)与实施例1相同。
(2)选取尺寸为直径75mm、厚度6mm的铋酸盐玻璃试样,其化学组成成分为Bi2O3:70.7wt.%,B2O3:15%wt.%,BaO:10wt.%,Li2O:4.3wt.%。对试样的待焊接表面采用磨床和砂纸进行打磨和抛光,使其表面粗糙度达到2μm以下,然后放入酒精中超声清洗30min,超声功率300W、频率40KHz。
实施例12:
高体分SiCp/Al与铋酸盐玻璃复合材料的制备方法包括以下步骤:
步骤(1)(3)(4)与实施例1相同。
(2)选取尺寸为直径75mm、厚度6mm的铋酸盐玻璃试样,其化学组成成分为Bi2O3:68.7wt.%,B2O3:15%wt.%,BaO:10wt.%,Li2O:6.3wt.%。对试样的待焊接表面采用磨床和砂纸进行打磨和抛光,使其表面粗糙度达到2μm以下,然后放入酒精中超声清洗30min,超声功率300W、频率40KHz。
实施例2-实施例12制备的的高体分SiCp/Al与铋酸盐玻璃复合材料的性能与实施例1中制备的的产品性能相近,都具有良好的结合界面,焊接结合性好,SiCp/Al材料在铋酸盐玻璃中的扩散效果好,复合材料的机械牢固性高,有很好的气密性和抗温度冲击性。
本发明的实施方式不限于此,按照本发明的上述内容,利用本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,本发明还可以做出其它多种形式的修改、替换或变更,均落在本发明权利保护范围之内。

Claims (10)

1.一种高体积分数SiCp/Al与铋酸盐玻璃复合材料的制备方法,其特征在于包括以下步骤:
(1)对高体积分数SiCp/Al待焊接表面进行氧化处理,使其表面产生一层氧化膜;
(2)对铋酸盐玻璃待焊接表面进行打磨和抛光,对抛光后的玻璃进行清洗;
(3)将高体积分数SiCp/Al及铋酸盐玻璃放入焊接模具中,高体积分数SiCp/Al放置在下部、铋酸盐玻璃在上部,使两者的待焊接表面紧密贴合;
(4)将装有高体积分数SiCp/Al与铋酸盐玻璃的焊接模具放入真空热压炉内,对复合材料进行真空热压复合操作,制得高体积分数SiCp/Al与铋酸盐玻璃复合材料。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤(1)中的高体积分数SiCp/Al的体积分数为60~75%,氧化膜厚度为0.37μm以上,氧化时间为1~10小时。
3.根据权利要求1所述的制备方法,其特征在于:氧化的处理工艺过程设置为:首先以2.79℃/min的升温速率进行加热,升温到560℃后,进行保温,保温时间为60~600min,随后随炉冷却。
4.根据权利要求1所述的制备方法,其特征在于:所述步骤(2)中的铋酸盐玻璃的组成成分为Bi2O3:68.7~72.7wt.%,B2O3:15wt.%,BaO:10wt.%,Li2O:2.3~6.3wt.%。
5.根据权利要求1所述的制备方法,其特征在于:所述步骤(2)中清洗为在酒精中超声清洗,功率为300W、频率40KHz,清洗时间为30min。
6.根据权利要求1所述的制备方法,其特征在于:所述步骤(2)中的打磨抛光后的铋酸盐玻璃的表面粗糙度为2μm以下。
7.根据权利要求1所述的制备方法,其特征在于:所述步骤(3)中的焊接模具包括:炉膛,凸模,凹模,真空压力表,加热电阻丝,真空泵及阀门;所述凹模放在炉腔内,凹模与凸模间隙配合,所述加热电阻丝设置于炉腔的侧周壁上,炉腔上设置有真空压力表,所述真空泵连接所述炉腔,所述阀门设置在真空泵与炉腔的连接管上。
8.根据权利要求1所述的制备方法,其特征在于:所述步骤(4)中进行真空热压复合的步骤及参数如下:抽真空至真空度为5.0×10-2~1.33×10-4Pa,升温至460~560℃后,施加压力,保持压力值为1~3MPa,保持时间为1~8h,随后随炉冷却至室温。
9.一种由权利要求1-8任一所述的制备方法制备的高体积分数SiCp/Al与铋酸盐玻璃复合材料,其特征在于,该复合材料由体积分数为60~75%的高体积分数SiCp/Al及组成成为Bi2O3:68.7~72.7wt.%,B2O3:15wt.%,BaO:10wt.%,Li2O:2.3~6.3wt.%的铋酸盐玻璃复合而成。
10.一种高体积分数SiCp/Al与铋酸盐玻璃复合材料焊接模具,包括凸模,凹模;其特征在于:还包括炉膛,凸模,凹模,真空压力表,加热电阻丝,真空泵及阀门;所述凹模放在炉腔内,所述凸模通过连接装置设置于炉膛上,凹模与凸模间隙配合;所述加热电阻丝设置于炉腔的侧周壁上;炉腔上设置有真空压力表;真空泵连接所述炉腔,所述阀门设置在真空泵与炉腔的连接管上;铋酸盐玻璃叠放在高体积分数SiCp/Al的上部,并放置在凸模和凹模之间。
CN201710319570.0A 2017-05-09 2017-05-09 一种高体分SiCp/Al与铋酸盐玻璃复合材料及其制备方法 Expired - Fee Related CN107326320B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710319570.0A CN107326320B (zh) 2017-05-09 2017-05-09 一种高体分SiCp/Al与铋酸盐玻璃复合材料及其制备方法
PCT/CN2017/111337 WO2018205538A1 (zh) 2017-05-09 2017-11-16 一种高体分SiCp/Al与铋酸盐玻璃复合材料及其制备方法
ZA2020/01015A ZA202001015B (en) 2017-05-09 2020-02-18 High volume fraction sicp/al and bismuthate glass composite and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710319570.0A CN107326320B (zh) 2017-05-09 2017-05-09 一种高体分SiCp/Al与铋酸盐玻璃复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107326320A CN107326320A (zh) 2017-11-07
CN107326320B true CN107326320B (zh) 2019-05-14

Family

ID=60192571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710319570.0A Expired - Fee Related CN107326320B (zh) 2017-05-09 2017-05-09 一种高体分SiCp/Al与铋酸盐玻璃复合材料及其制备方法

Country Status (3)

Country Link
CN (1) CN107326320B (zh)
WO (1) WO2018205538A1 (zh)
ZA (1) ZA202001015B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107326320B (zh) * 2017-05-09 2019-05-14 华南理工大学 一种高体分SiCp/Al与铋酸盐玻璃复合材料及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652972B1 (en) * 1999-11-01 2003-11-25 Schott Glass Technologies Inc. Low temperature joining of phosphate glass
CN1583626A (zh) * 2004-06-08 2005-02-23 中国科学院上海光学精密机械研究所 铋酸盐玻璃及其制备方法
CN101428971B (zh) * 2006-09-06 2011-09-21 哈尔滨工业大学 碳短纤维增强BaAl2Si2O8复合材料的制备方法
CN101323502A (zh) * 2008-06-20 2008-12-17 中国科学院上海光学精密机械研究所 无铅低熔点高折射率玻璃及其制备方法
CN101602573A (zh) * 2009-07-21 2009-12-16 中国计量学院 一种铋酸盐低熔点无铅封接玻璃材料及其制备方法
US9469562B2 (en) * 2011-07-27 2016-10-18 Nippon Electric Glass Co., Ltd. Glass substrate with sealing material layer, organic EL device using same, and manufacturing method for electronic device
CN102962592B (zh) * 2012-12-14 2014-11-12 哈尔滨工业大学 SiCp/Al复合材料电子束辅助热挤压扩散连接方法
CN103100800B (zh) * 2013-03-11 2014-12-03 河南理工大学 一种膏状钎料及其制备方法和使用方法
CN103524037B (zh) * 2013-07-26 2016-08-10 宁波大学 一种银纳米颗粒复合块体铋酸盐玻璃材料及其制备方法
CN104294071B (zh) * 2014-01-09 2016-08-17 郑州航空工业管理学院 一种低温玻璃相增强的SiCp/Cu复合材料及其制备方法
CN103894719B (zh) * 2014-03-04 2016-10-05 华南理工大学 一种连接高体积分数碳化硅颗粒增强铝基复合材料与钛合金的方法
CN107326320B (zh) * 2017-05-09 2019-05-14 华南理工大学 一种高体分SiCp/Al与铋酸盐玻璃复合材料及其制备方法

Also Published As

Publication number Publication date
CN107326320A (zh) 2017-11-07
WO2018205538A1 (zh) 2018-11-15
ZA202001015B (en) 2022-05-25

Similar Documents

Publication Publication Date Title
CN100580900C (zh) 基板载放台
US20160209133A1 (en) Thermally conductive composite sheet and method for making same
CN110452010B (zh) 一种高熵合金连接碳化硅陶瓷连接件及其制备方法和应用
CN103894719B (zh) 一种连接高体积分数碳化硅颗粒增强铝基复合材料与钛合金的方法
CN103273155B (zh) 一种碳化硅陶瓷与铁素体不锈钢的扩散连接方法
CN105522244B (zh) 一种超声波辅助的低温玻璃钎焊方法
CN101935226B (zh) 一种用于SiO2f/SiO2复合陶瓷与金属材料钎焊的工艺方法
JP5978105B2 (ja) 炭化ケイ素セラミックス接合体及び炭化ケイ素セラミックス接合体の製造方法
CN108546095A (zh) 一种氧化物陶瓷与金属焊接连接的方法
CN109415253A (zh) 一种平板真空玻璃的封接方法
CN103894694A (zh) 一种复合型绿色低熔玻璃钎料连接碳化硅增强铝基复合材料的方法
CN106041350B (zh) 钨/铜或钨/钢接头及其制备方法
JP2012025654A (ja) カーボンスチールとジルコニアセラミックスとの接合方法及びこの方法で得た接合部品
Liu et al. Brazing continuous carbon fiber reinforced Li2O–Al2O3–SiO2 ceramic matrix composites to Ti–6Al–4V alloy using Ag–Cu–Ti active filler metal
CN110330356A (zh) 一种碳化硅陶瓷钎焊连接方法
CN105149717A (zh) 一种硅基陶瓷表面金属化方法
CN108637447A (zh) 一种钛合金与可伐合金的异种金属电子束焊方法
CN107326320B (zh) 一种高体分SiCp/Al与铋酸盐玻璃复合材料及其制备方法
CN113666766A (zh) 一种玻璃焊料渗透连接氧化锆陶瓷的方法
CN108555476B (zh) 一种钎焊石英纤维增强复合陶瓷与Invar合金的复合钎料及其制备方法和钎焊方法
CN106116627B (zh) 一种磷酸盐玻璃钎料低温连接氧化铝陶瓷的方法
CN107433401B (zh) 一种使用Al基钎料钎焊Ti2AlC陶瓷的方法
CN108907492B (zh) 一种钼/钢接头及其制备方法
CN113084176B (zh) 一种自支撑金刚石膜/Cu复合热沉材料及其制备方法
CN110181196A (zh) 一种用于钎焊陶瓷和高温合金的AgCu复合钎料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190514