CN107314830B - 用于修正温度测量信号的设备 - Google Patents

用于修正温度测量信号的设备 Download PDF

Info

Publication number
CN107314830B
CN107314830B CN201610935555.4A CN201610935555A CN107314830B CN 107314830 B CN107314830 B CN 107314830B CN 201610935555 A CN201610935555 A CN 201610935555A CN 107314830 B CN107314830 B CN 107314830B
Authority
CN
China
Prior art keywords
voltage
export
temperature sensor
diode
sensor signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610935555.4A
Other languages
English (en)
Other versions
CN107314830A (zh
Inventor
金弘锡
李在纹
梁千锡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS Electric Co Ltd
Original Assignee
LSIS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LSIS Co Ltd filed Critical LSIS Co Ltd
Publication of CN107314830A publication Critical patent/CN107314830A/zh
Application granted granted Critical
Publication of CN107314830B publication Critical patent/CN107314830B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/005Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/01Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
    • G01K7/25Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit for modifying the output characteristic, e.g. linearising
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K2017/0806Modifications for protecting switching circuit against overcurrent or overvoltage against excessive temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0027Measuring means of, e.g. currents through or voltages across the switch

Abstract

本发明涉及一种用于修正IGBT温度传感装置的温度传感信号的设备,其通过使用输出限制二极管而仅输出具有等于或高于预置电压值的电压值的温度传感信号。该设备包括:计算部分,其被配置成通过使用被包括在IGBT温度传感装置中的NTC热敏电阻器的电阻来计算输出限制二极管的传导电流值;确定部分,其被配置成基于传导电流值来确定在输出限制二极管中发生的电压降的下降电压值;以及修正部分,其被配置成通过将从IGBT温度传感装置输出的温度传感信号的电压增加所述下降电压值来修正温度传感信号。

Description

用于修正温度测量信号的设备
技术领域
本发明涉及一种用于修正温度传感(或测量)信号的设备,并且更具体地涉及一种用于修正温度传感信号的设备,其能够通过计算流过输出限制二极管的电流的值来确定在包括于IGBT温度传感器中的输出限制二极管中产生的电压降的值,并且能够通过将温度传感信号的电压增加该电压降值来修正由输出限制二极管的电压降引起的从IGBT温度传感器输出的温度传感信号的误差。
背景技术
一般地,IGBT(绝缘栅双极晶体管)指的是具有阻止或传导电流流动的快速开关功能的高功率开关晶体管。
开关功能对于要求精确操作的产品而言要求具有高操作速度和低功率损耗的专用零件,尽管其可用其它零件或电路来实现。
然而,现有开关半导体晶体管具有以下缺点,即其具有复杂的电路构造和低操作速度,尽管其价格低廉。另外,现有开关半导体MOSFET(金属氧化物半导体场效应晶体管)具有其价格昂贵的缺点,尽管其消耗低功率并具有高操作速度。IGBT被评估为仅具有上述晶体管和MOSFET的优点的产品。因此,IGBT正在诸如逆变器、转换器等各种功率转换器中被用作开关装置。
通常,用于转换高电压和大电流的功率的IGBT由于电阻而产生热量,这对功率转换器的稳定性和功率系数有影响。
因此,IGBT设置有用于通过使用NTC(负温度系数)热敏电阻器来测量(或感测)IGBT的温度的IGBT温度传感装置。
NTC热敏电阻器是以下一种热敏电阻器,其电阻随着负温度系数而连续地改变,并且被用作使用此特性的温度传感器。
图1是常规IGBT温度传感装置的电路图。
参考图1,常规IGBT温度传感器10包括温度传感器11、信号选择器12和AD输入部分13。
温度传感器11的NTC热敏电阻器RNTC在其电阻方面随着IGBT的温度变化而改变。温度传感器11的第一分压电阻器R1和第二分压电阻器R2根据预置比例向NTC热敏电阻器RNTC分配驱动电源Vcc的电压。
因此,温度传感信号根据NTC热敏电阻器RNTC的电阻变化而被输出到输出限制二极管D1
只有当温度传感信号的电压等于或高于预置电压时,输出限制二极管D1才向信号选择器12输出温度传感信号。
信号选择器12将先前接收到的温度传感信号的电压与最近接收到的温度传感信号的电压相比较。如果最近接收到的温度传感信号的电压高于先前接收到的温度传感信号的电压,则信号选择器12将最近接收到的温度传感信号输出到AD输入部分13。
AD输入部分13将温度传感信号的模拟电压值转换成数字电压值,其然后被输出到外面或IGBT控制器。
常规IGBT温度传感器10使用输出限制二极管D1,其只有当施加驱动电压时才导通以仅输出具有等于或高于预置电压值的电压的温度传感信号。
在这种情况下,当输出限制二极管D1在向前方向上导通时,在输出限制二极管D1中发生电压降。因此,在常规IGBT温度传感器10中,在被输入到输出限制二极管D1之前的温度传感信号与从输出限制二极管D1输出的温度传感信号之间发生电压差,其可由于该电压差而引起IGBT温度的测量结果中的误差。
发明内容
本发明的一方面是提供一种用于修正温度传感信号的设备,其能够通过计算流过输出限制二极管的电流的值来确定在包括于IGBT温度传感器中的输出限制二极管中产生的电压降的值,并且能够通过将温度传感信号的电压增加该电压降值来修正由输出限制二极管的电压降引起的从IGBT温度传感器输出的温度传感信号的误差。
本发明不限于上述方面,并且根据以下描述,本领域的技术人员将清楚地理解本发明的其它方面。根据结合附图进行的实施例的以下描述,本发明的上述和/或其它方面和优点将变得显而易见并更容易认识到。应理解的是可以用在权利要求中阐述的特征及其组合来实现本发明的目的和优点。
根据本发明的一个方面,提供了一种用于修正IGBT温度传感装置的温度传感信号的设备,其通过使用输出限制二极管而仅输出具有等于或高于预置电压值的电压值的温度传感信号,包括:计算部分,其被配置成通过使用被包括在IGBT温度传感装置中的NTC热敏电阻器的电阻来计算输出限制二极管的传导电流值;确定部分,其被配置成基于传导电流值来确定在输出限制二极管中发生的电压降的下降电压值;以及修正部分,其被配置成通过将从IGBT温度传感装置输出的温度传感信号的电压增加所述下降电压值来修正温度传感信号。
根据本发明,可以通过经由计算流过输出限制二极管的电流的值来确定在包括于IGBT温度传感器中的输出限制二极管中产生的电压降的值、并且通过将温度传感信号的电压增加该电压降值来修正由输出限制二极管的电压降引起的从IGBT温度传感器输出的温度传感信号的误差从而精确地测量IGBT温度。
附图说明
图1是常规IGBT温度传感装置的电路图。
图2是图示出根据本发明的一个实施例的设置有温度传感信号修正器的IGBT温度传感装置的框图。
图3是图示出根据本发明的一个实施例的温度传感信号修正器的详细构造的示意图。
图4是根据本发明的一个实施例的温度传感信号修正器和IGBT温度传感装置的电路图。
图5是示出了从常规IGBT温度传感装置感测的IGBT温度的温度传感信号的图。
图6是示出了根据本发明的一个实施例的从温度传感信号修正器修正的IGBT温度的温度传感信号的图。
具体实施方式
根据结合附图的以下详细描述,上述目的、特征和优点将变得更加显而易见。因此,本领域的技术人员可以容易地理解和实施本发明的技术思想。在本发明的以下详细描述中,如果认为相关功能和/或构造可能不必要地使本发明的主旨含糊难懂,则将省略关于该功能或构造的具体描述。在下文中,将参考附图来详细地描述本发明的优选实施例。遍及各图,用相同的参考标号来表示相同或类似的元件。
图2是图示出根据本发明的一个实施例的设置有温度传感信号修正器100的IGBT温度传感装置200的框图。图3是图示出根据本发明的一个实施例的温度传感信号修正器100的详细构造的示意图。图4是根据本发明的一个实施例的温度传感信号修正器100和IGBT温度传感装置200的电路图。
参考图2至4,根据本发明的一个实施例的设置有温度传感信号修正器100的IGBT温度传感装置200包括多个温度传感器211、信号选择器212和AD输入部分213。
每个温度传感器211的NTC热敏电阻器RNTC被安装在IGBT中,并且在其电阻方面随着IGBT的温度变化而改变。这时,温度传感器211的第一分压电阻器R1和第二分压电阻器R2根据预置比例向NTC热敏电阻器RNTC分配驱动电源Vcc的电压。
这时,可将第一分压电阻器R1连接在输出限制二极管D1的输入端子与驱动电源Vcc之间。
可将第二分压电阻器R2连接在输出限制二极管D1的输入端子与地线之间,并且可将其并联连接到NTC热敏电阻器RNTC
限流电阻器R3是以下一种电阻器,其限制流入稍后要描述的信号选择器212的电流的电流值,并且可连接在输出限制二极管D1的输出端子与驱动电源Vcc之间。
通过温度传感器211的上述电路结构,可以向输出限制二极管D1的输入端子输入随NTC热敏电阻器RNTC的电阻变化的温度传感信号。
只有当温度传感信号的电压值等于或高于预置电压值时,输出限制二极管D1才向到信号选择器212的输入端子输出温度传感信号输入。
信号选择器212可将先前接收到的温度传感信号的电压与最近接收到的温度传感信号的电压相比较。
作为比较的结果,如果最近接收到的温度传感信号的电压高于先前接收到的温度传感信号的电压,则信号选择器212选择最近接收到的温度传感信号并输出到温度传感信号修正器100。
在一个实施例中,信号选择器212可以是OP(运算放大器)。
输入到信号选择器212的温度传感信号可以是从多个温度传感器211和211'输入的。
根据本发明的一个实施例的温度传感信号修正器100包括传感部分110、计算部分120、确定部分130和修正部分140。
在从温度传感信号修正器100中的信号选择器212接收到温度传感信号时,传感部分110可测量由信号选择器212选定的温度传感器211的NTC热敏电阻器RNTC的电阻。
在这里,NTC热敏电阻器RNTC是其电阻随着温度变化而成负变化的热敏电阻器,并且具有电阻随着环境温度的增加而减小且随环境温度的下降而增加的特性。
在另一实施例中,传感部分110可实时地测量所有温度传感器211的NTC热敏电阻器RNTC的电阻,并且在从信号选择器212接收到温度传感信号时输出相应NTC热敏电阻器RNTC的电阻。
更具体地,传感部分110实时地测量所有NTC热敏电阻器RNTC的电阻而不是测量任意NTC热敏电阻器RNTC的电阻。然后,在接收到温度信号时,传感部分110可输出由信号选择器212选定的温度传感器211的NTC热敏电阻器RNTC的电阻。
计算部分120可基于从传感部分110测量的NTC热敏电阻器RNTC的电阻来计算输出限制二极管D1的传导电流值。
这里,传导电流值可以是随着输出限制二极管D1在当跨输出限制二极管D1施加等于或高于驱动电压Vd的电压时导通而流入输出限制二极管D1的向前传导电流的电流值。
这时,计算部分120可以通过使用以下等式1来计算输出限制二极管D1的传导电流值。
<等式1>
其中,If是输出限制二极管D1的传导电流值,Vcc是IGBT温度传感装置200的驱动电源电压,Vd是输出限制二极管D1的驱动电压,RNTC是NTC热敏电阻器RNTC的电阻,R1是第一分压电阻器R1的电阻,R2是第二分压电阻器R2的电阻,并且R3是限流电阻器R3的电阻。
确定部分130可以基于从计算部分120计算的传导电流值来计算在输出限制二极管D1中发生的电压降的下降电压值。
当传导电流随着跨输出限制二极管D1施加等于或高于驱动电压Vd的电压而流入输出限制二极管D1时,在输出限制二极管D1中发生电压降。这时,下降电压值可以是在输出限制二极管D1中下降的电压值。
如上所述,温度传感器211使用输出限制二极管D1来仅输出具有等于或高于预置电压值的电压的温度传感信号。然而,当输出限制二极管D1导通时,在输出限制二极管D1中发生电压降。因此,在被输入到输出限制二极管D1之前的温度传感信号与从输出限制二极管D1输出的温度传感信号之间发生电压差。
确定部分130可以从输出限制二极管D1的电流/电压特性数据根据输出限制二极管D1的传导电流值来确定下降电压值。
确定部分130可以根据从输出限制二极管D1的制造商提供的向前传导电流值从下降电压值特性表来确定下降电压值,如在下表1中所列。
例如,如果从计算部分120计算的传导电流值是25.3μA,则确定部分130可以将170mV的相应电压值确定为下降电压值。
【表1】
传导电流值(I<sub>f</sub>)[μA] 下降电压值(V<sub>f</sub>)[mV]
14.8 155
21.4 167
25.3 170
27.9 173
29.2 175
修正部分140可以将从信号选择器212输出的温度传感信号的电压增加由确定部分130确定的下降电压值。
为此,修正部分140可包括被连接到信号选择器212的输出端子的增压二极管D2和连接在增压二极管D2与地线之间的可变电阻器R4
修正部分140可以通过调整可变电阻器R4的电阻来改变流入增压二极管D2的电流的值以控制温度传感信号的增加的电压值。
更具体地,修正部分140可以根据从增压二极管D2的制造商提供的向后传导电流值基于特性表来调整可变电阻器R4的电阻。
修正部分140可以搜索对应于与由确定部分130确定的下降电压值相同的增压电压值的传导电流值,并且调整可变电阻器R4的电阻从而使搜索出的传导电流流入增压二极管D2
修正部分140可以将通过将电压增加由确定部分130确定的下降电压值而被修正的温度传感信号输出到AD输入部分213。
然后,AD输入部分213将输入温度传感信号的模拟电压值转换成数字电压值,其然后被输出到外面或IGBT控制器。
图5是示出了从常规IGBT温度传感装置感测的IGBT温度的温度传感信号的图表。图6是示出了根据本发明的一个实施例的从温度传感信号修正器100修正的IGBT温度的温度传感信号的图表。
从图5可以看到在从常规IGBT温度传感装置感测的IGBT温度的温度传感信号b与输入到其中未发生误差的AD输入部分13的温度传感信号之间发生约0.25V的误差。
相反地,从图6可以看到从根据本发明的一个实施例的温度传感信号修正器100修正的IGBT温度的温度传感信号c从约0.01sec的区段开始不具有误差。
以这种方式,根据本发明的一个实施例的温度传感信号修正器100可以通过修正在输出限制二极管中发生的温度传感信号的电压降来精确地测量IGBT温度。
虽然已参考本发明的示例性实施例特别地示出并描述了本发明,但本领域的技术人员将理解的是在不脱离本发明的精神和范围的情况下可对其进行形式和细节方面的各种改变。示例性实施例是出于举例说明本发明的目的而不是在限制性意义上提供的。因此,意图在于本发明涵盖本发明的修改和变更,假定其落在所附权利要求及其等价物的范围内。

Claims (5)

1.一种用于修正IGBT温度传感装置的温度传感信号的设备,其通过使用输出限制二极管而仅输出具有等于或高于预置电压值的电压值的温度传感信号,所述预置电压值是所述输出限制二极管的向前方向上导通时的电压所对应的值,所述设备包括:
计算部分,其被配置成通过使用被包括在所述IGBT温度传感装置中的NTC热敏电阻器的电阻来计算所述输出限制二极管的传导电流值;
确定部分,其被配置成基于传导电流值来确定在所述输出限制二极管中发生的电压降的下降电压值;以及
修正部分,其被配置成通过将从所述IGBT温度传感装置输出的所述温度传感信号的电压增加所述下降电压值来修正所述温度传感信号,
其中,所述修正部分控制所述温度传感信号的增加电压,
其中,所述IGBT温度传感装置包括:
第一分压电阻器,其被连接在所述输出限制二极管的输入端子与驱动电源之间;
第二分压电阻器,其被连接在所述输出限制二极管的输入端子与地线之间;以及
限流电阻器,其被连接在所述输出限制二极管的输出端子与所述驱动电源之间,并且
其中,所述第二分压电阻器被并联连接到所述NTC热敏电阻器。
2.根据权利要求1所述的设备,
其中,所述修正部分包括:
增压二极管,其接收所述温度传感信号并增加所述温度传感信号的电压;以及
可变电阻器,其被连接到所述增压二极管,并且
其中,通过调整所述可变电阻器的电阻来改变所述增压二极管的传导电流值以控制所述温度传感信号的增加电压。
3.根据权利要求1所述的设备,
其中,所述计算部分通过使用以下等式来计算所述输出限制二极管的传导电流值,
其中,If是所述输出限制二极管的传导电流值,Vcc是所述IGBT温度传感装置的驱动电源电压,Vd是所述输出限制二极管的驱动电压,RNTC是所述NTC热敏电阻器的电阻,R1是所述第一分压电阻器的电阻,R3是所述限流电阻器的电阻。
4.根据权利要求1所述的设备,
其中,所述确定部分从所述输出限制二极管的电流/电压特性数据根据所述输出限制二极管的传导电流值来确定所述下降电压值。
5.根据权利要求1所述的设备,
其中,还包括被配置成测量所述NTC热敏电阻器的电阻的传感部分。
CN201610935555.4A 2016-04-26 2016-11-01 用于修正温度测量信号的设备 Active CN107314830B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160051149A KR20170122058A (ko) 2016-04-26 2016-04-26 온도 측정 신호 보정 장치
KR10-2016-0051149 2016-04-26

Publications (2)

Publication Number Publication Date
CN107314830A CN107314830A (zh) 2017-11-03
CN107314830B true CN107314830B (zh) 2019-09-03

Family

ID=57121151

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610935555.4A Active CN107314830B (zh) 2016-04-26 2016-11-01 用于修正温度测量信号的设备

Country Status (5)

Country Link
US (1) US10247625B2 (zh)
EP (1) EP3239675A1 (zh)
JP (1) JP6490653B2 (zh)
KR (1) KR20170122058A (zh)
CN (1) CN107314830B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108572037B (zh) * 2017-12-27 2019-06-28 中国科学院长春光学精密机械与物理研究所 一种规避自热效应的热敏电阻器稳态标定方法
FR3083307B1 (fr) * 2018-06-29 2021-09-24 Sc2N Sa Capteur de temperature
CN109659635B (zh) * 2019-01-21 2023-11-03 安徽安凯汽车股份有限公司 一种温度显示装置
JP2021069080A (ja) * 2019-10-28 2021-04-30 株式会社三社電機製作所 ゲートドライブ回路
CN111123061B (zh) * 2019-12-26 2021-10-19 荣信汇科电气股份有限公司 一种快速响应的正反向管压降检测电路
KR20210115391A (ko) 2020-03-13 2021-09-27 한국전자기술연구원 전력반도체 소자의 온도 측정을 위한 시험장치 및 그 온도측정 시험방법
CN111933070A (zh) * 2020-07-27 2020-11-13 重庆惠科金渝光电科技有限公司 驱动电路以及显示装置
RU2764674C1 (ru) * 2020-11-25 2022-01-19 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Способ измерения теплового сопротивления переход-корпус и тепловых постоянных времени переход-корпус кристаллов полупроводниковых изделий в составе электронного модуля
CN116659437B (zh) * 2023-08-01 2023-09-22 深圳市艾姆克斯科技有限公司 一种基于大数据的比对仪零件监测系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB939486A (en) * 1960-06-02 1963-10-16 Amos Nathan Input converter for analogue multipliers
GB958774A (en) * 1959-06-11 1964-05-27 English Electric Co Ltd Improvements in and relating to the temperature compensation of transistor amplifiers
CN1391719A (zh) * 1999-10-01 2003-01-15 在线能源供给公司 非饱和磁性元件功率变换器和浪涌保护
CN1450431A (zh) * 2003-01-13 2003-10-22 艾默生网络能源有限公司 电源输出端二极管压降的补偿电路及补偿方法
CN101471578A (zh) * 2007-12-27 2009-07-01 佳能株式会社 充电系统和充电器
CN101771428A (zh) * 2010-01-19 2010-07-07 青岛海信移动通信技术股份有限公司 一种温度检测电路及移动通信设备
CN102263519A (zh) * 2010-05-24 2011-11-30 洛克威尔自动控制技术股份有限公司 可调速驱动器寿命的改进方法
KR101481290B1 (ko) * 2013-07-09 2015-01-09 엘에스산전 주식회사 온도 검출 장치 및 이를 포함하는 인버터-충전기 통합 장치
CN104867455A (zh) * 2015-06-16 2015-08-26 深圳市华星光电技术有限公司 补偿amoled电压降的系统及方法
CN205489504U (zh) * 2016-02-04 2016-08-17 北京康斯特仪表科技股份有限公司 一种用于低压电压测量电路的抗高压保护电路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2243994B (en) * 1990-05-16 1994-02-16 Samsung Electronics Co Ltd Electric vacuum cleaner with an ozonizer
JP2004108875A (ja) * 2002-09-17 2004-04-08 Makita Corp 温度検出回路
JP2004117111A (ja) 2002-09-25 2004-04-15 Toshiba Corp 半導体装置
US7356441B2 (en) * 2005-09-28 2008-04-08 Rockwell Automation Technologies, Inc. Junction temperature prediction method and apparatus for use in a power conversion module
JP2007336728A (ja) 2006-06-16 2007-12-27 Hitachi Ltd インバータ装置及びそれを用いたモータ駆動装置
US7826985B2 (en) * 2008-05-02 2010-11-02 Rockwell Automation Technologies, Inc. Power module life estimation fatigue function
US9534962B2 (en) * 2010-07-19 2017-01-03 Mediatek Inc. Temperature measurement devices
JP5590240B2 (ja) 2011-07-06 2014-09-17 富士電機株式会社 パワー半導体デバイスの電流補正回路および電流補正方法
JP5861590B2 (ja) 2012-07-30 2016-02-16 株式会社デンソー 温度検出装置
JP2014070951A (ja) * 2012-09-28 2014-04-21 Sharp Corp 温度検知回路

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB958774A (en) * 1959-06-11 1964-05-27 English Electric Co Ltd Improvements in and relating to the temperature compensation of transistor amplifiers
GB939486A (en) * 1960-06-02 1963-10-16 Amos Nathan Input converter for analogue multipliers
CN1391719A (zh) * 1999-10-01 2003-01-15 在线能源供给公司 非饱和磁性元件功率变换器和浪涌保护
CN1450431A (zh) * 2003-01-13 2003-10-22 艾默生网络能源有限公司 电源输出端二极管压降的补偿电路及补偿方法
CN101471578A (zh) * 2007-12-27 2009-07-01 佳能株式会社 充电系统和充电器
CN101771428A (zh) * 2010-01-19 2010-07-07 青岛海信移动通信技术股份有限公司 一种温度检测电路及移动通信设备
CN102263519A (zh) * 2010-05-24 2011-11-30 洛克威尔自动控制技术股份有限公司 可调速驱动器寿命的改进方法
KR101481290B1 (ko) * 2013-07-09 2015-01-09 엘에스산전 주식회사 온도 검출 장치 및 이를 포함하는 인버터-충전기 통합 장치
CN104867455A (zh) * 2015-06-16 2015-08-26 深圳市华星光电技术有限公司 补偿amoled电压降的系统及方法
CN205489504U (zh) * 2016-02-04 2016-08-17 北京康斯特仪表科技股份有限公司 一种用于低压电压测量电路的抗高压保护电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一种IGBT集电极电压测量电路的设计;任强 等;《Process automation instrumentation》;20140930;第35卷(第09期);第76-79页

Also Published As

Publication number Publication date
JP6490653B2 (ja) 2019-03-27
US10247625B2 (en) 2019-04-02
US20170307450A1 (en) 2017-10-26
JP2017198646A (ja) 2017-11-02
CN107314830A (zh) 2017-11-03
KR20170122058A (ko) 2017-11-03
EP3239675A1 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
CN107314830B (zh) 用于修正温度测量信号的设备
JP5448706B2 (ja) 電流検出装置及び電流検出方法
US20050046463A1 (en) On-chip temperature detection device
US7332358B2 (en) MOSFET temperature sensing
CN105021967A (zh) 跨半导体开关元件的电压降的精确测量
JP6151295B2 (ja) デューティサイクリングを用いる広範囲の電流計測
CN101557092A (zh) 一种保护电路和电路保护方法
JP2010206699A (ja) ソレノイド電流制御回路
US10101369B2 (en) Highly accurate current measurement
JP6151296B2 (ja) 可変抵抗を用いる広範囲の電流計測
JP6263272B2 (ja) 電流検出装置および電流を検出する方法
US9874479B2 (en) Temperature detection device
JP5911450B2 (ja) パワー半導体デバイスの温度特性演算装置
JP2020003311A (ja) 電流検出装置
CN109564139B (zh) 传感器装置
JP3198543B2 (ja) インバータスイッチング素子の温度上昇検出回路
US10601223B2 (en) Thermoelectric power generating system
CN211239318U (zh) 一种功率开关的过温保护电路
JP2008301617A (ja) 電力変換器の保護装置
US9903905B2 (en) Semiconductor switch and method for determining a current through a semiconductor switch
CN105960618B (zh) 用于检测电流的电流探测装置和方法
CN112882505A (zh) 温度保护信号生成电路及温度保护点修调方法
JP6894978B2 (ja) スイッチング素子制御回路及びパワーモジュール
JP2007195351A (ja) 蓄電池装置
CN214751554U (zh) 温度保护信号生成电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant