CN107325482A - 一体式发泡制备高强度预制舱体的方法 - Google Patents

一体式发泡制备高强度预制舱体的方法 Download PDF

Info

Publication number
CN107325482A
CN107325482A CN201710660386.2A CN201710660386A CN107325482A CN 107325482 A CN107325482 A CN 107325482A CN 201710660386 A CN201710660386 A CN 201710660386A CN 107325482 A CN107325482 A CN 107325482A
Authority
CN
China
Prior art keywords
parts
resin
foaming
flame
steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710660386.2A
Other languages
English (en)
Other versions
CN107325482B (zh
Inventor
张记飞
王奎鑫
李增贺
周仲强
姜子健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linyi Beyond Power Construction Co Ltd
State Grid Corp of China SGCC
Linyi Power Supply Co of State Grid Shandong Electric Power Co Ltd
Original Assignee
Linyi Beyond Power Construction Co Ltd
State Grid Corp of China SGCC
Linyi Power Supply Co of State Grid Shandong Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linyi Beyond Power Construction Co Ltd, State Grid Corp of China SGCC, Linyi Power Supply Co of State Grid Shandong Electric Power Co Ltd filed Critical Linyi Beyond Power Construction Co Ltd
Priority to CN201710660386.2A priority Critical patent/CN107325482B/zh
Publication of CN107325482A publication Critical patent/CN107325482A/zh
Application granted granted Critical
Publication of CN107325482B publication Critical patent/CN107325482B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/14Modified phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/127Mixtures of organic and inorganic blowing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/12Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/20Ternary blends of expanding agents
    • C08J2203/202Ternary blends of expanding agents of physical blowing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2361/14Modified phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • C08J2491/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/026Phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明属于变电站技术领域,公开了一体式发泡制备高强度预制舱体的方法,其包括如下步骤:步骤1)制备阻燃树脂,步骤2)制备发泡剂,步骤3)称取原料,步骤4)发泡成型。本发明方法采用发泡技术,制备的预制舱体耐腐蚀,保温防火效果好。

Description

一体式发泡制备高强度预制舱体的方法
技术领域
本发明属于变电站技术领域,具体涉及一体式发泡制备高强度预制舱体的方法。
背景技术
预制舱是户外智能变电站模块化建设的核心产品,舱内由二次智能装置、暖通、照明、消防、安防、图像监控、内部环境控制系统等设备构成。由工厂完成生产、安装、整体运输,实现工厂加工,工厂调试。
目前国内变电站试点项目中所采用的预制舱主要采用轻钢结构形式的预制舱。钢结构预制舱采用热轧型钢整体焊接形成舱体骨架,在同样受力条件下钢结构的构件截面小,自重轻,便于运输和安装,具有轻质高强的特点。并且钢材韧性、塑性好,材质均匀,结构可靠性高,适于承受冲击和动力荷载,具有良好的抗震性能。钢材内部组织结构均匀,近于各向同性匀质体。钢结构的实际工作性能比较符合计算理论。因此钢结构预制舱具有较高的结构可靠性。但是钢结构的预制舱体存在如下缺陷:尺寸庞大,舱体的防腐处理难度较大且成本较高,导致其使用寿命将受到影响及环境适应性较差,且该舱型耐火保温性能较差,易产生凝露,这种舱体将不能很好的适用于沿海、潮湿、极寒、极热等地区。
发明内容
为了克服现有技术存在的缺陷,本发明的目的是提供一体式发泡制备高强度预制舱体的方法,该方法采用发泡技术,制备的预制舱体耐腐蚀,耐潮耐寒,保温防火效果好。
为实现上述目的,本发明采用的技术方案如下:
一体式发泡制备高强度预制舱体的方法,其包括如下步骤:步骤1)制备阻燃树脂,步骤2)制备发泡剂,步骤3)称取原料,步骤4)发泡成型。
进一步地,所述步骤1)制备阻燃树脂,包括如下步骤:将氢氧化钠溶液与苯酚混合并在温度为40℃保温20min,然后加入甲醛,升温至80℃保温30min;然后向得到的溶液中加入相当于苯酚重量1%的双酚A型环氧树脂、0.2%的聚二甲基硅氧烷,在温度为90℃回流60min,然后与红磷按照10:1的重量比混合均匀,降至室温,即得。
进一步地,所述步骤2)制备发泡剂,包括如下步骤:将CO2、N2以及乙醇按照1:1:2的质量比添加到高压混合器中,充分混合,即得。
进一步地,所述步骤3)称取原料,包括如下步骤:按照重量份称取各原料备用,其中,聚丙烯树脂50-70份、阻燃树脂30-50份、聚酰亚胺树脂20-30份、发泡剂3-5份、纳米硅藻土2-3份、氯化石蜡2-3份、氧化镁1-2份、玻璃纤维1-2份。
进一步地,所述步骤4)发泡成型,包括如下步骤:将聚丙烯树脂、阻燃树脂、聚酰亚胺树脂、纳米硅藻土、氯化石蜡、氧化镁以及玻璃纤维通过喂料机进入挤塑机,在挤塑机内充分塑化后再注入发泡剂,充分混合和冷却后通过模具挤出板材,再经过定型牵引机将板材定型为所需的厚度和宽度,经过切割成型,组装即可。
本发明的出发点以及取得的有益效果主要包括但是并不限于以下几个方面:
本发明采用发泡工艺,制备的预制舱体具有较强的机械强度和保温防火性能,并且具备对酸、碱、盐及大部分有机物有较强的抵抗腐蚀的能力,大大提升舱体的使用寿命;玻璃纤维可以有效的解决水泥收缩龟裂和热胀冷缩产生的舱体变形、裂缝的问题,适用于温差较大的地区;本发明使用CO2、N2以及乙醇协同发泡,显著提高CO2与塑料材料的相容性和发泡倍率,提高了板材性能;本发明对酚醛树脂进行了改性,提高了阻燃耐候性能;纳米硅藻土是性能优异的无机非金属材料,其具有比表面积大,表面吸附力强,化学纯度高、分散性能好等特异的性能,以其优越的稳定性、耐腐蚀性,其能均匀分散到有机材料骨架中,组织相同性能好,分布在材料的骨架中,提高了机械强度和耐腐蚀性能。本发明制备的预制舱体具备较好的耐火保温性能,相对钢结构形式的预制舱,其可以更好的满足变电站的防火保温要求。
具体实施方式
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请具体实施例,对本发明进行更加清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
实施例1
一体式发泡制备高强度预制舱体的方法,其包括如下步骤:
步骤1)制备阻燃树脂:称取浓度为90wt%苯酚、35wt%的甲醛及20wt%的氢氧化钠溶液,三者的摩尔比为1:2:1,将氢氧化钠溶液与苯酚混合并在温度为40℃保温20min,然后加入甲醛,升温至80℃保温30min;然后向得到的溶液中加入相当于苯酚重量1%的双酚A型环氧树脂、0.2%的聚二甲基硅氧烷,在温度为90℃回流60min,然后与红磷按照10:1的重量比混合均匀,降至室温,即得;
步骤2)制备发泡剂:将CO2、N2以及乙醇按照1:1:2的质量比添加到高压混合器中,压强为20MPa,充分混合,即得;
步骤3)称取原料:按照重量份称取各原料备用:聚丙烯树脂50份、阻燃树脂30份、聚酰亚胺树脂20份、发泡剂3份、纳米硅藻土2份、氯化石蜡2份、氧化镁1份、玻璃纤维1份;
步骤4)发泡成型:将聚丙烯树脂、阻燃树脂、聚酰亚胺树脂、纳米硅藻土、氯化石蜡、氧化镁以及玻璃纤维通过喂料机进入挤塑机,在挤塑机内充分塑化后再注入发泡剂,充分混合和冷却后通过模具挤出,在模具挤出后压力迅速释放,被塑料包裹的发泡剂迅速膨胀形成密闭的泡孔,在泡孔的作用下形成了有蜂窝状密闭泡孔的板材,再经过定型牵引机将板材定型为所需的厚度和宽度,经过切割成型,组装即可。
实施例2
一体式发泡制备高强度预制舱体的方法,其包括如下步骤:
步骤1)制备阻燃树脂:称取浓度为90wt%苯酚、35wt%的甲醛及20wt%的氢氧化钠溶液,三者的摩尔比为1:2:1,将氢氧化钠溶液与苯酚混合并在温度为40℃保温20min,然后加入甲醛,升温至80℃保温30min;然后向得到的溶液中加入相当于苯酚重量1%的双酚A型环氧树脂、0.2%的聚二甲基硅氧烷,在温度为90℃回流60min,然后与红磷按照10:1的重量比混合均匀,降至室温,即得;
步骤2)制备发泡剂:将CO2、N2以及乙醇按照1:1:2的质量比添加到高压混合器中,压强为20MPa,充分混合,即得;
步骤3)称取原料:按照重量份称取各原料备用:聚丙烯树脂70份、阻燃树脂50份、聚酰亚胺树脂30份、发泡剂5份、纳米硅藻土3份、氯化石蜡3份、氧化镁2份、玻璃纤维2份;
步骤4)发泡成型:将聚丙烯树脂、阻燃树脂、聚酰亚胺树脂、纳米硅藻土、氯化石蜡、氧化镁以及玻璃纤维通过喂料机进入挤塑机,在挤塑机内充分塑化后再注入发泡剂,充分混合和冷却后通过模具挤出,在模具挤出后压力迅速释放,被塑料包裹的发泡剂迅速膨胀形成密闭的泡孔,在泡孔的作用下形成了有蜂窝状密闭泡孔的板材,再经过定型牵引机将板材定型为所需的厚度和宽度,经过切割成型,组装即可。
实施例3
本发明实施例1-2制备的预制舱体各项主要技术指标:具体见表1:
表1
实施例4
发泡剂类型选择对性能参数的影响:
实验组为实施例1,对照1:仅采用CO2;对照2:CO2和乙醇;对照3:CO2和N2;具体见表2:
表2
组别 实验组 对照1 对照2 对照3
导热系数,W/(m·k) 0.015 0.049 0.028 0.034
水蒸气透过系数,ng/(Pa·m·s) 1.53 2.97 2.46 2.17
拉伸强度,MPa 16.9 12.8 15.1 13.6
结论:本发明发泡剂配伍合理,效果好,效果明显优于现有技术常用的发泡剂。
实施例5
耐酸碱腐蚀性能测试:
1、设置组别:试验组为实施例2;对照组不添加纳米硅藻土和玻璃纤维,其余同实施例2。操作流程:将试验材料浸泡到10wt%的硫酸溶液中30天,检测机械性能参数,见表3:
表3
组别 断裂伸长率保持率(%) 抗拉强度保持率(%) 硬度保持率(%)
实施例2 99.3 99.7 101.8
对照组 91.4 92.5 103.6
2、设置组别:试验组为实施例2;对照组不添加纳米硅藻土和玻璃纤维,其余同实施例2。操作流程:将试验材料浸泡到8wt%的氢氧化钠溶液中30天,检测机械性能参数,见表4:
表4
组别 断裂伸长率保持率(%) 抗拉强度保持率(%) 硬度保持率(%)
实施例2 99.5 99.4 100.5
对照组 91.4 90.2 102.9
结论:与对照组相比,添加适量的纳米硅藻土和玻璃纤维能够有效地耐酸碱腐蚀,并且能够保持较好的机械性能。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。

Claims (5)

1.一体式发泡制备高强度预制舱体的方法,其包括如下步骤:步骤1)制备阻燃树脂,步骤2)制备发泡剂,步骤3)称取原料,步骤4)发泡成型。
2.根据权利要求1所述的方法,其特征在于,所述步骤1)制备阻燃树脂,包括如下步骤:将氢氧化钠溶液与苯酚混合并在温度为40℃保温20min,然后加入甲醛,升温至80℃保温30min;然后向得到的溶液中加入相当于苯酚重量1%的双酚A型环氧树脂、0.2%的聚二甲基硅氧烷,在温度为90℃回流60min,然后与红磷按照10:1的重量比混合均匀,降至室温,即得。
3.根据权利要求2所述的方法,其特征在于,所述步骤2)制备发泡剂,包括如下步骤:将CO2、N2以及乙醇按照1:1:2的质量比添加到高压混合器中,充分混合,即得。
4.根据权利要求3所述的方法,其特征在于,所述步骤3)称取原料,包括如下步骤:按照重量份称取各原料备用,其中,聚丙烯树脂50-70份、阻燃树脂30-50份、聚酰亚胺树脂20-30份、发泡剂3-5份、纳米硅藻土2-3份、氯化石蜡2-3份、氧化镁1-2份、玻璃纤维1-2份。
5.根据权利要求4所述的方法,其特征在于,所述步骤4)发泡成型,包括如下步骤:将聚丙烯树脂、阻燃树脂、聚酰亚胺树脂、纳米硅藻土、氯化石蜡、氧化镁以及玻璃纤维通过喂料机进入挤塑机,在挤塑机内充分塑化后再注入发泡剂,充分混合和冷却后通过模具挤出板材,再经过定型牵引机将板材定型为所需的厚度和宽度,经过切割成型,组装即可。
CN201710660386.2A 2017-08-04 2017-08-04 一体式发泡制备高强度预制舱体的方法 Active CN107325482B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710660386.2A CN107325482B (zh) 2017-08-04 2017-08-04 一体式发泡制备高强度预制舱体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710660386.2A CN107325482B (zh) 2017-08-04 2017-08-04 一体式发泡制备高强度预制舱体的方法

Publications (2)

Publication Number Publication Date
CN107325482A true CN107325482A (zh) 2017-11-07
CN107325482B CN107325482B (zh) 2019-04-09

Family

ID=60225661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710660386.2A Active CN107325482B (zh) 2017-08-04 2017-08-04 一体式发泡制备高强度预制舱体的方法

Country Status (1)

Country Link
CN (1) CN107325482B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2305246C (en) * 1997-10-31 2011-08-02 Lonza Ag Microcellular thermoset foams and process for their production
CN102690494A (zh) * 2012-06-08 2012-09-26 中国石油化工股份有限公司 一种酚醛树脂组合物及其制备的发泡材料
CN103289309A (zh) * 2012-02-28 2013-09-11 营口象圆新材料工程技术有限公司 一种柔性环氧树脂增韧改性酚醛泡沫塑料的方法
CN103435969A (zh) * 2013-09-03 2013-12-11 四川大学 一种高强度耐温开孔酚醛树脂泡沫及其制备方法
CN106433016A (zh) * 2016-08-30 2017-02-22 江苏德明新材料有限公司 一种改性增强型保温隔声酚醛泡沫板及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2305246C (en) * 1997-10-31 2011-08-02 Lonza Ag Microcellular thermoset foams and process for their production
CN103289309A (zh) * 2012-02-28 2013-09-11 营口象圆新材料工程技术有限公司 一种柔性环氧树脂增韧改性酚醛泡沫塑料的方法
CN102690494A (zh) * 2012-06-08 2012-09-26 中国石油化工股份有限公司 一种酚醛树脂组合物及其制备的发泡材料
CN103435969A (zh) * 2013-09-03 2013-12-11 四川大学 一种高强度耐温开孔酚醛树脂泡沫及其制备方法
CN106433016A (zh) * 2016-08-30 2017-02-22 江苏德明新材料有限公司 一种改性增强型保温隔声酚醛泡沫板及其制备方法

Also Published As

Publication number Publication date
CN107325482B (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN101148515B (zh) 建筑用复合型酚醛泡沫保温板材及其成型方法
CN104497473B (zh) 一种纤维增强酚醛泡沫复合材料及其制备方法
CN102924864B (zh) 改性环保酚醛保温材料及其制备方法
CN109160987B (zh) 硅烷化纳米二氧化硅改性木质素基酚醛树脂及其制备方法和应用
CN102924037B (zh) 建筑物外墙用防火保温板及其制造方法
CN103694625B (zh) 一种改性酚醛泡沫体
CN104513454A (zh) 一种阻燃耐高温板材及其生产方法
CN106046671A (zh) 改性酚醛树脂复合保温材料及其制备方法
CN114437544A (zh) 一种耐高温的双马来酰亚胺-聚酰亚胺互穿结构泡沫材料及其制备方法
CN105130371A (zh) 一种建筑外墙保温材料及其制备方法
CN107915953A (zh) 一种平板集热器复合保温材料及其制备方法
CN107325482A (zh) 一体式发泡制备高强度预制舱体的方法
CN103122122A (zh) 一种增韧改性酚醛树脂及酚醛泡沫的制备方法
CN201125463Y (zh) 建筑用复合型酚醛泡沫保温板材
CN107418136A (zh) 一种复合型泡沫保温材料及其制备方法
CN107474204A (zh) 一种改性酚醛泡沫保温材料及其制备方法
CN104058785B (zh) 一种发泡水泥保温板
CN105968622A (zh) 一种质轻高强聚氯乙烯发泡管
CN109650837B (zh) 秸秆/镁水泥复合轻质高强防火门芯板及其制备方法
CN105968607A (zh) 一种使用寿命长的聚氯乙烯发泡管
CN210032160U (zh) 一种预制泡沫混凝土保温板
CN102383501A (zh) 镶嵌式加气混凝土复合外墙保温板
CN205688600U (zh) 有机材料复合挤塑保温板
CN106284827A (zh) 一种地质聚合物基轻质墙板及制备方法
CN108034188B (zh) 一种玻璃棉增强酚醛泡沫复合板的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant