CN107300386B - 一种基于仅测角导航的闭环凸优化最优交会制导方法 - Google Patents

一种基于仅测角导航的闭环凸优化最优交会制导方法 Download PDF

Info

Publication number
CN107300386B
CN107300386B CN201710414810.5A CN201710414810A CN107300386B CN 107300386 B CN107300386 B CN 107300386B CN 201710414810 A CN201710414810 A CN 201710414810A CN 107300386 B CN107300386 B CN 107300386B
Authority
CN
China
Prior art keywords
constraint
guidance
convex optimization
navigation
performance index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710414810.5A
Other languages
English (en)
Other versions
CN107300386A (zh
Inventor
罗建军
吕东升
马卫华
龚柏春
袁建平
朱战霞
王明明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201710414810.5A priority Critical patent/CN107300386B/zh
Publication of CN107300386A publication Critical patent/CN107300386A/zh
Application granted granted Critical
Publication of CN107300386B publication Critical patent/CN107300386B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/24Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for cosmonautical navigation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/047Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators the criterion being a time optimal performance criterion

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Astronomy & Astrophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Navigation (AREA)

Abstract

一种基于仅测角导航的闭环凸优化最优交会制导方法,包括:1)建立可观测性性能指标、燃料性能指标和误差协方差性能指标;2)根据仅测角空间交会过程建立相对动力学约束、推力大小约束、轨迹约束和视场约束;3)设计凸优化最优制导流程;首先,采用当前的导航估计值作为优化问题的输入;然后,对当前时刻进行两次判断,当ti>tf时,终止程序,反之则继续判断,tf为终端时刻;当
Figure DDA0001313400870000011
时,求解凸优化问题并执行当前机动,反之执行上一求解时刻中对应的当前机动,
Figure DDA0001313400870000012
是给定的凸优化问题求解时刻,如此往复循环,直至终端时刻程序终止;4)利用导航与制导的耦合属性在线规划最优制导律。本发明能保证可观测性和燃料消耗最优,使制导轨迹相对于初始扰动具备鲁棒性。

Description

一种基于仅测角导航的闭环凸优化最优交会制导方法
技术领域
本发明属于导航与制导领域,涉及一种基于仅测角导航的闭环凸优化最优交会制导方法。
背景技术
相对导航与制导是航天器在轨自主服务领域和航天器自主捕获与交会过程中的关键技术。目前一些用来测量相对运动信息的主动有源式导航传感器,例如微波雷达、激光雷达等,由于体积大、功耗高、质量大和成本高等因素,在未来的非合作目标自主捕获与交会应用中会受到很大限制,而基于角度信息测量的光学相机等无源被动式传感器在这一方面却有很大的优势和应用前景,瑞典的PRISMA计划对基于测角信息的相对导航与制导技术进行了部分验证,美国的Raven计划也将在近期对基于角度信息的相对导航与制导技术进行验证。
总的来说,目前基于仅测角相对导航与制导的研究,主要集中在提高仅测角导航可观测性的机动轨迹设计、可观测性最优下的制导轨迹设计,而缺乏对同时满足可观测性和燃料消耗最小需求下的多约束仅测角最优制导,以及导航与制导一体化的闭环最优鲁棒制导的研究。
由于现有的技术研究不能满足实际交会过程的需要,因此为了贴近实际工程应用,需要从综合考虑可观测性和燃料消耗的指标要求,以及考虑实现多约束闭环在线最优交会鲁棒制导的角度出发,来研究仅测角导航多约束闭环最优交会制导的问题。
发明内容
本发明的目的在于针对上述现有技术中的问题,提供一种基于仅测角导航的闭环凸优化最优交会制导方法,保证可观测性和燃料消耗最优,使制导轨迹相对于初始扰动具备鲁棒性。
为了实现上述目的,本发明采用的技术方案包括以下步骤:
1)建立可观测性性能指标、燃料性能指标和误差协方差性能指标;
多目标优化的目标函数表示为:
J'=w1Jo+w2Jf+w3Jp
其中:
Figure GDA0002431599190000021
将误差协方差性能指标转换为多目标优化问题的约束,得:
J=wJo+(1-w)Jf
上式服从约束:||diag(Pk)||2≤Py,其中Pk表示k时刻的误差协方差,Py是一个常数;
2)根据仅测角空间交会过程建立相对动力学约束、推力大小约束、轨迹约束和视场约束;
3)设计凸优化最优制导流程;首先,采用当前的导航估计值
Figure GDA0002431599190000022
作为优化问题的输入;然后,对当前时刻进行两次判断,当ti>tf时,终止程序,反之则继续进行判断,tf为终端时刻;当
Figure GDA0002431599190000023
时,求解凸优化问题并执行当前机动,反之执行上一求解时刻中对应的当前机动,
Figure GDA0002431599190000024
是给定的凸优化问题求解时刻,如此往复循环,直至终端时刻程序终止;
4)利用导航与制导的耦合属性来在线规划最优制导律。
所述的步骤1)将可观测性性能指标表示为:
Figure GDA0002431599190000025
其中:H是与Φs相关的矩阵;
Φs=[Φrr Φrv]是航天器交会相对运动状态转移矩阵Φ的一部分。
所述的步骤1)将燃料性能指标表示为:
Jf=FTY
其中:
Figure GDA0002431599190000026
Y=[xTuTsT]T
x,u,s分别为系统状态、控制输入以及为了满足凸优化方法要求所引入的松弛变量。
所述的步骤1)误差协方差性能指标表示为:
Figure GDA0002431599190000027
其中:Q为系数矩阵,给定初始误差协方差为P0=E(δx0δx0 T)。
所述的步骤2)将相对动力学约束表示为:
AEOMY=bEOM
其中:
Figure GDA0002431599190000031
所述的步骤2)将推力大小约束表示为:
AuY≤bu
所述步骤2)构建轨迹约束的条件是使追踪航天器不会越过目标的位置:
AxY≤bx
其中:
Figure GDA0002431599190000032
bx=[xmax xmin]T
所述步骤2)构建视场约束的条件是使目标处于追踪航天器的导航传感器视场范围之内:
||AsY||2≤eAsY
其中:As=[I3×3|03×7],
Figure GDA0002431599190000033
这里β表示视场圆锥顶角的二分之一,
Figure GDA0002431599190000034
表示垂直于视场焦平面的单位向量。
与现有技术相比,本发明具有如下的有益效果:通过凸优化方法建立最优制导律,将可观测性和燃料消耗作为优化指标,通过求解一个含多约束条件的多目标优化问题,进而得到确保可观测性和燃料消耗综合最优的制导轨迹。此外,本发明引入了误差协方差约束,使得制导轨迹相对于初始扰动具备鲁棒性,该制导方法贴近实际交会场景,易于工程应用。
附图说明
图1为本发明凸优化最优制导方法的流程图;
图2为本发明闭环相对导航与制导算法的流程图;
图3为本发明仿真中可观测性对RV平面制导轨迹的影响数据图;
图4为本发明仿真中可观测性对HR平面制导轨迹的影响数据图;
图5为本发明仿真中初始扰动对RV平面制导轨迹的影响数据图(含协方差约束);
图6为本发明仿真中初始扰动对HR平面制导轨迹的影响数据图(含协方差约束);
图7为本发明仿真中初始扰动对RV平面制导轨迹的影响数据图(不含协方差约束);
图8为本发明仿真中初始扰动对HR平面制导轨迹的影响数据图(不含协方差约束)。
具体实施方式
下面结合附图对本发明做进一步的详细说明。
参见图1-8,本发明基于仅测角导航的闭环凸优化最优交会制导方法包括以下步骤:
步骤一:设计性能指标;一般来说,燃料消耗的多少与控制量,即机动u的范数成正比,因此可以用所有机动的范数和作为燃料性能指标来反映实际燃料消耗的大小:
Figure GDA0002431599190000041
但是这种形式并不能满足凸优化算法的需求,为此对式(1)进行变换。
燃料性能指标具体可以表示为:
Jf=FTY (2)
其中:
Figure GDA0002431599190000042
Y=[xTuTsT]T
x,u,s分别为系统状态、控制输入和为了满足凸优化方法要求所引入的松弛变量。
可以根据轨道机动条件下的可观测性最优条件来建立交会优化过程中的可观测性性能指标,可观测性性能指标可以具体表示为:
Figure GDA0002431599190000043
其中:H是与Φs相关的矩阵。
Φs=[Φrr Φrv]是航天器交会相对运动状态转移矩阵Φ的一部分。
通过引入误差协方差来降低初始扰动对轨迹的影响,误差协方差性能指标可以表示为:
Figure GDA0002431599190000051
其中:Q为系数矩阵,且给定初始误差协方差为P0=E(δx0δx0 T)。在建立了可观测性性能指标、燃料性能指标和误差协方差性能指标之后,多目标优化的目标函数可以表示为:
J'=w1Jo+w2Jf+w3Jp (5)
其中:
Figure GDA0002431599190000052
但是式(5)的表述形式在数值仿真时会十分的繁琐,不易从中得出有用结论,因此将误差协方差性能指标转换为多目标优化问题的约束,最终的目标函数为:
J=wJo+(1-w)Jf (6)
且其服从约束:||diag(Pk)||2≤Py
步骤二:优化约束;
针对仅测角空间交会过程分别建立相对动力学约束、推力大小约束、轨迹约束和视场约束。
相对动力学约束可以表示为:
AEOMY=bEOM (7)
其中:
Figure GDA0002431599190000053
推力大小约束是与航天器推进器相关的约束,可以表述为:
AuY≤bu (9)
在实际工程中,需要对追踪航天器的轨迹进行限制以使追踪航天器不会越过目标的位置。
因此可以建立轨迹约束为:
AxY≤bx (10)
其中:
Figure GDA0002431599190000061
视场约束是一个顶点位于追踪航天器上的圆锥区域,以便保证目标处于追踪航天器的导航传感器视场范围之内。视场约束可以写为以下形式:
||AsY||2≤eAsY (12)
其中:
Figure GDA0002431599190000062
步骤三:凸优化最优制导流程设计;
所提出的凸优化制导方案首先采用当前的导航估计值
Figure GDA0002431599190000063
来做为优化问题的输入;然后对当前时刻进行两次判断,当ti>tf时(tf是终端时刻),终止程序,反之继续进行判断;当
Figure GDA0002431599190000064
时(
Figure GDA0002431599190000065
是给定的凸优化问题求解时刻),求解凸优化问题并执行当前机动,反之执行上一求解时刻中对应的当前机动,如此往复循环直至终端时刻程序终止。
应当注意到,本发明的最优交会制导方法并不是在每次导航输入采样时刻都进行凸优化问题的求解计算,而是在给定的时刻才求解凸优化问题。这样的好处是为了降低在线计算的计算量,同时也给凸优化问题的求解留下了足够的求解时间。
步骤四:仅测角导航闭环制导框架设计;
注意到基于仅测角信息的自主交会导航和制导之间存在耦合的特点:一方面,导航信息是制导环节的输入,导航信息的误差影响着制导精度;另外一方面,对仅测角导航来说,机动的方式又能提高导航的可观测性,使导航滤波结果更为精确,即制导影响着导航的精度。
本发明基于仅测角导航的闭环凸优化最优交会制导方法的核心在于利用导航与制导的耦合属性来在线规划最优制导律。图2中的ti和tf分别是当前采样时刻和终端时刻,P0是初始估计误差协方差矩阵,ΔV为制导速度脉冲,K表示滤波增益。
从数据流上可以看出“耦合”主要存在于导航系统估计相对运动状态并传递给制导系统;同时制导系统计算出速度脉冲ΔV并通过动力学方程来提高导航系统的可观测性。
以上内容仅为本发明的技术思想,不以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (4)

1.一种基于仅测角导航的闭环凸优化最优交会制导方法,其特征在于,包括以下步骤:
1)建立可观测性性能指标、燃料性能指标和误差协方差性能指标;
将可观测性性能指标表示为:
Figure FDA0002454119420000011
其中:H是与Φs相关的矩阵;
Φs=[Φrr Φrv]是航天器交会相对运动状态转移矩阵Φ的一部分;
将燃料性能指标表示为:
Jf=FTY
其中:
Figure FDA0002454119420000012
Y=[xT uT sT]T
x,u,s分别为系统状态、控制输入以及为了满足凸优化方法要求所引入的松弛变量;
误差协方差性能指标表示为:
Figure FDA0002454119420000013
其中:Q为系数矩阵,给定初始误差协方差为P0=E(δx0δx0 T);
多目标优化的目标函数表示为:
J'=w1Jo+w2Jf+w3Jp
其中:
Figure FDA0002454119420000014
将误差协方差性能指标转换为多目标优化问题的约束,得:
J=wJo+(1-w)Jf
上式服从约束:||diag(Pk)||2≤Py,其中Pk表示k时刻的误差协方差,Py是一个常数;
2)根据仅测角空间交会过程建立相对动力学约束、推力大小约束、轨迹约束和视场约束;
将相对动力学约束表示为:
AEOMY=bEOM
其中:
Figure FDA0002454119420000021
bEOM=0;
推力大小约束是与航天器推进器相关的约束;
构建轨迹约束的条件是使追踪航天器不会越过目标的位置;
构建视场约束的条件是使目标处于追踪航天器的导航传感器视场范围之内;
3)设计凸优化最优制导流程;首先,采用当前的导航估计值
Figure FDA0002454119420000022
作为优化问题的输入;然后,对当前时刻进行两次判断,当ti>tf时,终止程序,反之则继续进行判断,tf为终端时刻;当
Figure FDA0002454119420000023
时,求解凸优化问题并执行当前机动,反之执行上一求解时刻中对应的当前机动,
Figure FDA0002454119420000024
是给定的凸优化问题求解时刻,如此往复循环,直至终端时刻程序终止;
4)利用导航与制导的耦合属性来在线规划最优制导律。
2.根据权利要求1所述基于仅测角导航的闭环凸优化最优交会制导方法,其特征在于:所述的步骤2)将推力大小约束表示为:
AuY≤bu
3.根据权利要求1所述基于仅测角导航的闭环凸优化最优交会制导方法,其特征在于:所述步骤2)构建轨迹约束的条件表示为:
AxY≤bx
其中:
Figure FDA0002454119420000025
bx=[xmax xmin]T
4.根据权利要求1所述基于仅测角导航的闭环凸优化最优交会制导方法,其特征在于:所述步骤2)构建视场约束的条件表示为:
||AsY||2≤eAsY
其中:As=[I3×3|03×7],
Figure FDA0002454119420000026
这里β表示视场圆锥顶角的二分之一,
Figure FDA0002454119420000027
表示垂直于视场焦平面的单位向量。
CN201710414810.5A 2017-06-05 2017-06-05 一种基于仅测角导航的闭环凸优化最优交会制导方法 Active CN107300386B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710414810.5A CN107300386B (zh) 2017-06-05 2017-06-05 一种基于仅测角导航的闭环凸优化最优交会制导方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710414810.5A CN107300386B (zh) 2017-06-05 2017-06-05 一种基于仅测角导航的闭环凸优化最优交会制导方法

Publications (2)

Publication Number Publication Date
CN107300386A CN107300386A (zh) 2017-10-27
CN107300386B true CN107300386B (zh) 2020-06-09

Family

ID=60134635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710414810.5A Active CN107300386B (zh) 2017-06-05 2017-06-05 一种基于仅测角导航的闭环凸优化最优交会制导方法

Country Status (1)

Country Link
CN (1) CN107300386B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108388135B (zh) * 2018-03-30 2020-11-10 上海交通大学 一种基于凸优化的火星着陆轨迹优化控制方法
CN108931250B (zh) * 2018-05-04 2021-04-13 北京空间飞行器总体设计部 一种基于相对导航可观测度优化的脉冲机动自主规划方法
CN108955684B (zh) * 2018-05-04 2020-12-18 北京空间飞行器总体设计部 一种基于连续推力的轨道机动自主规划方法和系统
CN108692729B (zh) * 2018-05-04 2019-05-24 北京空间飞行器总体设计部 一种空间非合作目标相对导航协方差自适应修正滤波方法
CN110567489B (zh) * 2019-08-29 2021-05-04 湖北工业大学 角度交会测量系统的动态误差的获取方法及系统
CN111504140B (zh) * 2020-04-28 2022-02-15 西北工业大学 一种远程固体火箭瞬时轨道落点闭环最优反馈制导方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210821A (zh) * 2006-12-28 2008-07-02 中国航天时代电子公司第十六研究所 一种双通道轴角转换和测量中粗精耦合的方法
CN102081752A (zh) * 2011-01-27 2011-06-01 西北工业大学 基于自适应变异遗传算法的动态飞行路径规划方法
CN102592287A (zh) * 2011-12-31 2012-07-18 浙江大学 基于3d视频的时空域运动分割与估计模型的凸优化方法
KR20130027608A (ko) * 2011-05-18 2013-03-18 조현규 다기능이 구비된 각도측정자와 막대판 구조 결합장치
CN105867399A (zh) * 2016-04-18 2016-08-17 北京航天自动控制研究所 一种确定多状态跟踪制导参数的方法
CN106054604A (zh) * 2016-06-02 2016-10-26 西北工业大学 基于模型预测控制理论的再入飞行器鲁棒最优制导方法
CN106556828A (zh) * 2016-11-09 2017-04-05 哈尔滨工程大学 一种基于凸优化的高精度定位方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999739B2 (en) * 2005-02-01 2011-08-16 Thales 1D or 2D goniometry method of diffuse sources

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210821A (zh) * 2006-12-28 2008-07-02 中国航天时代电子公司第十六研究所 一种双通道轴角转换和测量中粗精耦合的方法
CN102081752A (zh) * 2011-01-27 2011-06-01 西北工业大学 基于自适应变异遗传算法的动态飞行路径规划方法
KR20130027608A (ko) * 2011-05-18 2013-03-18 조현규 다기능이 구비된 각도측정자와 막대판 구조 결합장치
CN102592287A (zh) * 2011-12-31 2012-07-18 浙江大学 基于3d视频的时空域运动分割与估计模型的凸优化方法
CN105867399A (zh) * 2016-04-18 2016-08-17 北京航天自动控制研究所 一种确定多状态跟踪制导参数的方法
CN106054604A (zh) * 2016-06-02 2016-10-26 西北工业大学 基于模型预测控制理论的再入飞行器鲁棒最优制导方法
CN106556828A (zh) * 2016-11-09 2017-04-05 哈尔滨工程大学 一种基于凸优化的高精度定位方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
仅测角导航的自主交会闭环控制偏差分析;李九人等;《宇航学报》;20120630;第33卷(第6期);第705-712页 *
考虑可观测度的反交会规避机动方法;于大腾等;《国防科技大学学报》;20140831;第36卷(第4期);第15-21页 *

Also Published As

Publication number Publication date
CN107300386A (zh) 2017-10-27

Similar Documents

Publication Publication Date Title
CN107300386B (zh) 一种基于仅测角导航的闭环凸优化最优交会制导方法
Song et al. Three-dimensional guidance law based on adaptive integral sliding mode control
Yan et al. Integrated guidance and control for dual-control missiles based on small-gain theorem
CN102862686B (zh) 再入飞行器的最优积分滑模姿态控制方法及控制器
Hu et al. Three-dimensional guidance for various target motions with terminal angle constraints using twisting control
CN103884237B (zh) 基于目标概率分布信息的多对一协同制导方法
Liu et al. An integrated guidance and control approach in three-dimensional space for hypersonic missile constrained by impact angles
CN102654772B (zh) 一种基于控制力受限情况下飞行器航迹倾角反演控制方法
CN106970530B (zh) 空间非合作目标自主视线交会的无模型预设性能控制方法
Wang et al. Nonlinear aeroelastic control of very flexible aircraft using model updating
Wang et al. Terminal guidance for a hypersonic vehicle with impact time control
CN113361013A (zh) 一种基于时间同步稳定的航天器姿态鲁棒控制方法
CN106863297B (zh) 一种空间绳系机器人视觉精确逼近方法
Miao et al. DOPH∞-based path-following control for underactuated marine vehicles with multiple disturbances and constraints
Zhang et al. Improved iterative learning path-following control for USV via the potential-based DVS guidance
Zhang et al. Global fast terminal sliding mode control for path following of ultra large underactuated ship based on predictive LOS guidance
Moosapour et al. A novel nonlinear robust guidance law design based on SDRE technique
Chao et al. Three-dimensional low-order finite-time integrated guidance and control design with side-window constraint
Stepanyan et al. Aerial refueling autopilot design methodology: application to F-16 aircraft model
Tian et al. Integrated strapdown missile guidance and control with field-of-view constraint and actuator saturation
Avanzini et al. Two-timescale-integration method for inverse simulation
Do et al. Robust path following of underactuated ships using Serret-Frenet frame
Yuqi et al. Time-varying parameters estimation with adaptive neural network EKF for missile-dual control system
Hao et al. General reentry trajectory planning method based on improved maneuver coefficient
Won et al. Three-axis autopilot design for a high angle-of-attack missile using mixed H 2/H∞ control

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant