CN107293633B - High heat flux density cooling device for high-power LED - Google Patents
High heat flux density cooling device for high-power LED Download PDFInfo
- Publication number
- CN107293633B CN107293633B CN201710654431.3A CN201710654431A CN107293633B CN 107293633 B CN107293633 B CN 107293633B CN 201710654431 A CN201710654431 A CN 201710654431A CN 107293633 B CN107293633 B CN 107293633B
- Authority
- CN
- China
- Prior art keywords
- heat dissipation
- heat
- air guide
- condensing
- led
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004907 flux Effects 0.000 title claims abstract description 29
- 238000001816 cooling Methods 0.000 title claims abstract description 27
- 230000017525 heat dissipation Effects 0.000 claims abstract description 136
- 239000000758 substrate Substances 0.000 claims abstract description 44
- 238000001704 evaporation Methods 0.000 claims abstract description 31
- 230000008020 evaporation Effects 0.000 claims abstract description 27
- 238000009833 condensation Methods 0.000 claims abstract description 17
- 230000005494 condensation Effects 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 15
- 239000002184 metal Substances 0.000 claims abstract description 15
- 239000004519 grease Substances 0.000 claims abstract description 14
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 14
- 230000002093 peripheral effect Effects 0.000 claims description 27
- 239000007788 liquid Substances 0.000 claims description 16
- 238000009434 installation Methods 0.000 claims description 12
- 241000237983 Trochidae Species 0.000 claims description 10
- 230000008859 change Effects 0.000 abstract description 4
- 239000013589 supplement Substances 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 abstract 1
- 238000010992 reflux Methods 0.000 abstract 1
- 239000003570 air Substances 0.000 description 34
- 238000012546 transfer Methods 0.000 description 10
- 238000004806 packaging method and process Methods 0.000 description 8
- 230000005855 radiation Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000010412 perfusion Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/858—Means for heat extraction or cooling
- H10H20/8582—Means for heat extraction or cooling characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/858—Means for heat extraction or cooling
- H10H20/8586—Means for heat extraction or cooling comprising fluids, e.g. heat-pipes
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及大功率LED的技术领域,具体涉及一种用于大功率LED的高热流密度冷却装置。The invention relates to the technical field of high-power LEDs, in particular to a high heat flux cooling device for high-power LEDs.
背景技术Background technique
LED作为一种主动自发光器件,作为不燃烧灯丝或气体的固态光照,功耗小、工作电压低、发光亮度高、工作寿命长、性能稳定,可在极端环境下工作而性能衰减很小的特点而得到了广泛应用,但其工作过程只有15%的电能转换成光能,其余85%的电能几乎全部转换成热能,使LED的温度升高。随着温度的增加不但LED的失效率大大增加而且LED光衰加剧、寿命缩短,因此,高热流密度的热设计是LED是最需要的核心设计。比如,一个10W的白光LED,若其光电转换效率为15%,则有8.5W的电能转换成热能,若不加散热措施,则大功率LED的器芯温度会急速上升,当其结点温度Tj上升超过最大允许温度时,LED会因过热而损坏。As an active self-luminous device, LED is a solid-state lighting that does not burn filaments or gases. It has low power consumption, low operating voltage, high luminous brightness, long working life, and stable performance. It can work in extreme environments with little performance attenuation. It has been widely used due to its characteristics, but only 15% of the electric energy is converted into light energy during its working process, and the remaining 85% of the electric energy is almost completely converted into heat energy, which increases the temperature of the LED. As the temperature increases, not only the failure rate of LEDs increases greatly, but also the light decay of LEDs increases and the lifespan is shortened. Therefore, the thermal design of high heat flux is the core design that LEDs need most. For example, if a 10W white light LED has a photoelectric conversion efficiency of 15%, 8.5W of electrical energy will be converted into heat energy. If no heat dissipation measures are taken, the core temperature of the high-power LED will rise rapidly. When Tj rises above the maximum allowable temperature, the LED will be damaged by overheating.
目前的部分大功率LED产品,需散热的热流密度已经达到50-90w/cm2,较高的已经超过150 w/cm2。加上产品体积尺寸越来越小,散热装置本身的布置和设计遇到的约束也越来越严重。传统的依靠单相流体的对流换热和强制风冷方法只能用于热流密度不大于10w/cm2的产品。现在试验经验表明,热流密度大于60w/cm2就可称为高热流密度。For some high-power LED products at present, the heat flux density to be dissipated has reached 50-90w/cm 2 , and the higher one has exceeded 150 w/cm 2 . Coupled with the increasingly smaller product volume, the constraints encountered in the layout and design of the heat sink itself are becoming more and more serious. The traditional convective heat transfer and forced air cooling methods relying on single-phase fluid can only be used for products with a heat flux density not greater than 10w/cm 2 . Now the test experience shows that the heat flux greater than 60w/cm 2 can be called high heat flux.
现有技术中一般是通过在基片背面安装散热岐片、强制流式通风风扇及特殊的铝制散热板来从紧密聚集的LED中散出热量。比如在基片的正面LED安装座下面安装散热层,但是热量通过LED座转移到基片的散热层,再由散热层传导至基片的背面而被风扇气流把热量带走,如此试图通过从基片背面的强制气流来散热。由于正面产生的热量只能从背面带走,所以散热效率差,这在一定程度上影响了LED阵列器件的使用寿命。也有采用多个穿设在基片上LED阵列的间隔空间中的铜管来散热的,但是需要基片背面设置强制流式通风风扇才能满足冷却散热要求。这样就导致了强制流式通风风扇的用电量大为增加,也增加了制造成本。In the prior art, the heat is dissipated from the tightly gathered LEDs by installing heat dissipating fins, forced-flow ventilation fans and special aluminum heat dissipating plates on the back of the substrate. For example, a heat dissipation layer is installed under the front LED mounting seat of the substrate, but the heat is transferred to the heat dissipation layer of the substrate through the LED seat, and then conducted to the back of the substrate by the heat dissipation layer, and the heat is taken away by the fan airflow. Forced airflow on the backside of the substrate to dissipate heat. Since the heat generated on the front side can only be taken away from the back side, the heat dissipation efficiency is poor, which affects the service life of the LED array device to a certain extent. There is also a plurality of copper tubes passing through the space between the LED arrays on the substrate to dissipate heat, but it is necessary to arrange a forced-flow ventilation fan on the back of the substrate to meet the cooling and heat dissipation requirements. This has resulted in a significant increase in the power consumption of the forced-flow ventilation fan, and has also increased the manufacturing cost.
同时,为了冷却紧密聚集的基片上的LED,导致制造LED和使用LED的费用增加。比如,LED阵列器件的用电费用70%以上被冷却用强制流式通风风扇耗费。制造过程中加入的散热层也增加了LED阵列器件的成本。At the same time, in order to cool the LEDs on the closely packed substrate, the cost of manufacturing and using the LEDs increases. For example, more than 70% of the electricity cost of LED array devices is consumed by forced air fans for cooling. The heat dissipation layer added during the manufacturing process also increases the cost of the LED array device.
于是,如何低成本、高效率地转移紧密聚集的LED阵列器件的热量,成为业界推广LED阵列器件亟待解决的共性的难题。Therefore, how to transfer the heat of the tightly packed LED array devices with low cost and high efficiency has become a common problem to be solved urgently in the promotion of LED array devices in the industry.
发明内容Contents of the invention
针对上述现有技术中存在的缺陷,本发明的目的在于提供一种用于大功率LED的高热流密度冷却装置,以不耗费电能的极低成本高效为LED基片散热。In view of the above-mentioned defects in the prior art, the object of the present invention is to provide a high heat flux cooling device for high-power LEDs, which can efficiently dissipate heat for LED substrates at extremely low cost without consuming electric energy.
本发明的目的是这样实现的,一种用于大功率LED的高热流密度冷却装置,包括至少一个大功率LED器件,大功率LED器件至少包括金属基线路板,The object of the present invention is achieved in that a high heat flux cooling device for high-power LEDs includes at least one high-power LED device, and the high-power LED device at least includes a metal-based circuit board,
包括散热基板、散热结构,所述大功率器件和所述散热结构分别安装固定在所述所述散热基板两侧;It includes a heat dissipation substrate and a heat dissipation structure, and the high-power device and the heat dissipation structure are respectively installed and fixed on both sides of the heat dissipation substrate;
所述散热基板包括LED安装面、散热面和台阶安装部,所述LED安装面设有第一导热结构;导热硅脂填充所述第一导热结构,所述金属基线路板嵌入导热硅脂中并与LED安装面固定;The heat dissipation substrate includes an LED installation surface, a heat dissipation surface and a stepped installation part, the LED installation surface is provided with a first heat conduction structure; the heat conduction silicone grease fills the first heat conduction structure, and the metal-based circuit board is embedded in the heat conduction silicone grease And fix it with the LED mounting surface;
所述散热面包括左散热面、右散热面,所述左散热面和右散热面邻接并对称倾斜设置于邻接边两侧形成内凹脊,所述散热面上设有第二导热结构;The heat dissipation surface includes a left heat dissipation surface and a right heat dissipation surface. The left heat dissipation surface and the right heat dissipation surface are adjacent and symmetrically inclined to form concave ridges on both sides of the adjacent side. The heat dissipation surface is provided with a second heat conduction structure;
散热结构包括冷凝壳体、蒸发腔、散热岐片和回流毛细芯,所述冷凝壳体绝热地固定在所述台阶安装部上;所述冷凝壳体和散热基板构成的内部空腔构成为蒸发腔,所述蒸发腔内填充有可相变的工作介质;所述冷凝壳体的内壁和外壁一一对应地间隔设有多个散热岐片;The heat dissipation structure includes a condensing shell, an evaporation cavity, a cooling fin and a return capillary core, the condensing shell is adiabatically fixed on the step installation part; the inner cavity formed by the condensing shell and the heat dissipation substrate is formed to evaporate cavity, the evaporation cavity is filled with a phase-changeable working medium; the inner wall and the outer wall of the condensation shell are provided with a plurality of cooling fins at intervals corresponding to each other;
冷凝壳体内壁设有回流毛细芯,所述回流毛细芯能将冷凝壳体内壁的液态工作介质回流到散热面上。The inner wall of the condensation shell is provided with a return capillary core, and the return capillary core can return the liquid working medium on the inner wall of the condensation shell to the heat dissipation surface.
进一步地,所述第一导热结构包括一定间距阵列间隔设置在LED安装面上的多个吸热凹坑,所述第二导热结构包括一定间距阵列间隔设置在散热面上的多个散热凹坑。Further, the first heat conduction structure includes a plurality of heat-absorbing pits arranged in an array at a certain interval on the LED mounting surface, and the second heat conduction structure includes a plurality of heat-dissipating pits arranged in an array at an interval at a certain interval on the heat dissipation surface .
进一步地,所述散热结构还包括轴流风扇和导风壳体,所述冷凝壳体设有顶外岐片和周外岐片;所述导风壳体内固定安装有轴流风扇,所述导风壳体能引导轴流风扇的出口气流沿冷凝壳体的顶外岐片进入周外岐片。Further, the heat dissipation structure also includes an axial flow fan and an air guide housing, and the condensation housing is provided with a top outer disc and a peripheral outer disc; an axial fan is fixedly installed in the air guide housing, and the air guide The casing can guide the outlet air flow of the axial flow fan along the top outer fin of the condensing shell and enter the peripheral outer fin.
进一步地,所述冷凝壳体包括一体成型的冷凝顶壳、周壁和法兰安装部,所述冷凝顶壳包括左顶部和右顶部,所述左顶部和右顶部连接形成马脊形,所述马脊形的马脊线与内凹脊平行相对。Further, the condensing shell includes an integrally formed condensing top shell, a peripheral wall and a flange mounting part, the condensing top shell includes a left top and a right top, and the left top and right top are connected to form a horse ridge shape, the The ridgeline of the ridge is parallel to the concave ridge.
进一步地,所述散热岐片包括一一对应地设置在冷凝壳体的壁内外的外岐片和内岐片,所述外岐片包括不连接的顶外岐片和周外岐片,所述内岐片包括相互连接并一体成型的顶内岐片和周内岐片。Further, the heat dissipating fins include outer fins and inner fins that are arranged one-to-one on the inside and outside of the wall of the condensing shell, and the outer fins include unconnected top outer fins and peripheral outer fins, the inner fins The discs include a top inner disc and a peripheral inner disc which are connected and integrally formed.
进一步地,所述回流毛细芯包括斜回流毛细芯束、垂直回流毛细芯束和回流毛细芯片,斜回流毛细芯束固定在所述冷凝壳体的内岐片之间,且使得斜回流毛细芯束紧贴所述冷凝顶壳的内壁,在斜回流毛细芯束的对应马脊线位置间隔固定有垂直回流毛细芯束,在散热基板的散热面上设有回流毛细芯片,所述斜回流毛细芯束的下端和垂直回流毛细芯束的下端分别抵接所述回流毛细芯片。Further, the return capillary core includes an oblique return capillary core bundle, a vertical return capillary core bundle and a return capillary chip, and the oblique return capillary core bundle is fixed between the inner fins of the condensation housing, and makes the oblique return capillary core The bundle is closely attached to the inner wall of the condensing top shell, and vertical return capillary bundles are fixed at intervals corresponding to the ridge lines of the oblique return capillary bundles, and a return capillary chip is arranged on the heat dissipation surface of the heat dissipation substrate. The lower ends of the core bundles and the vertical return capillary core bundles abut against the return capillary chips respectively.
进一步地,所述导风壳体设有风机固定部和导风部,当导风壳体的出口法兰固定在所述冷凝壳体的法兰安装部上时,所述导风部的周壁紧贴周外岐片设置,所述导风部的周壁对应周外岐片的位置间隔设有多个栅孔,所述导风壳体将轴流风机的出口气流引导沿顶外岐片之间的空间向外侧沿周外岐片之间的空间流过然后从栅孔流出。Further, the air guide housing is provided with a fan fixing part and an air guide part. When the outlet flange of the air guide housing is fixed on the flange mounting part of the condensation housing, the surrounding wall of the air guide part It is arranged close to the outer discs, and the peripheral wall of the air guide part is provided with a plurality of grid holes at intervals corresponding to the positions of the outer discs. The air guide housing guides the outlet airflow of the axial flow fan along the space between the top outer discs. The outer side flows through the spaces between the peripheral fins and out through the grid holes.
进一步地,风机固定部包括与导风壳体一体连接的支撑筋和倒T形的轮毂固定体,所述轮毂固定体包括一体成型的T形帽和电机轴固定管,所述轴流风扇包括轮毂和与轮毂一体连接的多个旋转叶片,与电机的驱动轴相结合的轮毂通过圆锥滚子轴承旋转设置在所述电机轴固定管中。Further, the fan fixing part includes support ribs integrally connected with the wind guide housing and an inverted T-shaped hub fixing body, the hub fixing body includes an integrally formed T-shaped cap and a motor shaft fixing tube, and the axial flow fan includes The hub and a plurality of rotating blades integrally connected with the hub, the hub combined with the drive shaft of the motor are rotatably arranged in the motor shaft fixing tube through tapered roller bearings.
进一步地,所述T形帽具有导风边缘,所述导风边缘与电机轴固定管的轴线夹角构成为导风角,所述导风角为30º~60º。Further, the T-shaped cap has an air guide edge, and the angle between the air guide edge and the axis of the motor shaft fixing tube constitutes an air guide angle, and the air guide angle is 30°-60°.
进一步地,所述散热结构还包括管形蒸发器,所述管形蒸发器密封地安装在散热基板的安装孔中;所述管形蒸发器包括蒸发部和冷凝部,所述冷凝部具有开口端,开口端延伸高出蒸发腔工作介质液面;管形蒸发器中装有所述可相变的工作介质。Further, the heat dissipation structure further includes a tube-shaped evaporator, and the tube-shaped evaporator is hermetically installed in the installation hole of the heat dissipation substrate; the tube-shaped evaporator includes an evaporation part and a condensation part, and the condensation part has an opening The open end extends above the liquid level of the working medium in the evaporation chamber; the tube-shaped evaporator is equipped with the phase-changeable working medium.
本发明与现有技术相比,用于大功率LED的高热流密度冷却装置,使得大功率LED器件底座的热量和LED聚集群中的高热流密度的热量迅速散发,大大增加散热面积,兼用传导散热和相变散热的传递路径,补充辐射热的散热,适于大于60w/cm2的高热流密度的有效散热。Compared with the prior art, the present invention is a cooling device with high heat flux density for high-power LEDs, so that the heat of the base of the high-power LED device and the heat of high heat flux density in the LED aggregation group can be quickly dissipated, greatly increasing the heat dissipation area, and can also be used for conduction. The transfer path of heat dissipation and phase change heat dissipation, supplementary radiation heat dissipation, is suitable for effective heat dissipation with high heat flux density greater than 60w/cm 2 .
附图说明Description of drawings
图1为本发明用于大功率LED的主剖视图。Fig. 1 is a main cross-sectional view of the present invention applied to a high-power LED.
图2为本发明一种用于大功率LED的高热流密度冷却装置的主剖视图。Fig. 2 is a front sectional view of a high heat flux cooling device for high-power LEDs according to the present invention.
图3为本发明一种用于大功率LED的高热流密度冷却装置的仰视图。Fig. 3 is a bottom view of a high heat flux cooling device for high-power LEDs according to the present invention.
图4为本发明一种用于大功率LED的高热流密度冷却装置的冷凝壳体主剖视图。Fig. 4 is a front sectional view of a condensing shell of a high heat flux cooling device for high-power LEDs according to the present invention.
图5为本发明一种用于大功率LED的高热流密度冷却装置的导风壳体的主剖视图。FIG. 5 is a front sectional view of an air guide housing of a high heat flux cooling device for high-power LEDs according to the present invention.
上述图中的附图标记:Reference numerals in the above figures:
100 大功率LED器件,101 LED芯片,102内热沉,103金属基线路板,104封装透镜,105 Z形电极,106 绝缘层,200 散热结构,100 high-power LED device, 101 LED chip, 102 inner heat sink, 103 metal-based circuit board, 104 packaging lens, 105 Z-shaped electrode, 106 insulating layer, 200 heat dissipation structure,
1 散热基板,2第一导热结构,2.1吸热凹坑,3 环形凸筋,4 导热硅脂,6左散热面,7右散热面,8 第二导热结构,8.1 散热凹坑1 heat dissipation substrate, 2 first heat conduction structure, 2.1 heat absorption pit, 3 annular rib, 4 heat conduction silicone grease, 6 left heat dissipation surface, 7 right heat dissipation surface, 8 second heat conduction structure, 8.1 heat dissipation pit
1.1 LED安装面,1.2散热面,1.3 台阶安装部,1.4 内凹脊,1.5 侧壁面1.1 LED mounting surface, 1.2 heat dissipation surface, 1.3 step mounting part, 1.4 inner concave ridge, 1.5 side wall surface
20 冷凝壳体,21 冷凝顶壳,21.1 左顶部,21.2 右顶部,22 周壁,23 法兰安装部20 condensing case, 21 condensing top case, 21.1 top left, 21.2 top right, 22 peripheral wall, 23 flange mounting part
30 蒸发腔,31 工作介质30 evaporation chamber, 31 working medium
40 散热岐片, 41 外岐片,41.1 顶外岐片,41.2 周外岐片,42 内岐片,42.1 顶内岐片,42.2 周内岐片40 cooling fins, 41 outer fins, 41.1 top outer fins, 41.2 outer fins, 42 inner fins, 42.1 top inner fins, 42.2 inner fins
50 回流毛细芯,51 斜回流毛细芯,52 垂直回流毛细芯,53 回流毛细芯片50 return capillary, 51 oblique return capillary, 52 vertical return capillary, 53 return capillary chip
60 轴流风扇,61 导风壳体,62 支撑筋,63 轮毂固定体,64 导风边缘60 Axial flow fan, 61 Air guiding shell, 62 Support rib, 63 Wheel hub fixing body, 64 Air guiding edge
60.1 轮毂,60.2 旋转叶片,60.3 圆锥滚子轴承60.1 hub, 60.2 rotating blade, 60.3 tapered roller bearing
61.1 风机固定部,61.2 导风部,61.3 栅孔61.1 Fan fixing part, 61.2 Air guide part, 61.3 Grille hole
63.1 T形帽,63.2 电机轴固定管,α 导风角63.1 T-shaped cap, 63.2 Motor shaft fixing tube, α guide angle
70 管形蒸发器,70.1 蒸发部,70.2 冷凝部70 tube evaporator, 70.1 evaporating section, 70.2 condensing section
具体实施方式Detailed ways
以下结合附图对本发明的实施例作详细说明,但不用来限制本发明的范围。Embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings, but they are not used to limit the scope of the present invention.
如图所示,一种大功率LED器件100包括LED芯片101、内热沉102、金属基线路板103和封装透镜104,所述内热沉102通过高导热银胶固定在金属基线路板103上,所述内热沉102包括顶面部和台阶部,所述LED芯片101通过高导热银胶固定在所述内热沉102的顶面部,内热沉102的台阶部固定有绝缘层106,绝缘层103外固定有Z形电极105;所述Z形电极的搭接端固定在所述绝缘层106上,Z形电极的密封端通过高导热银胶固定在金属基线路板103上,所述Z形电极通过金线与LED芯片101连接;所述封装透镜104将所述LED芯片101、金线和Z形电极104的搭接端密封固定在所述内热沉102的台阶部。所述LED芯片101、内热沉102和金属基线路板103构成热传导通路。As shown in the figure, a high-
一种大功率LED阵列器件300包括多个大功率LED器件100和散热基板1,所述大功率LED器件100以一定行距Y和列距X阵列固定在所述散热基板1上;A high-power LED array device 300 includes a plurality of high-
一种用于大功率LED阵列器件的高热流密度冷却装置,包括散热基板1和安装在散热基板1上的散热结构200,所述散热基板1包括LED安装面1.1、散热面1.2和台阶安装部1.3,所述LED安装面1.1设有第一导热结构2和环形凸筋3,环形凸筋3设置在第一导热结构2的周围;所述第一导热结构2包括一定阵列间距间隔设置在LED安装面1.1上的吸热凹坑2.1,在环形凸筋4内填充一定厚度的导热硅脂4,使得所述导热硅脂5填充所述吸热凹坑2.1并高出LED安装面1.1一定嵌装厚度,所述嵌装厚度至少大于金属基线路板103的厚度的1.5倍。所述金属基线路板103嵌入导热硅脂4中并与所述散热基板1固定。优选地,所述吸热凹坑2.1为正方体,阵列间距为正方体的边长;A high heat flux cooling device for high-power LED array devices, comprising a
所述散热面1.2呈V形,包括左散热面6、右散热面7,所述左散热面6和右散热面7分别与水平面的夹角为2-5º。所述散热面1.2上设有第二导热结构8,所述第二导热结构8包括一定阵列间距间隔设置在散热面1.2上的散热凹坑8.1。优选地,所述散热凹坑8.1为正方体,阵列间距为正方体的边长。The heat dissipation surface 1.2 is V-shaped, including a left
所述散热面1.2的侧壁面1.4与基板1散热面外侧的边缘表面构成为台阶安装部1.3。The side wall surface 1.4 of the heat dissipation surface 1.2 and the outer edge surface of the heat dissipation surface of the
所述散热结构200包括冷凝壳体20,所述冷凝壳体20包括一体成型的冷凝顶壳21、周壁22和法兰安装部23,所述法兰安装部23固定在所述台阶安装部1.3上,所述法兰安装部23与所述台阶安装部1.3之间设有隔热垫24;且使得周壁22紧贴在散热面1.2的侧壁面1.5上。所述冷凝顶壳21包括左顶部21.1和右顶部21.2,所述左顶部21.1和右顶部21.2连接形成马脊形,所述冷凝顶壳21由快速热传导材料制成,如铜、铝合金或石墨烯或其它高导热系数的材料。The heat dissipation structure 200 includes a condensing
所述散热结构2还包括蒸发腔30,所述冷凝壳体20和散热基板1构成的内部空腔构成为蒸发腔30,所述蒸发腔30抽真空并充入可相变的工作介质31。工作介质的灌注量最佳为蒸发腔13总体积的15-25%。The
所述散热结构2还包括散热岐片40,所述散热岐片40包括设置位置分别在壁内外对应的外岐片41和内岐片42,所述外岐片41包括顶外岐片41.1、周外岐片41.2,所述内岐片42包括顶内岐片42.1和周内岐片42.2,所述外岐片41和内岐片42分别沿冷凝顶壳21外表面和内表面一一对应地一字型间隔排列,所述顶外岐片41.1与所述周外岐片41.2一一对齐,顶内岐片42.1一一对齐所述周内岐片42.2。所述周外岐片41.2与顶外岐片41.1不连接。所述周内岐片42.2与所顶内岐片42.1是连接并一体成型的;The
所述散热结构2还包括回流毛细芯50,所述回流毛细芯50将液态工作介质由冷凝壳体20的顶内壁带回到散热基板1的散热面1.2。具体地,所述相邻内岐片42之间固定设有斜回流毛细芯51,所述斜回流毛细芯束51通过点焊方式固定在所述相邻的内岐片42上,且使得斜回流毛细芯束紧贴所述冷凝顶壳21的内壁;在斜回流毛细芯束51的中间间隔固定有垂直回流毛细芯束52。在散热基板1的散热面1.2上设有回流毛细芯片53,所述斜回流毛细芯束51的下端和垂直回流毛细芯束52的下端分别抵接所述回流毛细芯片53。The
所述散热结构200还包括轴流风机60和导风壳体61,所述导风壳体61设有风机固定部61.1和导风部61.2,所述轴流风机60固定在所述风机固定部61.1上,具体地,风机固定部61.1包括与导风壳体一体连接的支撑筋62和倒T形的轮毂固定体63,所述轮毂固定体63包括一体成型的T形帽63.1和电机轴固定管63.2。所述轴流风机60包括轮毂60.1和与轮毂一体连接的多个旋转叶片60.2,与电机的驱动轴相结合的轮毂60.1通过圆锥滚子轴承60.3旋转设置在所述风机固定部61.1的电机轴固定管63.2中。优选地,所述T形帽63.1具有导风边缘64,所述导风边缘64与电机轴固定管的轴线夹角为导风角α为30º~60º。The heat dissipation structure 200 also includes an
当导风壳体61的出口法兰固定在所述冷凝壳体20的法兰安装部23上时,所述导风部61.2的周壁紧贴周外岐片41.2设置。所述导风部61.2的周壁对应周外岐片41.2的位置间隔设有多个栅孔61.3,所述导风壳体61将轴流风机60的出口气流引导沿顶外岐片41.1之间的空间向外侧沿周外岐片41.2之间的空间流过然后从栅孔61.3流出。所述导风壳体具有入口法兰和出口法兰,螺栓同时穿过入口法兰和出口法兰与所述法兰安装部12固定。When the outlet flange of the
所述散热结构200还包括管形蒸发器70。所述管形蒸发器70密封地安装在散热基板1的安装孔上;所述管形蒸发器70包括蒸发部70.1和冷凝部70.2,所述冷凝部70.2具有开口端,开口端延伸高出蒸发腔30工作介质液面5-10mm;所述蒸发部70.1具有封闭端,所述封闭端优选半圆球形或平面形或其他三维装饰造型;所述管形蒸发器的蒸发部70.1穿过散热基板的安装孔1.3并设置在LED阵列之间。The heat dissipation structure 200 also includes a
所述管形蒸发器70中装有可相变的工作介质;管形蒸发器70内可相变的工作介质的灌注量为管形蒸发器70总体积的12-25%;工作介质的灌注量最佳为管形蒸发器70总体积的15%。The tube-shaped
管形蒸发器70的蒸发部70.1和蒸发腔30分别设有长方形的观察窗71,观察窗71下沿位于管形蒸发器70高度的1/5处;通过观察窗71可观察到可相变液体的液面,如果内部液面低于观察窗下沿,则表面工作介质偏少,需要补充工作介质。The evaporation part 70.1 of the
所述LED阵列器件300或者大功率LED器件100工作时,随着聚集的LED发光元件不断释放热量,内热沉102直接将热量传导至散热基板1,封装透镜104的辐射热量传递给管形蒸发器70的蒸发部70.1,蒸发腔30和蒸发部70.1中的可相变的工作介质在蒸发段由液体转变为气体,该气体向上蒸发,直到在冷凝顶壳21和内岐片42上凝结,由气体转变为液体,随着液体的逐步聚集,部分液体由垂直回流毛细芯束回流到散热基板1的中心最低部位。在冷凝顶壳21和内岐片42上释放的热量迅速由外岐片41散发在空气中。When the LED array device 300 or the high-
所述LED阵列器件的冷却装置,通过两个途径散热,其一,传导热量,传导热量由内热沉热传导至散热板,散热板通过蒸发腔30将该部分热量通过散热岐片40将热量散发到空气中;其二,辐射热量,辐射热量是封装透镜104的辐射产生的热量,该部分热量由管形蒸发器70内的工作介质由液体转变为气体,吸收管形蒸发器70的热量。蒸发腔30和管形蒸发器70共同配合将传导热量和辐射热量分别带走,共同维持了所述LED阵列器件300的低温工作环境。The cooling device of the LED array device dissipates heat through two ways, one is heat conduction, and the heat conduction is conducted from the inner heat sink to the heat dissipation plate, and the heat dissipation plate dissipates part of the heat through the
对于单个大功率LED来说,可省略管形蒸发器70,仅使用包括蒸发腔30的散热结构200即可。For a single high-power LED, the
所述用于大功率LED的高热流密度冷却装置,通过以下技术实质解决了“如何低成本、高效率地转移大功率LED器件的高热流密度热量”的技术问题:The high heat flux cooling device for high-power LEDs substantially solves the technical problem of "how to transfer high heat flux heat of high-power LED devices at low cost and high efficiency" through the following technologies:
1)导热结构增大传热面积,构成无微间隙的导热路径1) The heat conduction structure increases the heat transfer area and forms a heat conduction path without micro-gap
散热基板1的两面均设置导热结构,LED安装面间隔阵列有多个吸热凹坑,散热面间隔阵列有多个散热凹坑,来自大功率LED内热沉的热量传导给金属基线路板,金属基线路板的热量传递给导热硅脂,导热硅脂与散热基板1通过纵多吸热凹坑接触,大大增加了散热基板1从导热硅脂中吸收热量的传热面积,假设凹坑为边长a的正方体,本来是a2的吸热面积,压出正方体凹坑后,吸热面积变为5a2,吸热面积增加了4倍。散热凹坑也使得热量从散热基板传导给工作介质的传热面积增加了4倍。Both sides of the
散热基板的LED安装面接触的是导热硅脂,散热面接触的是液态工作介质,接触面没有任何微间隙,构造出与传热面积无缝衔接的导热路径。The LED mounting surface of the heat dissipation substrate is in contact with thermally conductive silicone grease, and the heat dissipation surface is in contact with liquid working medium. There is no micro-gap on the contact surface, and a heat conduction path seamlessly connected with the heat transfer area is constructed.
2)冷凝壳体、内岐片的配合构建第一散热路径,导风壳体与外岐片的配合构建第二散热路径,2) The cooperation of the condensing shell and the inner disc builds the first heat dissipation path, and the cooperation of the air guide shell and the outer disc builds the second heat dissipation path.
冷凝壳体20和散热基板构成蒸发腔,蒸发腔内可相变工作介质由液态转变为气态吸收热量,气态工作介质上升至冷凝壳体内壁,在内壁和内岐片上由气态变为液态,放热,将热量传递给冷凝壳体内壁和内岐片,构成为相变散热路径为第一散热路径;内壁和内岐片的热传导至外岐片和外壁,冷凝壳体的外岐片和导风壳体的配合构建的空气散热路径为第二散热路径,第二散热路径紧密衔接第一散热路径,将热量送至环境空气中。The condensing
3)管形蒸发器吸收辐射散热,补充了传导散热3) The tubular evaporator absorbs radiation heat dissipation and supplements conduction heat dissipation
管形蒸发器吸收从LED封装透镜104长时间辐射产生的热量,尽管散热基板1能够满足LED芯片101的工作温度要求,但是长时间的使用后,来自封装透镜104长时间照射的辐射热量,会反过来烤热封装透镜104内的温度,导致LED芯片101的封装空间内的温度升高,这是不允许的。管形蒸发器带走了封装透镜104的辐射热量,使得LED阵列的间隙温度降低,间接使得封装透镜104本身温度不会升高,从而保证了LED芯片101的封装空间内的低工作温度。这是对由内热沉102向金属基线路板101的传导散热的强有力补充。The tube-shaped evaporator absorbs the heat generated by long-time radiation from the
正是由上述三方面改进的协同作用,使得大功率LED器件底座的热量和LED聚集群中的高热流密度的热量迅速散发,大大增加散热面积,兼用传导散热和相变散热的传递路径,补充辐射热的散热,大大提高了传热效率。It is the synergistic effect of the above three improvements that makes the heat of the base of the high-power LED device and the heat of the high heat flux in the LED cluster dissipate rapidly, greatly increasing the heat dissipation area, and using the transfer path of conduction heat dissipation and phase change heat dissipation, supplementing Radiant heat dissipation greatly improves heat transfer efficiency.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710654431.3A CN107293633B (en) | 2017-08-03 | 2017-08-03 | High heat flux density cooling device for high-power LED |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710654431.3A CN107293633B (en) | 2017-08-03 | 2017-08-03 | High heat flux density cooling device for high-power LED |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107293633A CN107293633A (en) | 2017-10-24 |
CN107293633B true CN107293633B (en) | 2023-02-17 |
Family
ID=60105379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710654431.3A Active CN107293633B (en) | 2017-08-03 | 2017-08-03 | High heat flux density cooling device for high-power LED |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107293633B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107734946B (en) * | 2017-11-30 | 2019-12-06 | 宁德时代新能源科技股份有限公司 | Method and apparatus for dissipating heat from printed circuit board in vehicle battery, computer readable storage medium, and vehicle battery |
CN108105732A (en) * | 2018-01-23 | 2018-06-01 | 福建工程学院 | Heat dissipation structure of LED array module |
CN108123025A (en) * | 2018-01-23 | 2018-06-05 | 福建工程学院 | A kind of high heat flux density cooling unit of high-power LED array module |
CN108278581B (en) * | 2018-01-28 | 2019-11-29 | 陈攀攀 | A kind of cooling structure of LED array module |
CN110475457B (en) * | 2018-05-11 | 2021-06-29 | 深圳富泰宏精密工业有限公司 | Heat radiation structure and electronic device with same |
CN112055502B (en) * | 2019-06-05 | 2022-12-20 | 英业达科技有限公司 | Cooling system |
CN112201737A (en) * | 2020-10-13 | 2021-01-08 | 安徽芯瑞达科技股份有限公司 | Mini LED device packaging method and structure |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201081205Y (en) * | 2007-08-17 | 2008-07-02 | 广东昭信光电科技有限公司 | Steam-chamber heat dissipation structure for high power LED street lamp |
KR20120104960A (en) * | 2012-06-08 | 2012-09-24 | 이아론 | Led lighting instrument with excellent heat dispersing function |
CN105845649A (en) * | 2016-05-28 | 2016-08-10 | 扬州大学 | High power electronic chip array radiating module |
CN106195661A (en) * | 2016-08-03 | 2016-12-07 | 中山市风华稀柠照明设计有限公司 | A cooling device for high-power LED lamps |
CN106402686A (en) * | 2016-11-29 | 2017-02-15 | 盐城市新亚自控设备股份有限公司 | Cooling device of LED array device |
CN206329930U (en) * | 2016-11-29 | 2017-07-14 | 盐城市新亚自控设备股份有限公司 | A kind of cooling device of LED array device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6466442B2 (en) * | 2001-01-29 | 2002-10-15 | Ching-Bin Lin | Guidably-recirculated heat dissipating means for cooling central processing unit |
CN101539274A (en) * | 2008-03-19 | 2009-09-23 | 富准精密工业(深圳)有限公司 | Illuminating apparatus and light engine thereof |
CN101865371B (en) * | 2009-04-16 | 2013-08-07 | 富准精密工业(深圳)有限公司 | Illumination device |
-
2017
- 2017-08-03 CN CN201710654431.3A patent/CN107293633B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201081205Y (en) * | 2007-08-17 | 2008-07-02 | 广东昭信光电科技有限公司 | Steam-chamber heat dissipation structure for high power LED street lamp |
KR20120104960A (en) * | 2012-06-08 | 2012-09-24 | 이아론 | Led lighting instrument with excellent heat dispersing function |
CN105845649A (en) * | 2016-05-28 | 2016-08-10 | 扬州大学 | High power electronic chip array radiating module |
CN106195661A (en) * | 2016-08-03 | 2016-12-07 | 中山市风华稀柠照明设计有限公司 | A cooling device for high-power LED lamps |
CN106402686A (en) * | 2016-11-29 | 2017-02-15 | 盐城市新亚自控设备股份有限公司 | Cooling device of LED array device |
CN206329930U (en) * | 2016-11-29 | 2017-07-14 | 盐城市新亚自控设备股份有限公司 | A kind of cooling device of LED array device |
Also Published As
Publication number | Publication date |
---|---|
CN107293633A (en) | 2017-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107293633B (en) | High heat flux density cooling device for high-power LED | |
TWI525300B (en) | Composite heat sink assembly for power module | |
JP4937299B2 (en) | Passive radiator and street lamp radiator | |
JP2017112088A (en) | LED vehicle headlight | |
CN108801017B (en) | Heat radiator for heat source | |
JP2008243780A (en) | High power LED lighting assembly incorporating heat dissipation module with heat pipe | |
TWI582342B (en) | Phase change heat sink and lamp | |
US20110056670A1 (en) | Heat sink | |
CN103185246B (en) | Lighting device | |
CN111120975A (en) | A heat dissipation device based on the combination of a PCM fin heat pipe integrated board and a semiconductor refrigeration sheet and its realization method | |
CN101886801A (en) | Combined flat heat pipe heat sink for cooling LEDs | |
CN107507811A (en) | The chip cooling cooling device that a kind of flat-plate heat pipe cluster couples with semiconductor refrigerating | |
US8669697B2 (en) | Cooling large arrays with high heat flux densities | |
CN201697084U (en) | LED lamp and radiator with coiled heat pipe | |
CN206361435U (en) | A kind of industrial LED lamp | |
CN211650172U (en) | Heat dissipation device based on combination of PCM fin heat pipe integrated plate and semiconductor refrigeration piece | |
CN106402686B (en) | A kind of cooling device of LED array device | |
CN106409790B (en) | A kind of potent chip radiator | |
CN207116479U (en) | A kind of high heat flux cooling device for great power LED | |
CN102032457A (en) | LED lamps | |
CN111720805B (en) | High-power LED lamp heat abstractor | |
CN105972454B (en) | A phase-change heat pipe type high-power LED lamp and its heat dissipation method | |
CN205793888U (en) | A kind of heat abstractor and projector equipment | |
CN210772066U (en) | Aluminium system street lamp radiator | |
CN108105732A (en) | Heat dissipation structure of LED array module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |