CN214751554U - 温度保护信号生成电路 - Google Patents

温度保护信号生成电路 Download PDF

Info

Publication number
CN214751554U
CN214751554U CN202120499708.1U CN202120499708U CN214751554U CN 214751554 U CN214751554 U CN 214751554U CN 202120499708 U CN202120499708 U CN 202120499708U CN 214751554 U CN214751554 U CN 214751554U
Authority
CN
China
Prior art keywords
signal
reference signal
temperature protection
comparator
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202120499708.1U
Other languages
English (en)
Inventor
曾强
王曙光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Biyi Micro Electronic Technique Co ltd
Original Assignee
Xiamen Biyi Micro Electronic Technique Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Biyi Micro Electronic Technique Co ltd filed Critical Xiamen Biyi Micro Electronic Technique Co ltd
Priority to CN202120499708.1U priority Critical patent/CN214751554U/zh
Application granted granted Critical
Publication of CN214751554U publication Critical patent/CN214751554U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

公开了一种温度保护信号生成电路,该温度保护信号生成电路中的比较器的同相输入端通过第一开关选择接入检测信号或参考信号,反相输入端通过第二开关接入检测信号或参考信号或连接比较器的输出端,以通过该比较器比较检测信号和参考信号获得温度保护信号。其中,通过将该比较器构造成电压跟随器检测获得检测信号和参考信号,并基于参考信号和检测信号提供修调信号调节参考信号,从而使参考信号对应于目标保护温度下的基准信号。本实用新型提出的温度保护信号生成电路及温度保护点修调方法,电路结构简单,修调过程简便易行,并且修调精度较高。

Description

温度保护信号生成电路
技术领域
本实用新型涉及电子电路技术领域,具体地,涉及温度保护信号生成电路。
背景技术
在电子设备中,如果系统或芯片的温度过高或过低,会影响系统中的元器件或芯片的使用寿命和可靠性,通常需要设置一个温度保护点,当超过或低于这个温度时进行温度保护,实现过温保护(例如高温时断开电源)或欠温调节控制(例如低温时控制加热装置加热)。
在过温保护中,如图1所示,通过比较器U1比较检测信号V2和参考信号V1提供过温保护信号OTP,系统或芯片根据该过温保护信号OTP进行过温保护(例如断开电源等),其中,检测信号V2和参考信号V1中的至少一个为温敏信号,使检测信号V2和参考信号V1的温度-电压特性曲线具有交叉,其交叉点的温度对应比较器U1的输出端提供的过温保护信号OTP的状态翻转点,对应温度保护点Totp。
在实际的应用中,比较器U1的状态、检测信号V2的状态和参考信号V1的状态往往与理想状态存在偏差,使得实际的温度保护点Totp偏离根据理想值设定的目标温度保护点,降低温度保护的可靠性。
现有技术的温度保护点的测试的需求控制温度进行模拟,控温成本高,使得温度保护点的修调成本高。
实用新型内容
鉴于上述问题,本实用新型的目的在于提供一种温度保护信号生成电路及温度保护点修调方法,从而方便地实现对温度保护信号生成电路实际的温度保护点的修调,降低对温度保护点的修调成本。
根据本实用新型的一方面,提供了一种温度保护信号生成电路,其特征在于,包括:
检测信号生成电路,包括检测信号输出端;
参考信号调节电路,包括基准电压输入端、参考信号输出端和修调信号输入端;
比较器,所述比较器的同相输入端通过第一开关连接至所述参考信号输出端或所述检测信号生成电路的检测信号输出端,所述比较器的反相输入端通过第二开关连接至所述参考信号输出端或所述检测信号的检测信号输出端,或连接至所述比较器的输出端,所述比较器的输出端为所述温度保护信号生成电路的温度保护信号输出端。
可选地,还包括:处理单元,包括与所述比较器的输出端连接的输入端和与所述参考信号调节电路的修调信号输入端连接的修调信号输出端。
可选地,所述参考信号调节电路包括:
依次串联在所述参考信号调节电路的输入端与地之间的第一电阻器和第二电阻器,第一电阻器和所述第二电阻器的中间节点为所述参考信号输出端,其中,
所述第一电阻器和所述第二电阻器的至少一个为可变电阻器,所述可变电阻器的控制端为所述修调信号输入端。
可选地,所述检测信号生成电路包括:
三极管,所述三极管的基极与集电极连接,所述三极管的集电极与电流源的输出端连接,所述三极管的发射极接地,所述三极管的集电极为所述检测信号输出端。
可选地,所述三极管为多个,且依次串联在所述电流源的输出端与地之间,多个所述三极管的至少一个的集电极连接至所述检测信号输出端。
可选地,所述参考信号调节电路包括:
串联在所述参考信号调节电路的输入端与地之间的多个电阻器;
第三开关,包括与所述参考信号调节电路的输出端连接的公共端和与所述多个电阻器中的每个相邻节点连接的多个不动触点端,所述第三开关的控制端为所述修调信号输入端。
本实用新型提供的温度保护信号生成电路中的比较器的同相输入端通过第一开关选择接入检测信号或参考信号,反相输入端通过第二开关接入检测信号或参考信号或连接比较器的输出端,以通过该比较器比较检测信号和参考信号获得温度保护信号。其中,处理单元连接在比较器的输出端与参考信号调节电路的修调信号输入端之间,通过将比较器的反向输入端与比较器的输出端连接,将比较器构造成电压跟随器,通过该电压跟随器检测获得检测信号和参考信号,根据检测的检测信号和参考信号提供修调信号调节参考信号,以消除比较器的失调影响,获得符合预期的温度保护信号。本实用新型提出的温度保护信号生成电路的电路结构简单,可在常温下进行温度保护点的检测和修调,为温度保护的准确性提供了有力的保障,降低了温度保护点修调成本。
附图说明
通过以下参照附图对本实用新型实施例的描述,本实用新型的上述以及其他目的、特征和优点将更为清楚,在附图中:
图1示出了根据现有技术的温度保护信号生成电路的原理图;
图2A、图2B和图2C示出了根据本实用新型实施例的温度保护信号生成电路的部分信号的温度-电压特性曲线;
图3示出了根据本实用新型实施例的温度保护信号生成电路的温度保护信号生成原理示意图;
图4示出了根据本实用新型实施例的温度保护信号生成电路的部分信号的检测原理示意图;
图5示出了根据本实用新型实施例的温度保护信号生成电路的结构示意图;
图6示出了根据本实用新型实施例的温度保护信号生成电路的参考信号调节原理示意图。
具体实施方式
以下将参照附图更详细地描述本实用新型的各种实施例。在各个附图中,相同的元件采用相同或类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。
下面结合附图和实施例,对本实用新型的具体实施方式作进一步详细描述。
图2A、图2B和图2C示出了根据本实用新型实施例的温度保护信号生成电路的部分信号的温度-电压特性曲线。
如图2A、图2B和图2C所示,图2A对应参考信号V1为零温度系数电压信号,检测信号V2为负温度系数电压信号;图2B对应参考信号V1为正温度系数电压信号,检测信号V2为零温度系数电压信号;图2C对应参考信号V1为正温度系数电压信号,检测信号V2为负温度系数电压信号;使参考信号V1和检测信号V2的温度-电压特性曲线相互交叉,交叉点对应温度保护点Totp。
本实用新型实施例的温度保护点修调方法在修调环境下检测参考信号V1和检测信号V2的电平值,分别获得第一参考信号和第二检测信号,并根据参考信号V1、检测信号V2及其温度特性和目标保护温度计算出温度保护电路修调环境下的参考电压目标值(参考电压目标值还未消除比较器的失调值的影响),根据参考电压目标值以及第一参考信号调节参考信号,或根据参考电压目标值以及第二检测信号调节参考信号,从而使参考信号对应于目标保护温度下的基准信号,即可消除因修调环境温度与目标保护温度的差异而存在的检测信号变化所引起的修调误差,以及消除比较器的失调值的影响。参照图2A、图2B和图2C,即使参考信号V1的温度特性曲线上下平移,使参考信号V1和检测信号V2的温度-电压特性曲线的交叉偏移,以与目标温度保护信号相吻合。温度特性具体指温度系数,温度系数可以是正温度系数、负温度系数和零温度系数中的一种。
其中,修调环境为任意合适环境,一般可选择常温的25摄氏度,且本实用新型实施例的温度保护点修调方法利用温度-电压特性曲线进行修调,提供参考信号V1和检测信号V2的硬件的参数不易随温度变化,即参考信号V1和检测信号V2的温度-电压特性曲线的斜率不随温度变化,对检测获得第一参考信号和第二检测信号的检测环境的温度无特别要求,检测便利有效,相应的修调也简易有效。
图3示出了根据本实用新型实施例的温度保护信号生成电路的温度保护信号生成原理示意图。
如图3所示,在本实用新型实施例的温度保护信号生成电路中,带隙基准电压信号生成电路10的带隙基准电压信号输出端与地之间依次串联有第一电阻器R1和第二电阻器R2,在第一电阻器R1和第二电阻器R2的中间节点(对应参考信号调节电路的参考信号输出端)提供参考信号V1输出。
三极管Q1的基极与集电极连接,集电极与电流源A1的输出端连接,发射极接地,以在三极管Q1的集电极(对应检测信号生成电路的检测信号输出端)输出其基极与发射极之间的电压Vbe,提供检测信号V2。其中,在可选实施例中,三极管Q1为负温度系数的三极管,三极管Q1的基极与发射极之间的电压Vbe的温度特征一般为1.5至2mV/℃,即温度每升高一摄氏度,Vbe的下降幅度为1.5至2毫伏。在可选实施例中,检测信号V2由连接在电流源与地之间的器件提供,该器件的电压温度系数可以为正温度系数、负温度系数和零温度系数中的一种,即本实用新型对检测信号V2的提供不做特别限定。在本实用新型的一实施例中,检测信号V2由连接在电流源与地之间的热敏电阻提供。
比较器U1的同相输入端接收检测信号V2,反相输入端接收参考信号V1,比较器U1比较检测信号V2和参考信号V1并输出过温保护信号OTP。
其中,在本实施例中,第二电阻器R2为可变电阻器,以通过调节第二电阻器R2的阻值调节第一电阻器R1和第二电阻器R2的分压,调节参考信号V1的相对于带隙基准电压Vgb(在本实施例中为带隙基准电压,在可选实施例中还可以是其它基准电压)的电平值,以调节温度保护点。在可选实施例中,将第一电阻器R1设计为可变电阻器,或将第一电阻器R1和第二电阻器R2均选为可变电阻器,且预设多个调节节点,提供参考信号V1的更多的可选预设值,便于数字化调节,提高对温度保护点的修调速度。其中,调节量可根据相应的处理单元提供的修调信号控制,处理单元根据预设或计算获得的检测信号和参考信号的温度特性,以及检测获得的检测信号、参考信号、修调环境温度和保护温度等,根据预设的公式及相关数据处理提供修调信号,可用于自动化修调,保障修调效率。
图4示出了根据本实用新型实施例的温度保护信号生成电路的部分信号的检测原理示意图。
如图4所示,本实用新型实施例的温度保护信号生成电路通过将比较器U1的反相输入端与输出端连接,将比较器U1构造成电压跟随器,在比较器U1的同相输入端接入参考信号V1,通过该比较器U1直接检测参考信号V1,获得第一参考信号,无需设置其它检测单元,避免成本的增加,且通过比较器U1检测参考信号V1获得的第一参考信号包含了比较器U1的失调值,从而克服了比较器U1的失调值的影响。
同理,在另一实施例中,也可以通过该比较器U1的电压跟随器功能进行检测信号V2的检测获得第二检测信号,第二检测信号包含了比较器U1的失调值,从而克服了比较器U1的失调值的影响,根据包括比较器U1的失调值的第一参考信号或第二检测信号,并结合计算获得的参考电压目标值,可消除比较器U1的失调值的影响,无需对比较器U1的失调影响再进行修调,提高了温度保护点的修调效率,提高了该温度保护信号生成电路提供的过温保护信号的准确性,提高了过温保护的可靠性。
图5示出了根据本实用新型实施例的温度保护信号生成电路的结构示意图。
如图5所示,本实用新型实施例的温度保护信号生成电路包括比较器U1,第一开关S1、第二开关S2、第一电阻器R1、第二电阻器R2和三极管Q1。
第一电阻器R1和第二电阻器R2为基准电压调节电路,依次串联在带隙基准电压信号生成电路10的带隙基准电压信号输出端(带隙基准电压输出路径)与地之间,第一电阻器R1和第二电阻器R2的中间节点为参考信号输出端提供参考信号V1。在本实施例中,电阻器R2为可变电阻器,以便调节参考信号V1的电平值。
三极管Q1为温敏器件,基极与集电极连接,发射极接地,集电极与电流源A1的输出端连接,在电流源A1的驱动下在其集电极输出其PN结电压,即基极与发射极之间的电压Vbe,Vbe即检测信号V2,在本实施例中,三极管Q1为一个,在可选实施例中,该三极管Q1为多个,且依次串联在电流源A1的输出端与地之间,在多个三极管Q1的至少一个的集电极提供该检测信号V2。多个三极管Q1串联,不同的三极管Q1的集电极提供的电压值不同,还可以用于调节检测信号V2的电平值,也可实现对检测信号V2和参考信号V1的交叉点的调节,实现对温度保护点的修调。
第一开关S1的共用端与比较器U1的同相输入端连接,第一开关S1的不动触点S11接收检测信号V2,不动触点S12接收参考信号V1。第二开关S2的共用端与比较器U1的反相输入端连接,第二开关S2的不动触点S21连接至第一电阻器R1和第二电阻器R2的中间节点,不动触点S22连接比较器U1的输出端。结合图3至图5可知,通过选择第一开关S1的导通路径将比较器U1的同相输入端耦接检测信号端以接收检测信号V2,并选择第二开关S2的导通路径将比较器U1的反相输入端耦接参考信号端以接收参考信号V1。在此连接状态下,可检测获取检测信号V2和参考信号V1,也可不基于以上连接关系检测获得检测信号V2和参考信号V1。在修调时,通过选择第二开关S2的导通路径将比较器U1的反相输入端与输出端连接,将比较器U1构造成电压跟随器,通过选择开关S1的导通路径,在比较器U1的同相输入端接入参考信号V1,以在比较器U1的输出端检测获得第一参考信号V1’。根据检测信号V2和参考信号V1的温度特性计算获得参考电压目标值Vref,通过调节第二电阻器R2的阻值,从而调节第一参考信号V1’的值,将第一参考信号V1’修调至参考电压目标值Vref,从而使调节参考信号后所检测获得的第一参考信号与参考电压目标值相匹配,即消除了因修调环境温度与目标保护温度的差异而存在的检测信号变化所引起的修调误差,以及消除了比较器的失调值的影响,实现温度保护点的修调。使调节参考信号后所检测获得的第一参考信号与参考电压目标值相匹配指的是,调节后得到的第一参考信号等于参考电压目标值,或者调节后得到的第一参考信号与参考电压目标值之差在容许范围内。
在本实施例中,参考信号V1为带隙基准电压的分压,因此当调节第二电阻器R2的阻值时,该分压值不随温度变化。在另一实施例中,参考信号V1取自正温度系数或负温度系数的分压电阻组,分压电阻组可包括第一电阻器R1和第二电阻器R2,此时在进行修调时需要计入来自分压电阻组的失调值,从而实现精准修调。
其中,在本实施例中,检测信号V2为负温度系数的电压信号,温度保护比较时,检测信号V2接入比较器U1的同相输入端,参考信号V1(此时的参考信号V1值因第二电阻器R2的阻值变化而被修调)接入比较器U1的反相输入端,当温度超过温度保护点时,比较器U1输出的温度保护信号OTP由高电平翻转为低电平。在可选实施例中,检测信号V2接入比较器U1的反相输入端,参考信号V1接入比较器U1的同相输入端,在温度超过温度保护点时,比较器U1输出的温度保护信号OTP由低电平翻转为高电平。在另一实施例中,相应的开关S2还包括第三不动触点,以接收检测信号V2输入,提供不同的温度保护信号OTP的翻转方式,以便应用于不同的温度保护执行器件对温度保护信号的翻转方式要求,提高本实用新型的温度保护信号生成电路的适用性。
在可选实施例中,例如目标保护温度为135摄氏度,在常温为25摄氏度的修调环境下测得V2=600mV,V1=400mV,即检测信号为600毫伏,参考信号为400毫伏,同时,随温度每升高1摄氏度,三极管Q1的Vbe电压下降2毫伏,由此计算获得当前V1值所对应的温度保护点为(600mV-400mV)/2mV/℃+25℃=125℃,与需求的目标温度保护点的135℃差了10℃,对应的参考信号和检测信号在25摄氏度下的电压差还相差了10℃*2mV/℃=20mV,即需要将第一参考信号对应的参考信号V1修调至380mV,即基于检测信号V2和参考信号V1,计算处理获得温度保护信号生成电路在修调环境下的参考电压目标值为380mV。此外,还需要考虑比较器的失调值,通过调节第二电阻器R2的阻值,消除因修调环境温度与目标保护温度的差异而存在的检测信号变化所引起的修调误差,以及消除了比较器的失调值的影响。
在本实用新型的另一实施例中,结合图5,检测获取检测信号V2和参考信号V1。接着通过选择第一开关S1的导通路径将比较器U1的同相输入端耦接检测信号端以接收检测信号V2,并选择第二开关S2的导通路径将比较器U1的反相输入端耦接比较器U1的输出端,将比较器U1构造成电压跟随器,以在比较器U1的输出端检测获得第二检测信号V2’,第二检测信号V2’等于检测信号V2与比较器的失调值之和。在修调时,根据检测信号V2和参考信号V1的温度特性计算获得参考电压目标值Vref。根据参考电压目标值Vref、检测信号V2和第二检测信号V2’,调节第二电阻器R2的阻值,从而调节参考信号V1的值(即R2阻值调节后的第一电阻器R1和第二电阻器R2的分压值),使调节后的参考信号V1与Vref-(V2’-V2)相匹配,从而实现温度保护点的修调。其中,Vref为参考电压目标值,V2’为第二检测信号,V2为检测信号。其中,调节后的参考信号V1与Vref-(V2’-V2)相匹配指的是,调节后的参考信号V1等于Vref-(V2’-V2),或者调节后的参考信号V1与Vref-(V2’-V2)的差值在容许范围之内。在进行温度保护比较时,比较器的同相输入端可耦接检测信号V2,比较器的反相输入端可耦接调节后的参考信号V1。在本实施例中,参考信号V1和检测信号V2的温度特性也可通过比较器U1检测获得,可降低工艺偏差的影响,进一步提高温度保护信号生成电路提供的温度保护信号的准确性。
图6示出了根据本实用新型实施例的温度保护信号生成电路的参考信号调节原理示意图。
如图6所示,本实用新型实施例的温度保护信号生成电路的参考信号调节电路即第一电阻器R1和第二电阻器R2,在本实施例中,第二电阻器R2为可变电阻器,且包括3个预设调节节点,对应电阻器R21、R22和R23的远离地的一端,并引出至开关S3的三个不动触点端,开关S3的公共端连接参考信号调节电路的输出端,通过选择开关S3的导通路径选择实际输出参考信号V1的节点,以调节参考信号V1的电平,在本实施例中,以选择输出节点,而不改变第一电阻器R1和第二电阻器R2在基准电压Vgb的输出路径至地之间的总电阻,各预设调节节点对应的电平线性化好,便于对参考信号V1的线性化调节,实施便利。其中,开关S3的控制端对应该参考信号调节电路的修调信号输入端,接收处理单元提供的修调信号,调节参考信号V1。
在可选实施例中,第一电阻器R1和第二电阻器R2中的至少一个为可变电阻器。
本实用新型提供的温度保护信号生成电路通过比较器比较参考信号和检测信号,以提供温度保护信号,且通过第二开关控制比较器的反相输入端与比较器的输出端连接,将比较器构造成电压跟随器,通过第一开关选择比较器的同相输入端接入参考信号或检测信号,通过该比较器检测获得第一参考信号或第二检测信号,以根据该第一参考信号或第二检测信号以及参考信号和检测信号的温度特性和检测时的环境温度计算出该温度保护信号生成电路实际对应的参考电压目标值,通过调节参考信号,以使参考信号对应于目标保护温度下的基准信号,保障该温度保护信号生成电路提供的温度保护信号的翻转点与目标温度点相吻合,保障采用该温度保护信号进行温度保护的可靠性。
依照本实用新型的实施例如上文所述,这些实施例并没有详尽叙述所有的细节,也不限制该实用新型仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本实用新型的原理和实际应用,从而使所属技术领域技术人员能很好地利用本实用新型以及在本实用新型基础上的修改使用。本实用新型仅受权利要求书及其全部范围和等效物的限制。

Claims (6)

1.一种温度保护信号生成电路,其特征在于,包括:
检测信号生成电路,包括检测信号输出端;
参考信号调节电路,包括基准电压输入端、参考信号输出端和修调信号输入端;以及
比较器,所述比较器的同相输入端通过第一开关连接至所述参考信号输出端或所述检测信号生成电路的检测信号输出端;所述比较器的反相输入端通过第二开关连接至所述参考信号输出端或所述检测信号的检测信号输出端,或连接至所述比较器的输出端,所述比较器的输出端为所述温度保护信号生成电路的温度保护信号输出端。
2.根据权利要求1所述的温度保护信号生成电路,其特征在于,还包括:
处理单元,包括与所述比较器的输出端连接的输入端和与所述参考信号调节电路的修调信号输入端连接的修调信号输出端。
3.根据权利要求2所述的温度保护信号生成电路,其特征在于,所述参考信号调节电路包括:
依次串联在所述参考信号调节电路的输入端与地之间的第一电阻器和第二电阻器,第一电阻器和所述第二电阻器的中间节点为所述参考信号输出端,其中,
所述第一电阻器和所述第二电阻器的至少一个为可变电阻器,所述可变电阻器的控制端为所述修调信号输入端。
4.根据权利要求3所述的温度保护信号生成电路,其特征在于,所述检测信号生成电路包括:
三极管,所述三极管的基极与集电极连接,所述三极管的集电极与电流源的输出端连接,所述三极管的发射极接地,所述三极管的集电极为所述检测信号输出端。
5.根据权利要求4所述的温度保护信号生成电路,其特征在于,
所述三极管为多个,且依次串联在所述电流源的输出端与地之间,多个所述三极管的至少一个的集电极连接至所述检测信号输出端。
6.根据权利要求2所述的温度保护信号生成电路,其特征在于,所述参考信号调节电路包括:
串联在所述参考信号调节电路的输入端与地之间的多个电阻器;
第三开关,包括与所述参考信号调节电路的输出端连接的公共端和与所述多个电阻器中的每个相邻节点连接的多个不动触点端,所述第三开关的控制端为所述修调信号输入端。
CN202120499708.1U 2021-03-09 2021-03-09 温度保护信号生成电路 Active CN214751554U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202120499708.1U CN214751554U (zh) 2021-03-09 2021-03-09 温度保护信号生成电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202120499708.1U CN214751554U (zh) 2021-03-09 2021-03-09 温度保护信号生成电路

Publications (1)

Publication Number Publication Date
CN214751554U true CN214751554U (zh) 2021-11-16

Family

ID=78592197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202120499708.1U Active CN214751554U (zh) 2021-03-09 2021-03-09 温度保护信号生成电路

Country Status (1)

Country Link
CN (1) CN214751554U (zh)

Similar Documents

Publication Publication Date Title
CN107076620B (zh) 温度检测装置
CN106289559B (zh) 用于使用热电偶的温度测量装置的温度漂移补偿的方法
EP3239675A1 (en) Apparatus for correcting of temperature measurement signal
CN102566644B (zh) 阻抗调整装置
AU2007293097B2 (en) Apparatus, system and method for identification with temperature dependent resistive device
CN110907807B (zh) 芯片电路功耗测量电路及方法、芯片
CN209803597U (zh) 提高ntc热敏电阻检测精度的控制电路及电子设备
US9148133B2 (en) Trimming circuit, power supply including trimming circuit, and trimming method
CN105784215A (zh) 一种压力传感器温度补偿方法
CN102710109B (zh) 一种dc/dc转换器的电流限制电路
CN100486072C (zh) 实现开关电源限流点连续调节及温度保护的电路
CN105606240A (zh) 温度检测电路及半导体装置
CN112882505A (zh) 温度保护信号生成电路及温度保护点修调方法
CN104713659A (zh) 一种基于三极管输出特性的热敏电阻线性补偿电路
CN214751554U (zh) 温度保护信号生成电路
JP2016142717A (ja) 温度補正回路および感温素子の検出温度補正方法
CN108304023B (zh) 一种开关电源高负载稳定度补偿电路
CN114825563B (zh) 一种具有温度保护的电路结构
CN114740941B (zh) 带隙基准电路、集成电路和电子设备
CN215344364U (zh) 功率器件驱动电路及电子设备
CN106841751B (zh) 一种电压升降定量检测电路/装置
CN213336535U (zh) 温度检测电路及家用电器
CN209982742U (zh) 一种基于三线制热电阻的温控加热系统
US10670471B2 (en) Multi-level temperature detection with offset-free input sampling
CN220234484U (zh) 一种过温保护电路及开关电源

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant