CN107317461A - 电力转换装置 - Google Patents

电力转换装置 Download PDF

Info

Publication number
CN107317461A
CN107317461A CN201710257291.6A CN201710257291A CN107317461A CN 107317461 A CN107317461 A CN 107317461A CN 201710257291 A CN201710257291 A CN 201710257291A CN 107317461 A CN107317461 A CN 107317461A
Authority
CN
China
Prior art keywords
semiconductor devices
auxiliary
semiconductor device
main
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710257291.6A
Other languages
English (en)
Other versions
CN107317461B (zh
Inventor
持木健吾
木村光德
清水浩史
大河内靖之
山平优
松冈哲矢
福岛和马
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Publication of CN107317461A publication Critical patent/CN107317461A/zh
Application granted granted Critical
Publication of CN107317461B publication Critical patent/CN107317461B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/08116Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit in composite switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/041Modifications for accelerating switching without feedback from the output circuit to the control circuit
    • H03K17/0412Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current
    • H03K17/127Modifications for increasing the maximum permissible switched current in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0036Means reducing energy consumption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种电力转换装置包括含有半导体器件的半导体模块和控制半导体模块的控制电路单元。半导体模块具有并联连接的主和辅助半导体器件。控制电路单元执行控制,使得在主半导体器件被接通之后,辅助半导体器件被接通,并且在辅助半导体器件被断开之后,主半导体器件被断开。控制短路单元执行控制使得,接通和断开切换时刻中的一个具有比切换时刻中的另一个更快的切换速度。半导体模块被配置成使得,在高速切换时刻,取决于流向主半导体器件的主电流的时间变化,在辅助半导体器件的控制端子中生成意在断开辅助半导体器件的感应电流。

Description

电力转换装置
技术领域
本发明涉及一种电力转换器,其具有包括半导体器件的半导体模块和控制半导体模块的切换操作的控制电路单元。
背景技术
已知存在一种电力转换装置,其包括含有半导体器件的半导体模块和连接至半导体模块的控制电路单元(参见JP 580513 B1)。在该电力转换装置中,通过控制电路单元执行半导体器件的切换操作。作为结果,电力转换被执行。
近些年,将用作主器件的半导体器件(主半导体器件)和用作辅助器件的半导体器件(辅助半导体器件)并联连接以切换半导体器件的技术已被审核。此外,例如,使用IGBT作为主半导体器件和使用MOSFET作为附属半导体器件的技术已被审核。以这种方式,通过将具有不同特性的半导体器件并联连接来改善整个半导体模块的特性的技术已被审核。
然而,不利的是,MOSFET(辅助半导体器件)的导通电阻容易随着温度升高而增加。为此,已进行了用于减小辅助半导体器件的切换损耗的研究。例如,在接通主半导体器件之后接通辅助半导体器件以及在断开辅助半导体器件之后断开主半导体器件的技术(参见图5)已被审核。作为结果,当辅助切换元件从截止状态改变到导通状态或从导通状态改变到截止状态时,主半导体器件必然是接通的。由于这个原因,可在主半导体器件接通的同时执行辅助半导体器件的切换操作,并降低了端子间的电压。因此,有可能减少辅助半导体器件的切换损耗。由此,有可能抑制辅助半导体器件的温度升高。
然而,使用上述电力转换装置可能不一定充分减少辅助半导体器件的切换损耗。也就是说,如果执行主半导体器件的切换操作,流向主半导体器件的主电流会随时间而变化。由于这个原因,在主电流周围生成的磁场会随时间而变化,使得在辅助半导体器件的控制端子中生成感应电流以使辅助半导体器件接通。因此,在主半导体器件执行切换操作的同时,辅助半导体器件可能被错误地接通。作为结果,可能难以充分减小辅助半导体器件的切换损耗。
发明内容
实施例提供一种能够抑制辅助半导体器件的错误操作的电力转换装置。
作为实施例的一个方面,电力转换装置包括:半导体模块和控制电路单元,其中半导体模块包括半导体器件,以及控制电路单元控制半导体模块的切换操作。半导体模块具有作为半导体器件的,彼此并联连接的主半导体器件和辅助半导体器件。控制电路单元执行控制,使得在主半导体器件被接通之后,辅助半导体器件被接通,并且在辅助半导体器件被断开之后,主半导体器件被断开。控制电路单元执行控制,使得在包括主半导体器件从截止状态切换至导通状态的导通时刻和主半导体器件从导通状态切换至截止状态的截止时刻的两个切换时刻当中,切换时刻中的一个具有比切换时刻中的另一个更快的切换速度。半导体模块被配置成使得,在具有快速切换速度的高速切换时刻,取决于流向主半导体器件的主电流的时间变化,在辅助半导体器件的控制端子中生成意在断开辅助半导体器件的感应电流。
附图说明
在附图中:
图1是示出了在主半导体器件接通时,根据第一实施例的半导体模块的截面图;
图2是示出了在主半导体器件断开时,根据第一实施例的半导体模块的截面图;
图3是示出了在主半导体器件接通时,根据第一实施例的半导体模块的电路图;
图4是示出了在主半导体器件断开时,根据第一实施例的半导体模块的电路图;
图5是示出了根据第一实施例的主半导体器件和辅助半导体器件的波形图;
图6示出了在室温下根据第一实施例的主半导体器件和辅助半导体器件的电流-电压特性;
图7示出了在高温下根据第一实施例的主半导体器件和辅助半导体器件的电流-电压特性;
图8是根据第一实施例的电力转换装置的电路图;
图9是示出了根据第一实施例的伴随驱动电路的半导体模块的一部分的电路图;
图10是示出了根据第一实施例的设置有仅一个主半导体器件和仅一个辅助半导体器件的半导体模块的截面图;
图11是示出了在主半导体器件接通时,根据第二实施例的半导体模块的截面图;
图12是示出了在主半导体器件断开时,根据第二实施例的半导体模块的截面图;
图13是示出了根据第二实施例的主半导体器件和辅助半导体器件的波形图;
图14是示出了在主半导体器件接通时,根据第三实施例的半导体模块的截面图;
图15是根据第四实施例的电力转换装置的电路图;
图16是示出了在主半导体器件接通时,根据第五实施例的伴随驱动电路的半导体模块的一部分的电路图;
图17是示出了在主半导体器件断开时,根据第五实施例的伴随驱动电路的半导体模块的一部分的电路图;
具体实施方式
电力转换装置可以是安装在诸如混合动力车辆或电动车辆之类的车辆上的车载电力转换装置。
(第一实施例)
将参照图1至10描述根据一实施例的电力转换装置。如图8中所示,根据该实施例的电力转换器1包括半导体模块2和控制电路单元4,其中半导体模块2包括半导体器件3,控制电路单元4控制半导体模块2的切换操作。
半导体模块2包括作为半导体器件3的,彼此并联连接的主半导体器件3a和辅助半导体器件3b。
如图5中所示,控制电路单元4执行控制,使得辅助半导体器件3b在主半导体器件3a接通之后被接通,以及主半导体器件3a在辅助半导体器件3b断开之后被断开。
如图5中所示,控制电路单元4执行控制,使得在包括主半导体器件3a从截止状态切换至导通状态处的导通时刻ton和主半导体器件3a从导通状态切换至截止状态处的截止时刻toff的两个切换时刻当中,切换时刻中的一个(在本实施例中,导通时刻ton)具有比切换时刻中的另一个(在本实施例中,截止时刻toff)更快的切换速度。
如图1中所示,根据该实施例的半导体模块2被配置成使得,在具有快速切换速度的高速切换时刻tf(接通时刻ton),取决于流向主半导体器件3a的主电流i的时间变化di/dt(随时间变化,变化率),在辅助半导体器件3b的控制端子20中生成意在断开辅助半导体器件3b的感应电流IGb
根据本实施例的电力转换装置1是安装在混合动力车辆或电动车辆上的车载电力转换装置。如图8中所示,根据本实施例的电力转换装置1包括多个半导体模块2。每个半导体模块2具有两个半导体器件对29,每个半导体器件对29具有主半导体器件3a和辅助半导体器件3b。此类半导体器件对29彼此串联连接。
控制电路单元4执行半导体器件3(3a和3b)的切换操作。作为结果,由DC电力源8供应的DC电力被转换为AC电力。此外,使用所获得的AC电力,驱动AC负载81(三相AC电机)。作为结果,车辆运行。
根据本实施例的主半导体器件3a是IGBT。此外,辅助半导体器件3b是MOSFET。更具体而言,辅助半导体器件3b是由SiC形成的MOSFET(宽带隙半导体)。
图6示出了MOSFET和IGBT的电流—电压特性。如图6中所示,在较小电流流过时,MOSFET具有比IGBT低的导通电阻。由于这个原因,使用MOSFET,有可能降低在低电流区域中的导通电阻。此外,在大电流流过时,IGBT具有比MOSFET低的导通电阻。由于这个原因,使用IGBT,有可能降低高电流区域中的导通电阻。以这种方式,使用MOSFET和IGBT的组合,有可能减小跨越宽电流范围的半导体模块2的导通电阻。
然而,MOSFET的导通电阻在高温下容易增加。如图6和7所示,IGBT具有相对于温度升高的相对低的导通电阻增加率。然而,MOSFET具有高导通电阻增加率。为此,在MOSFET被使用时,有必要减少MOSFET中的切换损耗并抑制温度升高。
为了这个目的,根据本实施例,如图5中所示,在主半导体器件3a(IGBT)被接通之后,辅助半导体器件3b被接通。此外,在辅助半导体器件3b被断开之后,主半导体器件3a被断开。也就是说,在辅助半导体器件(MOSFET)被切换时,主半导体器件3a必然处于接通状态。作为结果,有可能在主半导体器件3a接通的同时切换辅助半导体器件3b,并且将施加至辅助半导体器件3b的电压V降低。因此,在主半导体器件3a中生成切换损耗P的同时,在大多数情况下在辅助半导体器件3b中不生成切换损耗P。由于这个原因,有可能抑制辅助半导体器件3b的温度升高。
接着,将更详细地描述半导体模块2的结构。如图1中所示,根据本实施例的半导体模块2包括含有半导体器件3的主体21、从主体21突出的电力端子22、和控制端子20。电力端子22包括电连接至DC电力源8(参见图8)的正端子22P和负端子22N、以及电连接至AC负载81的AC端子22o。控制端子20连接至控制电路单元4。
控制端子20包括连接至主半导体器件3a的参考电极(发射极)的主参考端子20E、连接至主半导体器件3a的栅电极的主栅极端子20Ga、连接至辅助半导体器件3b的参考电极(源极)的辅助参考端子20S、以及连接至辅助半导体器件3b的栅电极的辅助栅端子20Gb。主参考端子20E和辅助参考端子20S被形成为彼此毗邻。
控制电路单元4相对于主参考端子20E向主栅极端子20Ga施加电压。作为结果,主半导体器件3a被接通。如果电压被施加至主栅极端子20Ga,则栅极电容被充电。由于这个原因,主半导体器件3a一旦被接通,栅极电流(控制电流Ic)就从控制电路单元4流向主栅极端子20Ga。此外,如图2中所示,当主半导体器件3a被断开时,控制电路单元4停止对主栅极端子20Ga的电压施加。在这种情况下,积聚在栅极电容中的电荷被放电,使得电流流向主栅极端子20Ga
如上所述,根据本实施例,在主半导体器件3a被接通时,执行高速切换(参照图5)。当主半导体器件3a被接通时,控制电路单元4在短时间内向栅极施加电压。作为结果,在接通时刻处的切换速度提高。此外,在主半导体器件3a被断开时,控制电路单元4逐渐降低施加至栅极的电压。作为结果,在断开时刻处的切换速度被降低。
如图1和3中所示,如果主半导体器件3a从截止状态切换到导通状态,则主电流i开始在主半导体器件3a(IGBT)的集电极和发射极之间流动。也就是说,主电流i随时间变化。相应地,在主电流i周围生成的磁场H随时间变化,使得跨越辅助半导体器件3b的控制端子20Gb和20S之间的磁通量φ的量随时间变化。由于这个原因,在控制端子20Gb和20S中生成感应电流IGb
如上所述,根据该实施例,在主半导体器件3a从截止状态切换至导通状态时(在接通时刻),切换速度被设置成快速。由于这个原因,主电流i的时间变化率di/dt增加,并且在辅助半导体器件3b的控制端子20Gb和20S中容易生成高感应电流IGb。然而,在这种情况下根据本实施例的半导体模块2被配置成使得感应电流IGb流动以断开辅助半导体器件3b。由于这个原因,即使在较高的感应电流IGb流动时,辅助半导体器件3b也不被接通。因此,辅助半导体器件3b与主半导体器件3a同时转变(turned),使得有可能抑制辅助半导体器件3b的切换损耗的增加。
如图2和4中所示,如果主半导体器件3a从导通状态切换至截止状态,则在主半导体器件3a(IGBT)的集电极和发射极之间流动的主电流i被切断。由于这个原因,主电流i随时间变化。因此,类似于其中主半导体器件3a被接通的情况,在辅助半导体器件3b的控制端子20Gb和20S中生成感应电流IGb
在这种情况下,与主半导体器件3a被接通(在高速切换时刻)的情况相比,感应电流IGb反向流动。也就是说,感应电流IGb流动以接通辅助半导体器件3b。然而,根据本实施例,当主半导体器件3a被断开时,主半导体器件3a的切换速度被延迟(参见图5)。由于这个原因,有可能减小所生成的感应电流IGb并抑制辅助半导体器件3b接通。
接着,将参照图9描述用于使半导体器件3a和3b执行切换操作的驱动电路40。如图9中所示,半导体器件3的控制端子20被连接至驱动电路40。驱动电路40形成于控制电路单元4中(参照图8)。驱动电路40具有电压施加单元41、多个栅极电阻器R、和开关42,其中电压施加单元41向半导体器件3的栅极施加电压。电压施加单元41相对于半导体器件3的参考电极(发射极或源极)向栅极施加电压。
两个栅极电阻器R置于半导体器件3a和3b与电压施加单元41之间。两个栅极电阻器R彼此并联连接以形成可变电阻器43(43a和43b)。在半导体器件3a和3b被接通时,主开关42接通,并且辅助开关42b断开。作为结果,在主可变电阻器43a的电阻值为小的同时,电压被施加至半导体器件3a和3b的栅极相应地,由于主可变电阻器43a的电阻值较小,因此主半导体器件3a被快速接通。
在半导体器件3a和3b被断开时,主开关42a断开,并且辅助开关42b接通。作为结果,在主可变电阻器43a的电阻值为大的同时,向半导体器件3a和3b的栅极的电压施加停止。因此,由于主可变电阻器43a的电阻值较高,因此,与其中半导体器件3a和3b被接通的情况相比,切换速度降低。
接着,将描述本实施例的功能效果。如图5中所示,根据本实施例的控制电路单元4执行控制,使得在两个切换时刻ton和toff当中,切换时刻中的一个(图5中的ton)具有比切换时刻中的另一个(图5中的toff)更快的切换速度。如图1中所示,半导体模块2被配置成使得,在高速切换时刻tf,由于主电流i的时间变化di/dt,在辅助半导体器件3b的控制端子20S和20Gb中生成意在断开辅助半导体器件3b的感应电流IGb
由于这个原因,在高速切换时刻tf处,也就是说,在主电流i的时间变化率di/dt较高,并且在辅助半导体器件3b的控制端子20S和20Gb中生成较大感应电流IGb时,有可能允许感应电流IGb流动以断开辅助半导体器件3b。因此,有可能抑制辅助半导体器件3b被错误地接通。
如果采用上述配置,如图2所示,感应电流IGb流向辅助半导体器件3b的控制端子20S和20Gb以在具有相对慢切换速度的切换时刻(低速切换时刻ts,参照图5)处接通辅助半导体器件3b。然而,由于主电流i的时间变化率di/dt在低速切换时刻ts处是低的,因此辅助半导体器件3b的控制端子20S和20Gb中生成的感应电流IGb为小。由于这个原因,在低速切换时刻ts处,辅助半导体器件3b不容易通过感应电流IGb被错误地接通。
如图1中所示,由于主半导体器件3a被接通,因此流向主半导体器件3a的主电流i随时间变化。相应地,在主电流i周围生成的磁场H随时间变化。由于这个原因,跨越主半导体器件3a的控制端子20Ga和20E之间的磁通量φ的量随时间变化,并且在控制端子20Ga和20E中生成感应电流IGa。感应电流IGa以与从控制电路单元4流动的控制电流IC以相同的方向流动(参照图8)。
由于这个原因,有可能使主半导体器件3a更快速地执行切换操作。因此,有可能更大程度地减小主半导体器件3a的切换损耗。
根据本实施例的主半导体器件3a是IGBT,并且辅助半导体器件是MOSFET。
如图6所示,MOSFET在低电流区域具有小的导通电阻,并且IGBT在高电流区域具有小的导通电阻。以这种方式,通过结合IGBT和MOSFET,有可能减小跨越宽电流范围的半导体模块2的导通电阻。
根据该实施例的MOSFET由宽带隙半导体形成。
由宽带隙半导体形成的MOSFET具有特别低的导通电阻。由于这个原因,通过使用MOSFET,有可能特别减小半导体模块2的导通电阻。
根据该实施例,如图1中所示,辅助参考端子20S和主参考端子20E被设置成彼此毗邻。
由于这个原因,有可能使此类参考端子20S和20E彼此靠近并减小参考端子20S和20E之间的寄生电感。由于这个原因,此类电压,即主半导体器件3a的参考电极(发射极)的电势和辅助半导体器件3b的参考电极(源极)的电势可大致彼此相等。因此,有可能抑制施加至半导体器件3a和3b对的栅极的电压之间的差别,或抑制施加至栅极的电压振荡。
如图9中所示,根据本实施例,主半导体器件3a和辅助半导体器件3b通过相同的驱动电路40驱动。
由于这个原因,有可能减少驱动电路40的数量并降低电力转换装置1的制造成本。
如上所述,根据本实施例,有可能提供一种能够抑制辅助半导体器件的错误操作的电力转换装置。
值得注意的是,根据本实施例,如图1和8中所示,单个半导体模块2具有两个半导体器件对29,每个半导体器件对29包括主半导体器件3a和辅助半导体器件3b。然而,本发明不限于此。也就是说,如图10中所示,也可在单个半导体模块2中设置仅一个半导体器件对29。
根据该实施例,由SiC形成的MOSFET被用作辅助半导体器件3b。然而,本发明不限于此。例如,也可采用由GaN形成的高电子迁移率晶体管。此外也可采用由金刚石形成的晶体管。还可以采用超结(super-junction)MOSFET。
在以下实施例中,在所有附图中,与实施例中所使用的相同的附图标记指示与第一实施例中相似的元件,除非另外指明。
(第二实施例)
本实施例是在其中切换速度的大小关系被改变的示例。如图13中所示,根据本实施例,在主半导体器件3a被接通时切换速度被降低。同时,在主半导体器件3a被断开时切换速度被提高。也就是说,接通时刻被设置为低速切换时刻ts,并且断开时刻被设置为高速切换时刻tf
如图11中所示,在主半导体器件3a被接通时,流经主半导体器件3a的主电流i随时间变化。因此,在辅助半导体器件3b的控制端子20S和20Gb中生成感应电流IGb。在根据本实施例的半导体模块2中,在辅助栅极端子20Gb和辅助参考端子20S之间的位置关系与第一实施例(参照图1)相比相反。由于这个原因,在主半导体器件3a被接通时,感应电流IGb流动以接通辅助半导体器件3b。然而,如上所述,根据本实施例,在主半导体器件3a被接通时切换速度被降低。因此,所生成的感应电流IGb为小。因此,即使在感应电流IGb流动时,辅助半导体器件3b也不被接通。
图12中所示,在辅助半导体器件3b被断开时,感应电流IGb流向辅助半导体器件3b的控制端子20S和20Gb以断开辅助半导体器件3b。在辅助半导体器件3b被断开时,切换速度较快,并且因此较高感应电流IGb流动。然而,由于感应电流IGb流动以断开辅助半导体器件3b,所以辅助半导体器件3b不被接通。
与第一实施例类似,根据本实施例,电力转换装置1(参照图8)包括多个半导体模块2。根据本实施例,在控制电路单元4中形成短路保护电路。在短路保护电路中,当包括在上臂的半导体器件对29H和下臂的半导体器件对29L的任一个中的半导体器件3a或3b被短路时,相对臂的半导体器件3a或3b被强制断开。在这种情况下,在主半导体器件2a被断开时,在断开时刻处的切换速度提高。因此,高感应电流IGb流向辅助半导体器件3b的控制端子20S和20Gb。然而,如上所述,该感应电流IGb流动以断开辅助半导体器件3b。因此,有可能在主半导体器件3a被强制断开时,防止辅助半导体器件3b被感应电流IGb错误地接通。由于这个原因,有可能可靠地保护半导体器件3不被短路。
本实施例包括类似于第一实施例的其他配置和功能效果。
(第三实施例)
本实施例是其中半导体模块2的结构被修改的示例。如图2中所示,根据本实施例,辅助半导体器件3b被布置在路径R上,当在辅助半导体器件3b的厚度方向看时,主半导体器件3a的主电流i通过路径R。
由于这个原因,有可能允许辅助半导体器件3b的控制端子20S和20Gb靠近主电流i。因此,当以高速执行主半导体器件3a的切换操作时,有可能在控制端子20S和20Gb中生成高感应电流IGb以断开辅助半导体器件3b。由于这个原因,有可能可靠地抑制辅助半导体器件3b的错误操作。
本实施例包括类似于第一实施例的其他配置和功能效果。
(第四实施例)
本实施例是其中半导体模块1的结构被修改的示例。如图15中所示,根据本实施例,利用主半导体器件3a和辅助半导体器件3b提供用于提升DC电力源8的DC电压的DC—DC转换器。
本实施例包括类似于第一实施例的其他配置和功能效果。
(第五实施例)
本实施例是其中驱动电路40的配置被修改的示例。如图16中所示,根据本实施例的电力转换器1被配置成使得彼此并联连接的主半导体器件3a和辅助半导体器件3b由相同驱动电路40驱动。驱动电路40包括电压施加单元41、多个栅极电阻器R、和开关42,其中电压施加单元41向半导体器件3a和3b的栅极施加电压。电压施加单元41相对于主半导体器件3a的发射极和辅助半导体器件3b的源极之间的中间点49向栅极施加电压。
两个栅极电阻器R置于半导体器件3a和3b中的每一个与电压施加单元41之间。两个栅极电阻器R彼此并联连接以形成可变电阻器43(43a和43b)。如图16中所示,在半导体器件3a和3b被接通时,主开关42a接通,并且辅助开关42b断开。作为结果,再主可变电阻器43a的电阻值减小,且辅助可变电阻器43b的电阻值增加的同时,电压被施加至半导体器件3a和3b的栅极。相应地,由于主可变电阻器43a的电阻值较小,因此主半导体器件3a被快速接通,并且切换速度提高。此外,由于辅助可变电阻器43b具有较高电阻值,因此辅助半导体器件3b比主半导体器件3a更晚接通。
如图17中所示,在半导体器件3a和3b被断开时,主开关42a被断开,且辅助开关42b被接通。作为结果,在主可变电阻器43a地电阻值增加,且辅助可变电阻器43b的电阻值减小的状态下,向半导体器件3a和3b的栅极施加的电压停止。相应地,由于辅助可变电阻器43b具有较低电阻值,因此辅助半导体器件3b被快速断开。由于主可变电阻器43a具有较高电阻值,因此,主半导体器件3a比辅助半导体器件3b更晚断开。此外,与半导体器件被接通的情况相比,切换速度降低。
将描述本实施例的功能效果。在根据本实施例的电力转换装置1中,彼此并联连接的主半导体器件3a和辅助半导体器件3b通过相同的驱动电路40驱动。由于这个原因,有可能减少驱动电路40的数量。因此,有可能降低电力转换装置1的制造成本。
如图16中所示,电压施加单元41相对于主半导体器件3a的发射极和辅助半导体器件3b的源极之间的中间点49向栅极施加电压。此外,在主半导体器件3a的发射极中存在寄生电感La。由于这个原因,在主半导体器件3a被接通,并且电流i流动时,电感La生成感应电压(Ladi/dt)。在这种情况下,由于辅助半导体器件3b不处于导通状态,因此在辅助半导体器件3b的源极中不生成感应电压(Lbdi/dt)。因此,当主半导体器件3a被接通时,发射极电势Ve变得比源极电势Vs高。由于这个原因,电压施加单元41相对于其中电势高于源极电势Vs的中间点49向辅助半导体器件3b施加电压。因此,容易在辅助半导体器件3b的源极和栅极之间施加较高电压。
然而,根据本实施例,在主半导体器件3a被接通时,感应电流流向辅助半导体器件3b的控制端子20以断开辅助半导体器件3b。因此,有可能抑制特别高的电压被施加至辅助半导体器件3b。由于这个原因,有可能抑制辅助半导体器件3b被施加至辅助半导体器件3b的栅极的特别高的电压错误地操作。
由于在主半导体器件3a被断开(参见图17)时的时间变化率di/dt具有负号,因此发射极电势Ve变得比源极电势Vs更低。因此,电压施加单元41相对于其中电势低于源极电势Vs的中间点49向辅助半导体器件3b的栅极施加电压。由于这个原因,变得难以在辅助半导体器件3b的栅极和源极之间施加充足的电压。根据本实施例,在主半导体器件3a被断开时,感应电流流向辅助半导体器件3b的控制端子20以接通辅助半导体器件3b。然而,在这种情况下,难以向辅助半导体器件3b的栅极施加电压。因此,有可能可靠地防止辅助半导体器件3b被错误地接通。
本实施例包括类似于第一实施例的其他配置和功能效果。
应当理解,本发明不限于上述配置,而是本领域技术人员可能发生的任何和所有修改,变型或等同物都应当被认为落入在本发明的范围内。
在下文中,将总结上述实施例的方面。
作为实施例的一个方面,电力转换装置(1)包括:半导体模块(2)和控制电路单元(4),其中半导体模块(2)包括半导体器件(3),以及控制电路单元(4)控制半导体模块的切换操作。半导体模块具有作为半导体器件的彼此并联连接的主半导体器件(3a)和辅助半导体器件(3b)。控制电路单元执行控制,使得在主半导体器件被接通之后,辅助半导体器件被接通,并且在辅助半导体器件被断开之后,主半导体器件被断开。控制电路单元执行控制,使得在包括主半导体器件从截止状态切换至导通状态处的导通时刻和主半导体器件从导通状态切换至截止状态的截止时刻处的两个切换时刻当中,切换时刻中的一个具有比切换时刻中的另一个更快的切换速度。半导体模块被配置成使得,在具有快速切换速度的高速切换时刻,取决于流向主半导体器件的主电流(i)的时间变化(di/dt),在辅助半导体器件的控制端子(20)中生成意在断开辅助半导体器件的感应电流(IGb)。
电力转换装置的控制电路单元执行控制使得,两个切换时刻中的一个具有比切换时刻中的另一个更快的切换速度。此外,半导体模块被配置成使得,在高速切换时刻,取决于主电流的时间变化,在辅助半导体器件的控制端子中生成意在断开辅助半导体器件的感应电流。
由于这个原因,在高速切换时刻,也就是说,当主电流的时间变化率为高,并且在辅助半导体器件的控制端子中生成大感应电流时,该感应电流可流动以断开辅助半导体器件。因此,有可能抑制辅助半导体器件被错误地接通。
如果采用上述配置,则在其他切换时刻(低速切换时刻)处,意在接通辅助半导体器件的感应电流流向辅助半导体器件的控制终端。然而,由于主电流的时间变化率在低速切换时刻处较低,因此在辅助半导体器件的控制端子中生成的感应电流较小。由于这个原因,在低速切换时刻处,辅助半导体器件不容易被感应电流错误地接通。
如上所述,根据这个方面,有可能提供一种能够抑制辅助半导体器件的错误操作的电力转换器。

Claims (8)

1.一种电力转换装置,其特征在于,包括:
半导体模块,包括半导体器件;以及
控制电路单元,控制所述半导体模块的切换操作,其中
所述半导体模块具有作为所述半导体器件的,彼此并联连接的主半导体器件和辅助半导体器件,
所述控制电路单元执行控制,使得在所述主半导体器件被接通之后,所述辅助半导体器件被接通,并且在所述辅助半导体器件被断开之后,所述主半导体器件被断开,
所述控制电路单元执行控制,使得在包括所述主半导体器件从截止状态切换至导通状态处的导通时刻和主半导体器件从导通状态切换至截止状态处的截止时刻的两个切换时刻当中,切换时刻中的一个具有比切换时刻中的另一个更快的切换速度,
所述半导体模块被配置成使得,在具有快速切换速度的高速切换时刻,取决于流向所述主半导体器件的主电流的时间变化,在所述辅助半导体器件的控制端子中生成意在断开辅助半导体器件的感应电流。
2.根据权利要求1所述的电力转换装置,其特征在于,所述半导体模块被配置成使得,在高速切换时刻,取决于流向所述主半导体器件的主电流的时间变化,在所述主半导体器件的控制端子中生成具有与从所述控制电路单元流向所述控制端子的控制电流相同方向的感应电流。
3.根据权利要求1所述的电力转换装置,其特征在于,所述主半导体器件是IGBT,并且所述辅助半导体器件是MOSFET。
4.根据权利要求3所述的电力转换装置,其特征在于,所述MOSFET由宽带隙半导体形成。
5.根据权利要求1所述的电力转换装置,其特征在于,
所述半导体模块具有主参考端子和辅助参考端子,其中所述主参考端子连接至作为控制端子的所述主半导体器件的参考电极,所述辅助参考端子连接至所述辅助半导体器件的参考电极,以及
所述主参考端子和所述辅助参考端子被形成为彼此毗邻。
6.根据权利要求1所述的电力转换装置,其特征在于,当从所述辅助半导体器件的厚度方向看时,所述辅助半导体器件被布置在所述主半导体器件的主电流所通过的路径上。
7.根据权利要求1所述的电力转换装置,其特征在于,
各具有所述主半导体器件和所述辅助半导体器件的两个半导体器件对彼此串联连接,
所述控制电路单元具有短路保护电路,所述短路保护电路被配置成在另一臂侧的半导体器件短路时,断开上臂侧的半导体器件和下臂侧的半导体器件中的任一个,并且
所述半导体模块被配置成使得,取决于在所述主半导体器件被断开时流向所述主半导体器件的主电流的时间变化,在所述辅助半导体器件的控制端子中生成意在断开所述辅助半导体器件的感应电流。
8.根据权利要求1所述的电力转换装置,其特征在于,
所述控制电路单元包括驱动电路,所述驱动电路驱动所述主半导体器件和辅助半导体器件,并且
所述控制电路单元被配置成使得,彼此以并联连接的所述主半导体器件和辅助半导体器件通过使用相同的所述驱动电路驱动。
CN201710257291.6A 2016-04-19 2017-04-19 电力转换装置 Active CN107317461B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-083937 2016-04-19
JP2016083937A JP6686663B2 (ja) 2016-04-19 2016-04-19 電力変換装置

Publications (2)

Publication Number Publication Date
CN107317461A true CN107317461A (zh) 2017-11-03
CN107317461B CN107317461B (zh) 2020-07-28

Family

ID=59980427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710257291.6A Active CN107317461B (zh) 2016-04-19 2017-04-19 电力转换装置

Country Status (4)

Country Link
US (2) US10050512B2 (zh)
JP (1) JP6686663B2 (zh)
CN (1) CN107317461B (zh)
DE (1) DE102017108305A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2701158C1 (ru) * 2018-01-25 2019-09-25 Тойота Дзидося Кабусики Кайся Устройство преобразования мощности

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6820825B2 (ja) 2017-11-09 2021-01-27 三菱電機株式会社 半導体装置及びその駆動方法
US10536094B2 (en) 2017-11-20 2020-01-14 Solaredge Technologies Ltd. Efficient switching for converter circuit
JP7059628B2 (ja) * 2017-12-26 2022-04-26 株式会社デンソー 電力変換装置
CN111630766B (zh) * 2018-01-26 2024-02-09 株式会社日立制作所 电力变换装置以及搭载电力变换装置的电气铁道车辆
JP7379891B2 (ja) * 2018-07-30 2023-11-15 株式会社デンソー 電力変換装置
DE102019102371B4 (de) * 2019-01-30 2023-07-06 Infineon Technologies Ag Transistoranordnung und verfahren zum betreiben einer transistoranordnung
DE102019107112B3 (de) * 2019-03-20 2020-07-09 Lisa Dräxlmaier GmbH Schaltvorrichtung, Spannungsversorgungssystem, Verfahren zum Betreiben einer Schaltvorrichtung und Herstellverfahren
JP7251351B2 (ja) * 2019-06-24 2023-04-04 富士電機株式会社 ゲート駆動装置及び電力変換装置
JP7489244B2 (ja) * 2020-07-09 2024-05-23 ローム株式会社 リニア電源回路
DE102021203853A1 (de) 2021-04-19 2022-10-20 Zf Friedrichshafen Ag Schaltungsanordnung für parallel geschaltete Leistungshalbleiter, sowie Elektronikmodul
DE102022210138B3 (de) 2022-09-26 2024-03-21 Zf Friedrichshafen Ag Schaltungsanordnung für Leistungshalbleiter, Verfahren zur Ansteuerung, Leistungselektronikeinrichtung, Elektronikmodul, Elektroantrieb und Fahrzeug
DE102022211207A1 (de) 2022-10-21 2024-05-02 Zf Friedrichshafen Ag Leistungselektronikmodul und Verfahren zur Ansteuerung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269416A (ja) * 1999-03-18 2000-09-29 Unisia Jecs Corp トランジスタモジュール
US20010045639A1 (en) * 2000-05-25 2001-11-29 Nissan Motor Co., Ltd Power wiring structure and semiconductor device
CN102368685A (zh) * 2010-06-22 2012-03-07 株式会社东芝 半导体切换系统
US20120057387A1 (en) * 2010-08-10 2012-03-08 Jih-Sheng Lai Hybrid switch for resonant power converters

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243468A (ja) 1985-08-21 1987-02-25 Kansai Paint Co Ltd 水性有機珪素樹脂被覆組成物
WO2011096164A1 (ja) * 2010-02-03 2011-08-11 本田技研工業株式会社 半導体装置
JP5805513B2 (ja) 2011-12-14 2015-11-04 三菱電機株式会社 電力用半導体装置
JP6065744B2 (ja) * 2013-05-20 2017-01-25 株式会社デンソー 半導体モジュール
JP6272064B2 (ja) * 2014-02-07 2018-01-31 日立オートモティブシステムズ株式会社 電力変換装置
WO2016063962A1 (ja) 2014-10-24 2016-04-28 富士フイルム株式会社 転写フィルム及びその製造方法、積層体の製造方法、静電容量型入力装置の製造方法、並びに、画像表示装置の製造方法
DE112016003586T5 (de) * 2015-08-06 2018-06-14 Hitachi Automotive Systems, Ltd. Ladegerät

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269416A (ja) * 1999-03-18 2000-09-29 Unisia Jecs Corp トランジスタモジュール
US20010045639A1 (en) * 2000-05-25 2001-11-29 Nissan Motor Co., Ltd Power wiring structure and semiconductor device
CN102368685A (zh) * 2010-06-22 2012-03-07 株式会社东芝 半导体切换系统
US20120057387A1 (en) * 2010-08-10 2012-03-08 Jih-Sheng Lai Hybrid switch for resonant power converters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2701158C1 (ru) * 2018-01-25 2019-09-25 Тойота Дзидося Кабусики Кайся Устройство преобразования мощности

Also Published As

Publication number Publication date
US20170302153A1 (en) 2017-10-19
JP6686663B2 (ja) 2020-04-22
US10396651B2 (en) 2019-08-27
DE102017108305A1 (de) 2017-10-19
JP2017195688A (ja) 2017-10-26
US20180331617A1 (en) 2018-11-15
CN107317461B (zh) 2020-07-28
US10050512B2 (en) 2018-08-14

Similar Documents

Publication Publication Date Title
CN107317461A (zh) 电力转换装置
US10607978B2 (en) Semiconductor device and electronic apparatus
CN104321869B (zh) 半导体功率模块和装置
CN106104993B (zh) 电力用半导体元件的驱动电路
US10277112B2 (en) Physical topology for a power converter
EP3474449B1 (en) Drive device
CN104300951A (zh) 具有反向导通igbt和栅极驱动器电路的电子电路
CN106357251A (zh) 半导体开关装置
CN106972849A (zh) 半导体开关元件的栅极驱动电路
JP2016162855A (ja) 半導体装置およびそれを用いた電力変換装置
CN103368548A (zh) 高边栅极驱动器、开关芯片及供电设备
CN104518648A (zh) 用于操作氮化镓电子器件的方法和系统
CN104124877A (zh) 三级变流器半桥
KR102117719B1 (ko) 전력 반도체 회로
US11043943B2 (en) Switching of paralleled reverse conducting IGBT and wide bandgap switch
WO2014128953A1 (ja) 半導体装置および半導体回路の駆動装置並びに電力変換装置
JP6884186B2 (ja) 双方向スイッチ
CN102739218A (zh) 开关装置和开关模块
JP2013146189A (ja) 半導体スイッチ回路および電力変換装置
JP6120550B2 (ja) 半導体装置
CN109560066A (zh) 一种具有过桥导电层的功率模块
DE112019005468T5 (de) Halbleitereinheit, batterieeinheit und fahrzeug

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant