CN107300731A - 衍射光学元件结构及制作方法 - Google Patents

衍射光学元件结构及制作方法 Download PDF

Info

Publication number
CN107300731A
CN107300731A CN201710608972.2A CN201710608972A CN107300731A CN 107300731 A CN107300731 A CN 107300731A CN 201710608972 A CN201710608972 A CN 201710608972A CN 107300731 A CN107300731 A CN 107300731A
Authority
CN
China
Prior art keywords
diffracting layer
optical material
diffraction
complementary
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710608972.2A
Other languages
English (en)
Inventor
李凡月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huatian Technology Kunshan Electronics Co Ltd
Original Assignee
Huatian Technology Kunshan Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huatian Technology Kunshan Electronics Co Ltd filed Critical Huatian Technology Kunshan Electronics Co Ltd
Priority to CN201710608972.2A priority Critical patent/CN107300731A/zh
Publication of CN107300731A publication Critical patent/CN107300731A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams

Abstract

本发明公开了一种衍射光学元件结构及制作方法,包括由光学材料A制成的衍射层和由光学材料B制成的互补衍射层,衍射层具有的衍射面,互补衍射层具有与衍射面相对应的互补面,衍射层的衍射面与互补衍射层的互补面相互填满融合在一起,衍射层的衍射面中不同位置的厚度由后场衍射需求确定;互补衍射层的互补面厚度分布使得不同位置的衍射层厚度与互补衍射层厚度的和相同;光学材料A的折射率与光学材料B的折射率之间的差远小于光学材料A的折射率与空气的折射率之间的差;本发明将纳米级别的衍射光学元件结构放大到微米级别,降低了光学加工的精度要求,且极大的削减了散射光的产生,提高了衍射光学元件的环境适用性。

Description

衍射光学元件结构及制作方法
技术领域
本发明涉及一种衍射光学元件,具体是涉及一种新型衍射光学元件结构及制作方法。
背景技术
利用衍射光学元件进行光束整形,可以高效地产生均匀光或结构光场。在照明或三维重建领域具有重要应用。比如,参见专利文献CN205002744U,衍射光学元件(达曼光栅或类似元件)可作为分束器,用于光学投影仪,其产生并投影基线图案的多个复本到物体或景物上。多个复本相对于彼此有角度地偏移并且彼此重叠。作为结果的光点图案,其包括基线图案的多个复本的叠加,在这里称作合成图案。多个复本之间的重叠,合成图案的间距或密度比基线图案的高。而且,合成图案的间距或密度不再受VCSEL之间的物理距离以及受投影透镜的焦距所限制。再比如,在消费电子产品中,利用衍射光学元件产生结构光的方案还可以大大减小模组尺寸。
目前,任何加工方式加工的衍射光学元件都是在同一种基材上,使不同位置的基材厚度不同。这种衍射光学元件上,由不同位置的厚度差引入的光程差都是几分之一波长的量级(即光程差是几十或几百纳米的量级)。由于基材的折射率在1与2之间,所以基材与空气或真空之间的折射率差是十分之几的量级。所以衍射光学元件上不同位置的厚度差是几百纳米的量级。
另一方面,目前衍射光学元件对厚度差的精度的要求是几纳米或几十纳米的量级,而且,性能越好的衍射光学元件的精度要求越高。这一方面增加了加工的难度与成本,另一方面,对使用环境提出了苛刻的要求,比如温度的微小变化,都是影响衍射光学元件的精度超出允许的范围,从而影响其后场衍射光。
目前,纳米级的衍射光学元件的加工技术之中,高精度的加工方案普遍采用光刻机或离子刀刻蚀的方法,这种方法加工精度要求高,结构复杂度受限,往往成本高,产量低,且存在散射等杂散光干扰问题;精度相对较低的加工方案还有干法压印、注塑、紫外光胶压印固化等,对于纳米级别的光学结构的加工,由于精度不高,无法加工精细结构,散射光严重。
发明内容
为了解决上述技术问题,本发明提出一种衍射光学元件结构及制作方法,将纳米级别的衍射光学元件结构放大到微米级别,降低了光学加工的精度要求,且极大的削减了散射光的产生,提高了衍射光学元件的环境适用性。
本发明的技术方案是这样实现的:
一种衍射光学元件结构,包括由光学材料A制成的衍射层和由光学材料B制成的互补衍射层,所述衍射层具有的衍射面,所述互补衍射层具有与所述衍射面相对应的互补面,所述衍射层的衍射面与所述互补衍射层的互补面相互填满融合在一起,且所述衍射层与所述互补衍射层沿其表面法线方向平行排布,所述衍射层的衍射面中不同位置的厚度相同或不相同,其厚度分布由后场衍射需求确定;所述互补衍射层的互补面中不同位置的厚度相同或不相同,其厚度分布使得不同位置的衍射层厚度与互补衍射层厚度的和相同;所述光学材料A的折射率与所述光学材料B的折射率之间的差远小于所述光学材料A的折射率与空气的折射率之间的差。
进一步的,所述衍射层的衍射面为达曼光栅,相对的另一表面为平面,所述互补衍射层的互补面为互补达曼光栅,相对的另一表面为平面。
进一步的,所述衍射层的平面与所述互补衍射层的平面上镀膜或不镀膜。
进一步的,所述光学材料A的折射率与所述光学材料B的折射率之间的差与所述光学材料A的折射率与空气的折射率之间的差的比值小于0.1。
进一步的,所述光学材料A的折射率与所述光学材料B的折射率之间的差与所述光学材料A的折射率与空气的折射率之间的差的比值小于0.01。
进一步的,所述衍射层的衍射面与所述互补衍射层的互补面之间直接胶合在一起或通过耦合剂胶合在一起。
进一步的,所述衍射光学元件可以胶合在一透明基底上,也可以不胶合任何基底。
一种衍射光学元件结构的制作方法,至少包括如下步骤:
A.提供一载板、一压板和具有若干浮雕图案单元的模具,所述浮雕图案单元用于成型衍射面;
B.选取未固化状态的预成型衍射层的光学材料A和预成型互补衍射层的光学材料B,并使固化后的光学材料A的折射率与光学材料B的折射率之间的差远小于光学材料A的折射率与空气的折射率之间的差;
C.将未固化状态的光学材料A滴落到载板上,并将具有若干浮雕图案单元的模具压置于载板的光学材料A上,使光学材料A填充融合到各浮雕图案单元内;
D.采用照射紫外线的方法,使光学材料A固化;
E.固化后,将模具取出,模具上的各浮雕图案单元转印到固化后的光学材料A上,形成具有若干衍射面的由光学材料A制成的衍射层;
F.将未固化状态的光学材料B滴落到步骤E制成的衍射层的各衍射面上,并将压板压置于衍射层上的光学材料B上,使光学材料B填充融合到衍射层的各衍射面上;
G.采用照射紫外光的方法,使光学材料B固化;
H.固化后,衍射层的衍射面转印到固化后的光学材料B上,形成具有互补面的由光学材料B制成的互补衍射层;
I.将载板与衍射层分离开,并将压板与互补衍射层分离开,并切割各浮雕图案单元对应的衍射层及互补衍射层,形成衍射层与互补衍射层相互填满融合在一起的衍射光学元件结构。
进一步的,所述衍射层与所述互补衍射层沿其表面法线方向平行排布,所述衍射层的衍射面中不同位置的厚度相同或不相同,其厚度分布由后场衍射需求确定;所述互补衍射层的互补面中不同位置的厚度相同或不相同,其厚度分布使得不同位置的衍射层厚度与互补衍射层厚度的和相同。
进一步的,所述衍射层的衍射面为达曼光栅,相对的另一表面为平面,所述互补衍射层的互补面为互补达曼光栅,相对的另一表面为平面。
进一步的,所述光学材料A和所述光学材料B均为光固化环氧树脂。
本发明的有益效果是:本发明提供一种衍射光学元件结构及制作方法,采用两种折射率接近的光学材料(光学材料A和光学材料B)以互补的方式形成相互填满融合在一起的衍射层和互补衍射层,通过两种材料的折射率互补,以降低衍射光学元件对厚度差精度的要求。其中,衍射层的加工方式可通过具有浮雕图案的模具转印成型,互补衍射层填充衍射层以代替传统衍射光学元件中对应空气的部分,从而使衍射光学元件不同位置的厚度都一致。这样,由于光学材料A与光学材料B的折射率差可以控制在千分之几的量级,所以光学材料A的厚度差可被放大到几十或几百微米量级,厚度差的精度也放大到几微米到十几微米的量级。也就是说,通过两种材料互补的方式,减低折射率差,进而可提高厚度差,放宽厚度差的容差,从而大大降低加工的难度;且极大的削减了散射光的产生(根据光学散射折射原理,散射折射界面处折射率的差值越小,散射效应越小,杂散光越弱),提高环境适用性。
附图说明
图1为本发明衍射光学元件结构一实施例示意图;
图2为本发明衍射光学元件结构另一实施例示意图;
图3为本发明衍射光学元件结构制作流程图。
具体实施方式
为了能够更清楚地理解本发明的技术内容,特举以下实施例详细说明,其目的仅在于更好理解本发明的内容而非限制本发明的保护范围。实施例附图的结构中各组成部分未按正常比例缩放,故不代表实施例中各结构的实际相对大小。
如图1所示,一种衍射光学元件结构,包括由光学材料A制成的衍射层1和由光学材料B制成的互补衍射层2,所述衍射层具有的衍射面,所述互补衍射层具有与所述衍射面相对应的互补面,所述衍射层的衍射面与所述互补衍射层的互补面相互填满融合在一起,且所述衍射层与所述互补衍射层沿其表面法线方向平行排布,所述衍射层的衍射面中不同位置的厚度相同或不相同(参见图2和图1),其厚度分布由后场衍射需求确定;所述互补衍射层的互补面中不同位置的厚度相同或不相同,其厚度分布使得不同位置的衍射层厚度与互补衍射层厚度的和相同;所述光学材料A的折射率与所述光学材料B的折射率之间的差远小于所述光学材料A的折射率与空气的折射率之间的差。上述结构中,衍射层和互补衍射层采用两种折射率接近的光学材料(光学材料A和光学材料B)以互补的方式相互填满融合在一起,通过两种材料的折射率互补,可以降低衍射光学元件对厚度差精度的要求。其中,衍射层的加工方式可通过具有浮雕图案的模具转印成型,互补衍射层填充衍射层以代替传统衍射光学元件中对应空气的部分,从而使衍射光学元件不同位置的厚度都一致,即衍射层与互补衍射层的厚度互补分布,使得不同位置的衍射层厚度与互补衍射层厚度的和相同。由于光学材料A与光学材料B的折射率差可以控制在千分之几的量级,所以光学材料A的厚度差可被放大到几十或几百微米量级,厚度差的精度也被放大到几微米到十几微米的量级。也就是说,通过两种材料互补的方式,减低折射率差,进而可提高厚度差,放宽厚度差的容差,从而大大降低加工的难度,提高环境适用性。
本发明衍射光学元件结构提高厚度差,放宽厚度差的容差技术原理,参见如下公式:
▽L=d*(n1-n2) (1)
其中,▽L为光程差,d为衍射面槽的高度差,n1为第一种介质的折射率,n2为第二种介质的折射率。
光学材料的折射率n,一般是1<n<2,如果n2代表空气,那么n2=1,则▽L≈0.5d。
如果n2为光学材料B,而n1为光学材料A,且n1≈n2,比如n1-n2≈0.005的话,对于相同的▽L,d扩大了100倍。这样,就可以将纳米级别的衍射光学元件结构放大到微米级别,从而降低了光学加工的精度要求。
优选的,所述衍射层的衍射面为达曼光栅,相对的另一表面为平面,所述互补衍射层的互补面为互补达曼光栅,相对的另一表面为平面。达曼光栅可作为分束器,用于光学投影仪,因此,本发明衍射光学元件结构可较好的应用于光学投影仪,纳米级别的衍射光学元件结构放大到微米级别,使得复杂结构的衍射光学元件可以采用低成本低精度的加工方案。
优选的,所述衍射层的平面与所述互补衍射层的平面上镀膜或不镀膜。在所述衍射层的平面与所述的互补衍射层的平面分别针对工作波段光谱镀增透膜,可以提高器件的光学透过率。
优选的,所述光学材料A的折射率与所述光学材料B的折射率之间的差与所述光学材料A的折射率与空气的折射率之间的差的比值小于0.1。更优选的,所述光学材料A的折射率与所述光学材料B的折射率之间的差与所述光学材料A的折射率与空气的折射率之间的差的比值小于0.01。实际上,光学材料A与光学材料B的折射率差可以控制在千分之几的量级,所以光学材料A的厚度差可被放大到几十或几百微米量级,厚度差的精度也被放大到几微米到十几微米的量级。
在其他实施例中,所述衍射层的衍射面与所述互补衍射层的互补面之间直接胶合在一起或通过耦合剂胶合在一起。
在其他实施例中,衍射光学元件可以胶合在一透明基底上,如胶合在玻璃上。
如图3所示,一种衍射光学元件结构的制作方法,至少包括如下步骤:
A.提供一载板3、一压板4和具有若干浮雕图案单元51的模具5,所述浮雕图案单元用于成型衍射面;优选的,载板和压板的成型面均为平面,可以保证成型的衍射层和互补衍射层的表面平整,避免对衍射光学元件的光学特性产生影响。
B.选取未固化状态的预成型衍射层的光学材料A10和预成型互补衍射层的光学材料B20,并使固化后的光学材料A的折射率与光学材料B的折射率之间的差远小于光学材料A的折射率与空气的折射率之间的差;比如,所述光学材料A的折射率与所述光学材料B的折射率之间的差与所述光学材料A的折射率与空气的折射率之间的差的比值小于0.1。更优选的,所述光学材料A的折射率与所述光学材料B的折射率之间的差与所述光学材料A的折射率与空气的折射率之间的差的比值小于0.01。实际上,光学材料A与光学材料B的折射率差可以控制在千分之几的量级,所以光学材料A的厚度差可被放大到几十或几百微米量级,厚度差的精度也被放大到几微米到十几微米的量级。
C.将未固化状态的光学材料A滴落到载板上,并将具有若干浮雕图案单元的模具压置于载板的光学材料A上,使光学材料A填充融合到各浮雕图案单元内;具体实施时,根据需要成型的衍射层的厚度需要,控制未固化状态的光学材料A的量,使光学材料A填充满模具各浮雕图案单元并具有一定厚度的基材。
D.采用光固化的方法,使光学材料A固化;
E.固化后,将模具取出,模具上的各浮雕图案单元转印到固化后的光学材料A上,形成具有若干衍射面的由光学材料A制成的衍射层;这样,采用紫外线照射的方法使光学材料A固化,并将模具从衍射层上取出,形成了具有一定厚度基材并具有衍射面11的衍射层1,衍射面的折射率由光学材料A决定。
F.将未固化状态的光学材料B滴落到步骤E制成的衍射层的各衍射面上,并将压板压置于衍射层上的光学材料B上,使光学材料B填充融合到衍射层的各衍射面上;具体实施时,根据需要成型的互补衍射层的厚度需要,控制未固化状态的光学材料B的量,使光学材料B填充满衍射层的衍射面并具有一定厚度的基材。
G.采用光固化的方法,使光学材料B固化;
H.固化后,衍射层的衍射面转印到固化后的光学材料B上,形成具有互补面的由光学材料B制成的互补衍射层;这样,采用光固化的方法使光学材料B固化,形成了具有一定厚度基材并具有互补面的互补衍射层2,互补面的折射率由光学材料B决定。
I.将载板与衍射层分离开,并将压板与互补衍射层分离开,并切割各浮雕图案单元对应的衍射层及互补衍射层,形成衍射层与互补衍射层相互填满融合在一起的衍射光学元件结构。这样,通过两种材料互补的方式,减低折射率差,可提高厚度(衍射面槽的高度)差,相对于采用光刻机或离子刀刻蚀的高精度加工形成的衍射面,放宽了厚度差的容差,从而大大降低加工的难度,使得复杂结构的衍射光学元件可以采用低成本低精度的加工方案。
优选的,所述衍射层与所述互补衍射层沿其表面法线方向平行排布,所述衍射层的衍射面中不同位置的厚度相同或不相同,其厚度分布由后场衍射需求确定;所述互补衍射层的互补面中不同位置的厚度相同或不相同,其厚度分布使得不同位置的衍射层厚度与互补衍射层厚度的和相同。
优选的,所述衍射层的衍射面为达曼光栅,相对的另一表面为平面,所述互补衍射层的互补面为互补达曼光栅,相对的另一表面为平面。
优选的,所述光学材料A和所述光学材料B均为光固化环氧树脂。固化后可透光。
综上,本发明提出一种衍射光学元件结构及制作方法,将纳米级别的衍射光学元件结构放大到微米级别,降低了光学加工的精度要求,且极大的削减了散射光的产生,提高了衍射光学元件的环境适用性。
以上实施例是参照附图,对本发明的优选实施例进行详细说明。本领域的技术人员通过对上述实施例进行各种形式上的修改或变更,但不背离本发明的实质的情况下,都落在本发明的保护范围之内。

Claims (11)

1.一种衍射光学元件结构,其特征在于,包括由光学材料A制成的衍射层和由光学材料B制成的互补衍射层,所述衍射层具有的衍射面,所述互补衍射层具有与所述衍射面相对应的互补面,所述衍射层的衍射面与所述互补衍射层的互补面相互填满融合在一起,且所述衍射层与所述互补衍射层沿其表面法线方向平行排布,所述衍射层的衍射面中不同位置的厚度相同或不相同,其厚度分布由后场衍射需求确定;所述互补衍射层的互补面中不同位置的厚度相同或不相同,其厚度分布使得不同位置的衍射层厚度与互补衍射层厚度的和相同;所述光学材料A的折射率与所述光学材料B的折射率之间的差远小于所述光学材料A的折射率与空气的折射率之间的差。
2.根据权利要求1所述的衍射光学元件结构,其特征在于,所述衍射层的衍射面为达曼光栅,相对的另一表面为平面,所述互补衍射层的互补面为互补达曼光栅,相对的另一表面为平面。
3.根据权利要求1所述的衍射光学元件结构,其特征在于,所述衍射层的平面与所述互补衍射层的平面上镀膜或不镀膜。
4.根据权利要求1所述的衍射光学元件结构,其特征在于,所述光学材料A的折射率与所述光学材料B的折射率之间的差与所述光学材料A的折射率与空气的折射率之间的差的比值小于0.1。
5.根据权利要求4所述的衍射光学元件结构,其特征在于,所述光学材料A的折射率与所述光学材料B的折射率之间的差与所述光学材料A的折射率与空气的折射率之间的差的比值小于0.01。
6.根据权利要求1所述的衍射光学元件结构,其特征在于,所述衍射层的衍射面与所述互补衍射层的互补面之间直接胶合在一起或通过耦合剂胶合在一起。
7.根据权利要求1所述的衍射光学元件结构,其特征在于,所述衍射光学元件可以胶合在一透明基底上,也可以不胶合任何基底。
8.一种衍射光学元件结构的制作方法,其特征在于,至少包括如下步骤:
A.提供一载板、一压板和具有若干浮雕图案单元的模具,所述浮雕图案单元用于成型衍射面;
B.选取未固化状态的预成型衍射层的光学材料A和预成型互补衍射层的光学材料B,并使固化后的光学材料A的折射率与光学材料B的折射率之间的差远小于光学材料A的折射率与空气的折射率之间的差;
C.将未固化状态的光学材料A滴落到载板上,并将具有若干浮雕图案单元的模具压置于载板的光学材料A上,使光学材料A填充融合到各浮雕图案单元内;
D.采用照射紫外线的方法,使光学材料A固化;
E.固化后,将模具取出,模具上的各浮雕图案单元转印到固化后的光学材料A上,形成具有若干衍射面的由光学材料A制成的衍射层;
F.将未固化状态的光学材料B滴落到步骤E制成的衍射层的各衍射面上,并将压板压置于衍射层上的光学材料B上,使光学材料B填充融合到衍射层的各衍射面上;
G.采用照射紫外光的方法,使光学材料B固化;
H.固化后,衍射层的衍射面转印到固化后的光学材料B上,形成具有互补面的由光学材料B制成的互补衍射层;
I.将载板与衍射层分离开,并将压板与互补衍射层分离开,并切割各浮雕图案单元对应的衍射层及互补衍射层,形成衍射层与互补衍射层相互填满融合在一起的衍射光学元件结构。
9.根据权利要求8所述的衍射光学元件结构的制作方法,其特征在于,所述衍射层与所述互补衍射层沿其表面法线方向平行排布,所述衍射层的衍射面中不同位置的厚度相同或不相同,其厚度分布由后场衍射需求确定;所述互补衍射层的互补面中不同位置的厚度相同或不相同,其厚度分布使得不同位置的衍射层厚度与互补衍射层厚度的和相同。
10.根据权利要求8所述的衍射光学元件结构的制作方法,其特征在于,所述衍射层的衍射面为达曼光栅,相对的另一表面为平面,所述互补衍射层的互补面为互补达曼光栅,相对的另一表面为平面。
11.根据权利要求8所述的衍射光学元件结构的制作方法,其特征在于,所述光学材料A和所述光学材料B均为光固化环氧树脂。
CN201710608972.2A 2017-07-25 2017-07-25 衍射光学元件结构及制作方法 Pending CN107300731A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710608972.2A CN107300731A (zh) 2017-07-25 2017-07-25 衍射光学元件结构及制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710608972.2A CN107300731A (zh) 2017-07-25 2017-07-25 衍射光学元件结构及制作方法

Publications (1)

Publication Number Publication Date
CN107300731A true CN107300731A (zh) 2017-10-27

Family

ID=60132973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710608972.2A Pending CN107300731A (zh) 2017-07-25 2017-07-25 衍射光学元件结构及制作方法

Country Status (1)

Country Link
CN (1) CN107300731A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535828A (zh) * 2018-03-12 2018-09-14 广东欧珀移动通信有限公司 衍射光学组件、激光投射模组、深度相机及电子装置
CN111158078A (zh) * 2018-11-08 2020-05-15 三星电子株式会社 背光单元和包括该背光单元的全息显示装置
CN113093321A (zh) * 2020-01-09 2021-07-09 苏州大学 一种多台阶衍射透镜及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287904A (ja) * 1998-04-01 1999-10-19 Olympus Optical Co Ltd 回折光学素子及びその製造方法
US20010015848A1 (en) * 1998-02-05 2001-08-23 Takehiko Nakai Diffractive optical element and optical system having the same
JP2001255408A (ja) * 2000-03-09 2001-09-21 Olympus Optical Co Ltd 回折光学素子の製造方法
JP2004212495A (ja) * 2002-12-27 2004-07-29 Nikon Corp 回折光学素子の製造方法及び回折光学素子
CN1677135A (zh) * 2004-03-30 2005-10-05 株式会社尼康 衍射光学元件及其制造方法
CN103080786A (zh) * 2011-03-18 2013-05-01 奥林巴斯医疗株式会社 衍射光学元件及内窥镜
CN207148350U (zh) * 2017-07-25 2018-03-27 华天科技(昆山)电子有限公司 衍射光学元件结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010015848A1 (en) * 1998-02-05 2001-08-23 Takehiko Nakai Diffractive optical element and optical system having the same
JPH11287904A (ja) * 1998-04-01 1999-10-19 Olympus Optical Co Ltd 回折光学素子及びその製造方法
JP2001255408A (ja) * 2000-03-09 2001-09-21 Olympus Optical Co Ltd 回折光学素子の製造方法
JP2004212495A (ja) * 2002-12-27 2004-07-29 Nikon Corp 回折光学素子の製造方法及び回折光学素子
CN1677135A (zh) * 2004-03-30 2005-10-05 株式会社尼康 衍射光学元件及其制造方法
CN103080786A (zh) * 2011-03-18 2013-05-01 奥林巴斯医疗株式会社 衍射光学元件及内窥镜
CN207148350U (zh) * 2017-07-25 2018-03-27 华天科技(昆山)电子有限公司 衍射光学元件结构

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535828A (zh) * 2018-03-12 2018-09-14 广东欧珀移动通信有限公司 衍射光学组件、激光投射模组、深度相机及电子装置
CN111158078A (zh) * 2018-11-08 2020-05-15 三星电子株式会社 背光单元和包括该背光单元的全息显示装置
EP3650748A3 (en) * 2018-11-08 2020-05-27 Samsung Electronics Co., Ltd. Backlight unit and holographic display apparatus including the same
US11366427B2 (en) 2018-11-08 2022-06-21 Samsung Electronics Co., Ltd. Backlight unit and holographic display apparatus including the same
CN111158078B (zh) * 2018-11-08 2024-02-27 三星电子株式会社 背光单元和包括该背光单元的全息显示装置
CN113093321A (zh) * 2020-01-09 2021-07-09 苏州大学 一种多台阶衍射透镜及其制作方法

Similar Documents

Publication Publication Date Title
JP6046031B2 (ja) 組込み空洞を有する積層構造および関連する製造方法
JP4052666B2 (ja) 微小レリーフ要素およびその作製方法
CN107300731A (zh) 衍射光学元件结构及制作方法
JP5943903B2 (ja) 内部空洞光学素子を製造する方法
CN1928711B (zh) 模具、压印方法和用于生产芯片的工艺
CN101594980B (zh) 用于制造具有复杂三维形状的光学产品的方法和装置
CN109804278A (zh) 用于光学器件的边缘密封剂围限和光晕减轻
JP5590851B2 (ja) 回折光学素子、積層型回折光学素子及びその製造方法
KR101721460B1 (ko) 평행 배치된 광반사부를 구비한 광제어 패널의 제조 방법
CN1443305A (zh) 表面等离子体振子共振传感器的耦合元件
CN207148350U (zh) 衍射光学元件结构
JP2005316414A (ja) 回折光学素子及び回折光学素子の製造方法
CN101806931A (zh) 光学元件的制造方法及光学元件
Assefa et al. 3D printed plano-freeform optics for non-coherent discontinuous beam shaping
WO2005057283A1 (en) Manufacturing a replication tool, sub-master or replica
CN107272330A (zh) 压印设备、压印方法、制造物品的方法及模具
CN101452092A (zh) 一种导光板及其制作方法
CN108957611B (zh) 一种光栅片的制造方法、光栅片及显示设备
CN100537202C (zh) 利用复制方法制作光学器件的方法
JP2017111248A (ja) 発色構造体およびその製造方法
CN101295553B (zh) X射线全息衍射光栅分束器
CN209224557U (zh) 光固化型3d打印设备及其图像曝光系统
EP4123347A1 (en) Method for replicating large-area holographic optical element, and large-area holographic optical element replicated thereby
CN107709033A (zh) 安全元件以及安全元件的制造方法
US9035406B2 (en) Wafer level optical packaging system, and associated method of aligning optical wafers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination