CN107276536B - 自适应温度补偿 - Google Patents

自适应温度补偿 Download PDF

Info

Publication number
CN107276536B
CN107276536B CN201710204591.8A CN201710204591A CN107276536B CN 107276536 B CN107276536 B CN 107276536B CN 201710204591 A CN201710204591 A CN 201710204591A CN 107276536 B CN107276536 B CN 107276536B
Authority
CN
China
Prior art keywords
oscillator
temperature
bins
data
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710204591.8A
Other languages
English (en)
Other versions
CN107276536A (zh
Inventor
罗德里克·布赖恩特
埃蒙·格伦农
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
U Blox AG
Original Assignee
U Blox AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by U Blox AG filed Critical U Blox AG
Publication of CN107276536A publication Critical patent/CN107276536A/zh
Application granted granted Critical
Publication of CN107276536B publication Critical patent/CN107276536B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/026Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using a memory for digitally storing correction values
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/02Details
    • H03B5/04Modifications of generator to compensate for variations in physical values, e.g. power supply, load, temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • G01S19/235Calibration of receiver components

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种对振荡器的与温度相关的频率漂移进行补偿的方法。该方法包括:使用外部参考频率信号来导出在工作温度范围上的振荡器补偿数据,将振荡器补偿数据存储在第一表中,以及针对给定工作温度,使用第一表以获得相应的振荡器补偿数据并应用该数据以提供对与温度相关的频率漂移的补偿。该方法还包括针对工作温度范围定义一系列温度槽,每个温度槽被细分为一系列温度仓。使用外部参考频率信号来导出在工作温度范围上的振荡器补偿数据的步骤包括:a)测量工作温度,并且使用外部参考频率信号来确定当工作温度变化时的各个温度的振荡器补偿值;b)在第二表的相应的温度仓中累积所确定的振荡器补偿值;c)每隔隔开的时间段,使用在所述第二表的温度仓中累积的数据来确定或更新针对所述第一表中的一个或多个槽所存储的振荡器补偿数据。

Description

自适应温度补偿
技术领域
本发明涉及对振荡器的与温度相关的频率漂移进行补偿。
背景技术
振荡器在广泛的系统中使用以提供可靠的参考频率。不同的振荡器设计提供不同程度的稳定性,成本通常随着稳定性水平而增加。许多类型的振荡器受到温度依赖性和由老化引起的漂移的影响。这个问题对于晶体振荡器来说特别严重。在一些振荡器设计中,可以通过确定由振荡器产生的(内部)频率和外部频率参考之间的频率偏移来管控(discipline)振荡器。一些全球导航卫星系统(GNSS)接收机应用这种方法,利用一个或多个卫星信号载波频率作为外部频率参考。为了操作的目的,典型的GNSS接收机连续使用振荡器。振荡器输出被用作稳定频率参考,稳定频率参考用于将GNSS信号下变频,并且用于生成将扩频基带信号“解扩(despread)”的本地码副本。一些全球导航卫星系统(GNSS)接收机利用一个或多个卫星信号载波频率作为外部频率参考,以测量和跟踪频率偏移,并在其内部计算中允许这种偏移,但不管控振荡器。其他GNSS接收机管控振荡器,即,它们使用频率偏移来确定控制电压并将其应用于晶体振荡器电路,以针对温度和老化效应加以调节。
然而,有时候外部频率参考不可用;来自轨道卫星的信号可能被阻挡或遭受临时干扰。如果发生这种情况且当这种情况发生时,期望接收机进入“延续”(holdover),在此期间接收机基于在先前(正常)操作周期期间收集的数据来尝试维护经补偿的振荡器频率。用于提供温度补偿的各种方案在现有技术中是已知的。
US4922212公开了一种依赖于预定的振荡器温度-频率转移曲线的振荡器温度效应补偿方案。环境温度由温度传感器来测量,并被用于评估转移曲线和确定温度补偿电压。使用适当的值来处理老化效应。US2002/0158693提供了一种在包括温度在内的物理参数的意义上预测振荡频率的机制。然后,在参考信号不可用的时间段期间使用该机制来调节调节振荡器控制电压。
振荡器的温度特性通常对于各个振荡器来说特定的。使用预定义的功能不太可能考虑单个振荡器行为。US4746879描述了一种备选方法,其包括在初始设备校准期间创建和存储将温度映射到补偿值的查找表。然而,虽然这种方法可能在某种程度上考虑了单个设备特性,但是它不能对设备老化进行补偿。US5892408公开了一种相关方法。
更好的方法包括使用动态维护的查找表。US2006/0267703举例说明了这种方法。通过以下方式来创建查找表:通过使用外部频率参考来定期测量和记录环境温度和频率偏移/补偿值。当外部频率参考不可用时,对所测量的环境温度进行测量并将其用于从查找表中获得频率偏移或补偿值。该方法的优点在于:由于动态更新查找表,所以固有地补偿了老化效应。
US5392005使用存储的补偿值并且通过提供一种机制来解决晶体振荡器的老化问题,借助该机制,当振荡器频率已经从参考信号漂移超过指定公差时,通过使用参考信号来调节温度补偿因子。
使用将温度映射到偏移频率或补偿值的动态更新的查找表提供了一种针对依赖温度的变化和老化的效应来补偿本地晶体振荡器或其输出的有效机制。然而,现有技术方法需要收集和存储相对大量的数据,以便能够在足够宽的可能操作温度范围上并且在足够的温度分辨率下进行补偿。特别是在移动接收机的情况下,存储器要求导致了显著的成本和“不动产”开销。
发明内容
根据本发明的第一方面,提供了一种对振荡器的与温度相关的频率漂移进行补偿的方法。该方法包括使用外部参考频率信号来导出在工作温度范围上的振荡器补偿数据,将振荡器补偿数据存储在第一表中,以及针对给定工作温度,使用第一表以获得相应的振荡器补偿数据并应用该数据以提供对与温度相关的频率漂移的补偿。
该方法还包括针对工作温度范围来定义一系列温度槽,每个温度槽被细分为一系列温度仓。使用外部参考频率信号来导出在工作温度范围上的振荡器补偿数据的步骤包括:
a)测量工作温度,并且使用外部参考频率信号来确定当工作温度变化时的各个温度的振荡器补偿值;
b)在第二表的相应的温度仓中累积所确定的振荡器补偿值;
c)每隔隔开的时间段,使用在所述第二表的温度仓中累积的数据来确定或更新针对所述第一表中的一个或多个槽所存储的振荡器补偿数据。
本发明的至少某些实施例提供了对限制或减少存储器需求的问题的解决方案。这通过仅在整个工作范围的相对小的区域上允许动态数据收集来实现。
应用振荡器补偿数据以提供对与温度相关的频率漂移的补偿的步骤可以包括根据当前温度对振荡器应用振荡器补偿数据,以便管控所述振荡器,从而获得经过温度补偿的振荡器频率。
应用振荡器补偿数据以提供对温度相关频率漂移的补偿的步骤可以包括将振荡器补偿数据应用于将振荡器输出的频率用作输入的处理操作,其中所述振荡器作为非管控振荡器工作。
该方法还可以包括在第二表中仅保留与以下各项相关联的数据:
当前温度槽内的温度仓,其中当前温度槽包含当前温度;以及
与和所述当前温度槽相继的一个或多个温度槽相关联的温度仓,
其数据被保留的温度槽的总数小于温度槽的总数。所述相继槽或每个相继槽可以是与当前温度槽相邻的槽。
在上述方法中,步骤b)可以包括:针对每个值,将所述值加到在第二表中存储的仓的和,并递增仓的计数。
该方法可以包括维护位于中间的第三表,其中步骤c)包括:每隔所述隔开的时间段,使用在第二表的温度仓中累积的数据来确定或更新针对第三表中的相应槽所存储的数据,并使用第三表中的数据来填充第一表。使用在第二表的温度仓中累积的数据来确定或更新针对第三表中的相应槽所存储的数据的步骤可以包括:针对每个槽,确定或更新针对该槽的仓中的数据的线性拟合的参数,并将所述参数存储在第三表中。这些参数可以是针对槽的给定温度的振荡器补偿值和变化率值。更新所述参数的步骤可以包括:针对每个槽,将当前存储的参数与相应的新确定的参数组合。
该方法还可以包括:针对每个槽,在第三表中存储每个参数的方差值,并且所述组合步骤考虑相关联的方差值。使用第三表中的数据来填充第一表的步骤可以包括:调节每个槽的参数,以便使线性拟合在槽边界处对齐。
使用第一表来获得相应的振荡器补偿数据的步骤可以包括:对第一表中的数据进行内插,以获得当前工作温度的振荡器补偿值。
如果确定针对该槽所累积的值的总数超过预定阈值并且确定针对该槽中的仓的总数的至少预定义比例的仓累积了值,则可以针对给定温度槽来执行步骤c)。如果针对给定槽不同时满足这两个条件,则可以识别最大的仓和,并且确定该最大的和是否超过预定义阈值,如是,则用大于1的因子来缩小所述槽的所有仓和及计数值,如否,则所述槽的仓和及计数值保持不变。
在a),使用外部参考频率信号来确定振荡器补偿值的步骤可以包括以下之一:
将所述外部参考频率信号与所述振荡器的输出或根据所述振荡器导出的输出混频以确定频率差;
在与所述振荡器的输出或与根据所述振荡器导出的输出在谐波意义上相关的信号的周期期间对所述参考频率信号的周期进行计数;或
每隔隔开的时间间隔来测量所述外部参考频率信号与所述振荡器的输出或根据所述振荡器导出的输出之间的相位差。
根据本发明的第二方面,提供了一种操作全球导航卫星系统GNSS接收机的方法,所述GNSS接收机具有振荡器和用于接收提供外部参考频率信号的至少一个GNSS无线电信号的接收机,所述方法包括使用上述方法以便管控振荡器。
根据本发明的第三方面,提供一种装置,包括:
振荡器;
接收机,被配置为接收外部参考频率信号;
物理存储器;
温度传感器;以及
处理电路,被配置为使用所述外部参考频率信号来导出在工作温度范围上的振荡器补偿数据,将所述振荡器补偿数据存储在所述物理存储器内的第一表中,以及针对给定工作温度,使用所述第一表以获得相应的振荡器补偿数据并应用该数据以提供对与温度相关的频率漂移的补偿。
所述装置被配置为使得所述处理器针对所述工作温度范围定义一系列温度槽,每个温度槽被细分成一系列温度仓,并且所述处理器被配置为使用外部参考频率信号,以通过以下方式来导出在工作温度范围上的振荡器补偿数据:
a)测量工作温度,并且使用外部参考频率信号来确定当工作温度变化时的各个温度的振荡器补偿值;
b)在所述物理存储器内的第二表的相应的温度仓中累积所确定的振荡器补偿值;以及
c)每隔隔开的时间段,使用在所述第二表的温度仓中累积的数据来确定或更新针对所述第一表中的一个或多个槽所存储的振荡器补偿数据。
根据本发明的第四方面,提供了一种包括本发明第三方面的装置在内的全球导航卫星系统接收机。
附图说明
图1示意性地示出了用于测量振荡器的输出信号和参考信号之间的频率差的装置;
图2示意性地示出了GNSS接收机实现;
图3示意性地示出了根据实施例的精细表和粗略表之间的关系;
图4是图3的粗略表的内容的图示;
图5是根据实施例的补偿表的图示;
图6是给出根据实施例的方法的概览的流程图;
图7示意性地示出了用于确定参考频率信号的频率和由振荡器产生的信号的频率之间的偏移的备选系统;以及
图8示意性地示出了用于确定参考频率信号的频率和由振荡器产生的信号的频率之间的偏移的另一备选方案。
具体实施方式
现在将描述一种可以实现振荡器(例如用于在GNSS接收机内提供频率参考的振荡器)的温度补偿的方法和装置。该方法和装置依赖于提供温度和振荡器控制值之间的映射的补偿查找表。根据某些实施例,这些振荡器控制值对应于要向振荡器(电路)施加以便消除相对于频率参考信号的频率偏移的(例如数字)补偿电压。这种电压有时被称为“零控制电压”,并且(数字)控制值可以被称为“零控制值”。
图1是用于提供振荡器1的控制以便使振荡器1的输出和接收信号2的频率(“参考频率”)之间的频率差最小化的装置的示意图。来自振荡器的信号和接收信号2被馈送到混频器3中,并且使用低通滤波器4对结果进行滤波。产生的差信号被模数转换器5数字化并传递到处理器6。在处理器上运行的软件(例如实现快速傅立叶变换(FFT))估计参考频率和振荡器频率之间的频率偏移。基于该估计,其确定控制值并将该控制值传递到数模转换器7。数模转换器的输出是零控制电压(或者某偏移电压)。该装置一直工作(包括外部参考信号可用时的正常操作期间和参考信号不可用时的延续时段期间),以向振荡器1提供零控制电压。在正常操作期间,装置基本上作为锁频环工作,迫使差频(或误差)为零,使得振荡器输出基本等于外部参考的稳定频率的稳定频率。
提供温度传感器8用于记录振荡器的环境温度。因此,优选地,传感器8接近振荡器1。每隔周期间隔,当装置正常工作时,即当参考频率可用时,记录零控制值(即产生正确振荡器频率所需的控制值)和当前温度。该数据进而用于更新物理存储器9a中存储的补偿表9。在延续时段期间,当参考频率不可用时,通过使用当前温度作为针对补偿表的查找,来获得要提供给数模转换器7的控制值。该表向处理器返回适当的控制值,进而该处理器将控制值提供给数模转换器7。因此,即使当参考频率不可用时也实现了温度补偿。在延续期间,处理器6可以在温度变化超过某个预定量时刷新控制值。
在其它实施例中,可以将参考频率与基于振荡器频率的合成频率进行比较,其中,合成频率是被锁相到振荡器频率的较高频率信号。合成信号将具有振荡器频率的整数倍或振荡器频率的整数比(integer ratio)的频率。还要注意,可以采用任何形式的数模转换器(DAC),包括不同于单片DAC芯片的具有滤波器的脉冲宽度调制器(PWM)。最后,元件可以在硅的级别上集成到单个单片芯片中。
GNSS接收机并入了用于管控振荡器所需的所有元件。GNSS信号本身是精确的频率参考,但复杂之处在于,由于卫星和接收机运动,它们的频率受到多普勒频移的影响。然而,GNSS接收机计算其自身速度,并基于轨道方程来计算卫星速度。因此,接收机可以并且通常非常精确地计算期望的信号多普勒偏移。
图2是具有超外差(super-heterodyne)架构的示例性GNSS接收机的示意图。GNSS前端的超外差架构通常将具有至少两个本地振荡器信号,但更多也是可能的。图2中示出了源自振荡器11和锁相合成器12的两个本地振荡器信号LO1和LO2。卫星信号10被接收并通过第一滤波器13和放大器14传递。然后,将结果输入到第一混频器15中,在此将其与第一本地振荡器信号17混频,并且将结果通过第二滤波器16传递,以产生中频的下变频信号。用接收第二本地振荡器信号20的第二混频器18和第三滤波器19重复该过程,以产生低频的下变频信号。最终的低频信号包含为了获得位置数据而必须恢复的信息。这通过使用模数转换器21对信号进行数字化以及使用处理器22处理经数字化的数据来执行。该处理可以包括:在数字域中将低频信号下变频到基带。
应当理解,在处理器22内,可以使数据可用于生成振荡器控制值。例如,将低频信号转换为基带将产生在振荡器频率漂移时的非零频率信号。该信号基本就是上面参考图1描述的差信号。处理器使用该差信号来如上所述确定所需控制值,并且经由数模转换器23将其传回振荡器。如前所述,根据周期性测量的温度和相应的控制值产生补偿表24。
尽管图1和图2仅示出了“最终”补偿表,但是该表中包含的数据是通过“精细”表和“粗略”表来获得的。现在将描述该过程。
装置的工作温度范围被分成一定数量的大小相同(例如2摄氏度)的邻接的温度槽(slot)。精细表中的每个槽进一步被细分成一定数量的邻接的温度“仓”(bin),同样,每个仓大小相同。作为示例,每个槽可以被分为十六个仓。存储精细表数据的物理存储器(可以是物理存储器9a的一部分)被分为仓位置,而存储粗略表的物理存储器(同样可能是物理存储器9a的一部分)被分为槽位置。例如,可以通过温度和存储器地址之间的映射将温度映射到槽和仓。
图3示出了根据实施例的精细表25和粗略表26之间的关系。精细表包括多个仓27,且粗略表包括多个槽28。槽28b对应于当前温度。精细表包括足够的仓,以记录跨三个粗略表槽的测量。由于每个槽有16个仓,精细表一共包含48个仓。精细表中具有十六个仓的中心块30与对应于粗略表中的当前温度的槽28b相关联。精细表中另外的仓31、32的块与当前温度的槽28b任一侧上的相应槽28a、28c相关联。
在正常操作期间,处理器周期性地获得温度和计算出的零控制值对。在每个(时间上的)收集点,将控制值与在温度精细表的仓中保持的(所确定的控制值的)总和相加。在仓中维护的计数也递增,使得该计数指示被并入到总和中的控制值的数量。为了避免仓的总和溢出,如果该仓的总和超过阈值,将总和和计数除以一整数因子,例如4。该缩放不影响通过将总和除以计数所获得的平均值(见下文),因为二者都除以相同的因子。然而,这有效地为被合计到仓中的新值赋予了更高的权重。其优点是,由于老化可以在累积过程期间发生,较新的值可以更好地反映振荡器的当前状态。
精细表的四十八个仓一起形成“滑动窗”,该“滑动窗”以十六个仓或者一个槽为增量移动,以便跟踪当前温度。再次参考图3,如果当前温度移动到槽28a中,则将精细表25的仓重新分配向左的一个槽。类似地,如果当前温度沿相反方向移动,即槽28c,则将精细表25的仓重新分配向右的一个槽。将窗口所不再包含的槽的仓内包含的数据丢弃或覆盖。这种方法最小化了在仓中存储的数据量,因为不需要在整个工作范围上维护仓和相关联的数据。然而,其维护相对较小的温度范围内的仓和数据,该相对较小的温度范围可能覆盖了在短暂的延续时段期间可能发生的温度变化,例如,在本示例中,当前温度的任一侧的2~3度。该方法还允许对数据进行统计分析,如下面将进一步描述的。当然,本领域技术人员将理解,精细仓的其它布置是可能的,例如,维护多于三个槽的仓或甚至维护所有槽的仓。本发明不限于精细表和粗略表的任何一种布置。
在精细表的仓存储中的数据以离散时间间隔来处理,例如周期性地,比如每1分钟,以便生成用于填充和更新粗略表26的数据。然而,该(周期性)处理操作中的初始步骤可以是:针对被精细表的仓所覆盖的每个槽,检查已经收集了足够的数据。一个实施例要求精细表针对每个槽记录该槽中的所有仓的总和值(称为M)。该值是仓的所有计数之和。进一步处理和传送数据的标准是:总和M超过预定义阈值。在备选实施例中,仅在给定槽的预定义比例的仓被占用(例如大于50%)的情况下才处理该给定槽的仓的数据。在另一实施例中,在处理给定槽的数据之前必须同时满足这两个规则,即,总和M必须超过预定义的阈值,且被占用的仓的比例必须超过预定义比例。当然,本领域技术人员将理解,可以应用其他规则来确定是否可以对槽的数据进行处理。在任何情况下,如果满足规则,则继续对该槽的数据进行处理,否则恢复针对该槽的仓的数据收集。
假设满足规则,对于槽的数据进行如下处理,其目的是:用控制值和温度之间的关系来填充与精细表的当前“活动”仓相对应的粗略表的每个槽。在该示例中,关系是由“y截距”(参数A表示在给定温度下的控制值)和斜率(参数B)定义的线性关系。在该方法中,“y截距”对应于在温度槽的下界处的控制值。在一个实施例中,使用最小二乘回归法来确定参数A和B。在下面的说明性示例中,槽j的下界值和斜率分别表示为Aj和Bj。本领域技术人员将理解,参数A不一定表示下界值,而是可以是槽内的任何其他已知位置。
为了估计给定槽j的A和B参数,计算控制值(C)和温度(T)的平均值。使用下式计算补偿值的平均值
Figure BDA0001258692120000101
Figure BDA0001258692120000102
其中,(∑C)i是第i个被占据的仓中的控制值之和,且N是槽j中的仓的总数。使用下式计算槽
Figure BDA0001258692120000103
中的平均温度:
Figure BDA0001258692120000104
其中,Ki是第i个被占据的仓中的计数,且Ti是对应于第i个被占据的仓的温度。
接下来,使用以下样本方差的公式来计算温度的方差:
Figure BDA0001258692120000105
[注意,可以使用项M来替代等式(3)的分母中的项M-1。]
然后,使用标准最小二乘回归公式估计斜率:
Figure BDA0001258692120000106
然后,使用该标准公式和斜率的估计值来估计槽的下界值A:
Figure BDA0001258692120000107
在实施例中,使用Ci的方差是常数且等于单位值(unity)的假设来确定给定槽j的A和B的方差。因此,分别由等式6和7来确定A和B的方差。
Figure BDA0001258692120000108
Figure BDA0001258692120000109
在备选实施例中,对Ci的各个方差进行估计。在另一实施例中,针对方差使用任意缩放因子。[由于方差仅在更新期间用于将新计算的值相对于表中存储的A和B的值进行加权,所以只需要缩放是一致的即可,而不需要缩放给出它们的物理意义。]
一旦处理完成,将斜率Bj和下界值Aj值输入到粗略表的槽j中。如果特定槽的条目为空,则针对该槽将新计算的值直接插入。如果槽已包含数据,则通过对旧值和新值应用加权以生成更新值,来更新现有数据。在实施例中,如下应用加权:
Aj=AjOld+Gain(AjNew-AjOld) (8)
其中,Aj是槽j的控制值的更新值,AjOld是更新之前的槽j的控制值的值,并且AjNew是针对槽j的补偿值来估计的值。
在实施例中,如下确定增益(gain):
Figure BDA0001258692120000111
其中,
Figure BDA0001258692120000112
是与更新之前的槽j的零控制值的值相关联的方差,且
Figure BDA0001258692120000113
是与针对槽j的控制值来估计的值相关联的方差。
在实施例中,可以使用类似的方法来更新参数B的值。
针对等式(9)中的增益所计算的值取决于A的旧值和新值的相对方差。当前测量的相对较低的方差,也即新值的相对较高的精度,意味着更大的权重被分配给新值。同样,如果旧值的方差较低,则赋予该值更大的权重。
本领域技术人员将理解,还有提供增益的值的其他方式。例如,可以使用固定的增益值,或者可以使用与自上次更新以来经过的时间相关的增益。在后一种情况下,如果粗略表中的任何特定槽的更新之间经过了长时间,则希望等式(9)的增益应反映这一点。在实施例中,如果控制值的方差被更新以反映从自上次更新开始的老化所导致的潜在的补偿值偏移,则可以实现这一点。
在实施例中,在槽更新之前,调节粗略表中的控制值的方差,以允许从上次更新开始的老化所导致的方差的增加。这通常仅在从上次更新槽开始所经过的时间超过阈值的情况下才进行。该阈值和用于更新槽中的方差的公式将取决于所采用的振荡器类型的老化特性。对于变化率参数Bj的方差,不进行这种调节,因为老化主要引起控制值特性的垂直偏移。
在更新之后,粗略表包含每个槽的参数A和B以及相应的方差。图4图示了粗略表的参数A和B。其示出了图3所示的粗略表26的若干槽44和针对槽计算的参数A 45和参数B 46。粗略表不直接用于补偿振荡器(尽管在备选实施例中可能如此)。相反,每当其被更新时,以及在上电时从非易失性存储器恢复时,其用于填充上述补偿表。补偿表与粗略表具有相同的形式,除了补偿表不包括方差之外。
为了克服例如根据图4明显可见的不连续性问题,对粗略表数据应用平滑或滤波处理。在实施例中,对表进行平滑的处理包括对值进行调节,以考虑相邻槽中的那些值,并且该过滤处理提高了表的准确度。在实施例中,这通过获取多个槽的A和B参数的值的加权平均来完成。在实施例中,应用以下步骤来调节参数A:
Figure BDA0001258692120000121
在实施例中,参数B被如下平滑:
Figure BDA0001258692120000122
本领域技术人员将理解还可以使用其他平滑技术。例如,参数A可以被如下平滑:
Figure BDA0001258692120000123
备选地,可以在更多槽上进行加权平均,例如五个槽(考虑到当前温度槽的每一侧的两个槽)。本发明不限于任何一种平滑数据的方法。
图5是根据实施例的平滑处理的结果的示例的图示。对于每个槽48,示出了未经平滑的线49和平滑后的线50。在实施例中,在填充补偿表中的所有槽之前,可以通过对相邻槽的数据进行内插来填充空槽。应当理解,用精确的变化率估计来填充补偿表有助于比原来使用相对粗略的查找表所可能得到的精确得多的内插值和外插值。
图6是给出根据实施例的构建补偿表的方法的概览的流程图。在步骤S1,获得参考信号的频率和振荡器信号的频率之间的差或偏移。在步骤S2,测量振荡器的当前环境温度。使用控制环路,这允许S3确定零控制值(将所确定的值应用于振荡器电路,以便将其频率朝向参考信号的频率加以驱动)。然后,在步骤S4,更新精细表中与振荡器的当前温度相对应的仓。这包括将所确定的零控制值累加到(仓)的和。在步骤S5还递增仓的计数。
在步骤S6,确定是否满足用于更新对应槽(与更新的仓相关联)的标准。如果不满足标准,则根据步骤S1和S2来收集对频率差(连同温度)的更多测量。另一方面,如果满足标准,则在步骤S7,确定槽的截距A和斜率B(考虑相应的方差),并且更新粗略表的槽数据。在步骤S8,对在粗略表中更新后的槽数据进行平滑,以提供对补偿表的槽数据的更新。处理返回到步骤S1。
如已经指出的,在正常操作时段期间,即当参考频率可用时,应用闭环处理(图1)以使振荡器频率和参考频率之间的差最小化。然而,当接收机进入延续状态时,必须使用补偿(查找)表基于当前测量温度来确定零控制值。这包括:首先确定就在“延续”开始之前的时间间隔中的实际(所应用的)零控制值的平均值。使用该在先时间间隔的温度的平均值,根据补偿表中的数据对零控制值进行内插。为此,在存储器中维护最近测量的温度和确定的零控制值。确定这两个零控制值之间的差。此后,在延续期间,通过将该差(作为校正)累加到使用当前温度通过补偿表中的数据的内插而获得的零控制值,来估计要应用的零控制值。在延续期间,随着温度变化而刷新该值。
已知老化主要通过在整个频率范围上的频率偏移来影响频率对温度的特性。假设控制特性在小变化上呈线性,这意味着老化导致控制值的偏移。因此,上述校正是对从构造粗略表开始的老化的模型(保持在补偿表中)进行校正所需的偏移的估计。
在上电时,当没有数据可用于前面紧邻的时间段时,接收机可以使用补偿表通过简单地对表进行内插来确定控制值。所得到的控制值未考虑到(从创建补偿表开始的)振荡器老化,但是是可用的最佳估计。
在上述实施例中,参见例如图1和图2,通过将振荡器的输出与参考信号直接或间接混频来导出频率差(偏移)。然而,当然可以使用其他方法来获得频率差。图7示出了在数字域中执行频率比较的方法。这包括对在与要比较的频率在谐波意义上相关的信号的一个周期内的参考频率的周期进行计数。
在图中,希望估计振荡器101产生的信号相对于参考频率信号的频率。来自振荡器的频率为f的时钟信号被施加到数字分频器102,产生频率为f/N的输出频率103。其结果是,计数器104在分频器的输出信号的几乎整个周期上对参考频率周期进行计数,产生计数M。由此,参考频率和振荡器频率之间的关系可以估计为:
Figure BDA0001258692120000141
可以每N/f秒进行一次这样的估计,其中f具有单位Hz,并且估计的分辨率是:
Figure BDA0001258692120000142
因此,可以增加N,以更新率为代价来提高分辨率,反之亦然。
EP2871494中描述的另一种方法是测量振荡器信号和参考信号之间间隔T秒的两次测量之间的相位差θ。存在使用数字或模拟电路来测量相位差的各种方式。如果频率差小于1/T Hz,则振荡器频率(以Hz为单位)可以估计为
Figure BDA0001258692120000143
如果频率差大于1/THz但小于2/T Hz,则频率可以估计为
Figure BDA0001258692120000144
Figure BDA0001258692120000145
依次类推。同样,分辨率取决于T和相位估计的精度,但是针对同一时段,该方法可以产生比上文结合图7描述的分频器-计数器方法更精确的测量。
图8示出了这种方法,在内部48MHz时钟的每个周期上,处理器的通用输入/输出引脚(GPIO)处对来自外部26MHz振荡器的信号进行采样。几乎针对任何两个频率都可以设计类似的方案。在所示示例中,该图示出了48MHz内部采样时钟和26MHz外部时钟之间的相位的进展。这是每24个时钟周期重复一次的模式。不管相位在哪个特定时间点,二十四个时钟周期之后的相位将是相同的。
“采样”线表示在任何特定采样时钟周期上通过读取GPIO引脚所测量的内容。向GPIO引脚馈送26MHz时钟。因为该模式每24个时钟周期重复一次,所以可以通过在“x+(24*n)”个时钟周期后读取引脚来测量任何特定步骤x处的采样,其中n为任意整数。
从采样0起的可能的最小相位步长是采样13(+15度)或采样11(-15度)。如果要每13个时钟周期进行一次测量,则每次测量将相对于前一次测量在相位方面向前移动15度。所得采样将是:
11111111111000000000000111111111111000000000000111111111111.....
在每12次采样之后,将测量到输出上的转变,因为时钟之问的相位已偏移180度(十二个具有十三个时钟周期的块)。为了确定特定相位,每13个时钟周期执行采样,直到观察到从0到1的转变为止。在这一点上,信号之间的相位最接近0度。
由于亚稳定性(或就由于时钟之间的相位噪声),在最接近转换的采样上该转换可能有误差。亚稳态不太可能传播,因为下一次测量在十三个时钟周期之后发生,这时它应该已经稳定下来。因此,这种测量相位的技术具有15度的潜在误差,这是约1.6ns的相位测量误差。如果每十一个时钟周期采样一次,则相位每次也将偏移15度,但是方向相反。
使用此信息,可以使用以下算法来求解相位:
循环:
如果[Input GPIO]为“低”,则在13个时钟周期后重复循环。
如果[Input GPIO]为“高”:
如果上一次循环测量到“低”,则退出-相位当前在0和15度之间。
否则,如果[上一次循环测量到“高”],则在11个时钟周期后重复循环。
在该循环结束时,相位将在0和15度之间,如果相位噪声导致亚稳态事件,则相位将加上或减去15度。此时,读取以时钟周期为单位的当前时间、和上一个时钟的时间,以及所记录的两个值之间的差。
该方案还可以用于通过管控外部振荡器实现所需的相位来设置内部时钟和外部振荡器信号之间的特定所需相位。如果需要除0度之外的特定相位,则可以通过针对想要的每个15度相位提前将该差值加上13来设置该特定相位。
可以如何将这种方案与温度补偿结合使用的示例如下。GNSS接收机可以被设计为如前所述的参考GNSS信号来管控其振荡器。在GNSS信号延续期间,接收机可以如上所述使用温度补偿方案来维护其频率。此外,它可以使用内部振荡器信号或者使用具有利用合成器根据内部振荡器导出的不同频率的时钟对GPIO引脚上的来自外部振荡器的信号进行采样。在后一种情况下,采样时钟的稳定性将等于内部振荡器信号(采样时钟被合成器锁相到该内部振荡器信号)的稳定性。现在,通过上面讨论的手段,可以参考采样时钟来估计外部振荡器的频率,该采样时钟的频率与相对于GNSS信号被管控的内部振荡器频率的频率精确相关。
在另一个实施例中,可以以这种方式测量利用合成器根据外部振荡器信号导出的信号(外部时钟)的频率。
当然,内部振荡器不必被管控。可以简单地参考GNSS信号来跟踪其相对于标称值的偏移,并且还可以通过考虑内部振荡器频率的偏移,参考GNSS信号来估计外部振荡器的频率。
在进一步的增强中,可以管控外部振荡器以实现所需的频率。
在备选的增强中,可以管控外部振荡器以实现外部时钟相对于采样时钟的所需相移。这可能在采样时钟还用于生成定时脉冲(该定时脉冲要由外部时钟所计时(clocked)的外部电路锁存)的情况下是有用的。通过维护所需的相位偏移,外部振荡器的频率也保持得极度稳定。
本领域技术人员将理解,在不脱离本发明的范围的前提下,可以对上述实施例作出各种修改。

Claims (20)

1.一种对振荡器的与温度相关的频率漂移进行补偿的方法,所述方法包括:
使用外部参考频率信号以导出在工作温度范围上的振荡器补偿数据;
将所述振荡器补偿数据存储在第一表中;以及
对于给定的工作温度,使用所述第一表来获得相应的振荡器补偿数据并应用该数据以提供对与温度相关的频率漂移的补偿,
其特征在于
针对所述工作温度范围,定义一系列温度槽,每个温度槽被细分为一系列温度仓;以及
使用外部参考频率信号以导出在工作温度范围上的振荡器补偿数据的步骤包括:
a)测量工作温度,并且使用外部参考频率信号来确定当工作温度变化时的各个温度的振荡器补偿值;
b)在第二表的相应的温度仓中累积所确定的振荡器补偿值;
c)每个隔开的时间段,使用在所述第二表的温度仓中累积的数据来确定或更新针对所述第一表中的一个或多个槽所存储的振荡器补偿数据。
2.根据权利要求1所述的方法,其中,应用振荡器补偿数据以提供对与温度相关的频率漂移的补偿的步骤包括:根据当前温度对振荡器应用振荡器补偿数据,以便管控所述振荡器,并从而获得经过温度补偿的振荡器频率。
3.根据权利要求1所述的方法,其中,应用振荡器补偿数据以提供对与温度相关的频率漂移的补偿的步骤包括:将所述振荡器补偿数据应用于将所述振荡器输出的频率用作输入的处理操作,其中,所述振荡器作为非管控振荡器工作。
4.根据权利要求1至3中任一项所述的方法,包括:在所述第二表中仅保留与以下相关联的数据:
当前温度槽内的温度仓,其中,当前温度槽包含当前温度;以及
与和所述当前温度槽相继的一个或多个温度槽相关联的温度仓,
其数据被保留的温度槽的总数小于温度槽的总数。
5.根据权利要求4所述的方法,其中,所述一个或多个温度槽中的每一个温度槽是与当前温度槽相邻的槽。
6.根据权利要求1至3中任一项所述的方法,其中,步骤b)包括:对于每个值,将所述值加到在所述第二表中存储的所述仓的和,并递增所述仓的计数。
7.根据权利要求1至3中任一项所述的方法,包括:维护位于中间的第三表,其中,步骤c)包括:每隔所述隔开的时间段,使用在所述第二表的温度仓中累积的数据来确定或更新针对所述第三表中的相应槽所存储的数据,并使用所述第三表中的数据来填充所述第一表。
8.根据权利要求7所述的方法,其中,使用在所述第二表的温度仓中累积的数据来确定或更新针对所述第三表中的相应槽所存储的数据的步骤包括:针对每个槽,确定或更新针对所述槽的仓中的数据的线性拟合的参数,并将所述参数存储在所述第三表中。
9.根据权利要求8所述的方法,其中,所述参数是针对所述槽的给定温度的振荡器补偿值和变化率值。
10.根据权利要求8或9所述的方法,其中,更新所述参数的步骤包括:针对每个槽,将当前存储的参数与相应新确定的参数加以组合。
11.根据权利要求10所述的方法,包括:针对每个槽,在所述第三表中存储每个参数的方差值,并且所述组合步骤考虑相关联的方差值。
12.根据权利要求8或9所述的方法,其中,使用所述第三表中的数据来填充所述第一表的步骤包括:调节每个槽的参数,以便使所述线性拟合在槽边界处对齐。
13.根据权利要求8或9所述的方法,其中,使用所述第一表来获得相应的振荡器补偿数据的步骤包括:对所述第一表中的数据进行内插,以获得当前工作温度的振荡器补偿值。
14.根据权利要求1至3中任一项所述的方法,其中,如果确定针对给定温度槽所累积的值的总数超过预定阈值并且确定针对该槽中的总数的至少预定义比例的仓累积了值,则针对所述给定温度槽来执行步骤c)。
15.根据权利要求6所述的方法,其中,如果确定针对给定温度槽所累积的值的总数超过预定阈值并且确定针对该槽中的总数的至少预定义比例的仓累积了值,则针对所述给定温度槽来执行步骤c)。
16.根据权利要求15所述的方法,其中,如果针对给定槽不同时满足这两个条件,则识别最大的仓和,并且确定最大的和是否超过预定义阈值,如果是,则用大于1的因子来缩小所述槽的所有仓和及计数值,如果否,则所述槽的仓和及计数值保持不变。
17.根据权利要求1至3中任一项所述的方法,其中,在步骤a),使用所述外部参考频率信号来确定振荡器补偿值的步骤包括以下各项之一:
将所述外部参考频率信号与所述振荡器的输出加以混频或将所述外部参考频率信号与根据所述振荡器导出的输出加以混频,以确定频率差;
在与所述振荡器的输出或与根据所述振荡器导出的输出在谐波意义上相关的信号的周期期间对所述参考频率信号的周期进行计数;或者
每隔隔开的时间间隔来测量所述外部参考频率信号与所述振荡器的输出或与根据所述振荡器导出的输出之间的相位差。
18.一种操作全球导航卫星系统GNSS接收机的方法,所述GNSS接收机具有振荡器和用于接收提供外部参考频率信号的至少一个GNSS无线电信号的接收机,所述方法包括使用权利要求2、或在从属于权利要求2时的权利要求4至17中的任一项所述的方法,以便管控所述振荡器。
19.一种用于对振荡器的与温度相关的频率漂移进行补偿的装置,包括:
所述振荡器;
接收机,被配置为接收外部参考频率信号;
物理存储器;
温度传感器;以及
处理器,被配置为使用所述外部参考频率信号来导出在工作温度范围上的振荡器补偿数据,将所述振荡器补偿数据存储在所述物理存储器内的第一表中,以及针对给定工作温度,使用所述第一表以获得相应的振荡器补偿数据并应用该数据以提供对与温度相关的频率漂移的补偿,
所述装置的特征在于所述处理器针对所述工作温度范围定义一系列温度槽,每个温度槽被细分成一系列温度仓,并且特征在于所述处理器被配置为使用外部参考频率信号,以通过以下各项来导出在工作温度范围上的振荡器补偿数据:
a)测量工作温度,并且使用外部参考频率信号来确定当工作温度变化时的各个温度的振荡器补偿值;
b)在所述物理存储器内的第二表的相应的温度仓中累积所确定的振荡器补偿值;以及
c)每隔隔开的时间段,使用在所述第二表的温度仓中累积的数据来确定或更新针对所述第一表中的一个或多个槽所存储的振荡器补偿数据。
20.一种全球导航卫星系统接收机,包括根据权利要求19所述的装置。
CN201710204591.8A 2016-03-31 2017-03-30 自适应温度补偿 Active CN107276536B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16163419.1A EP3226419A1 (en) 2016-03-31 2016-03-31 Adaptive temperature compensation for an oscillator
EP16163419.1 2016-03-31

Publications (2)

Publication Number Publication Date
CN107276536A CN107276536A (zh) 2017-10-20
CN107276536B true CN107276536B (zh) 2022-11-29

Family

ID=55919579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710204591.8A Active CN107276536B (zh) 2016-03-31 2017-03-30 自适应温度补偿

Country Status (4)

Country Link
US (1) US10651854B2 (zh)
EP (1) EP3226419A1 (zh)
JP (1) JP6980397B2 (zh)
CN (1) CN107276536B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663696B (zh) * 2018-04-27 2021-03-02 Oppo广东移动通信有限公司 温度与频偏关系的更新方法、装置、存储介质及移动终端
CN109031361B (zh) * 2018-07-03 2022-03-18 成都国恒空间技术工程有限公司 一种锁频环+fft的大频偏捕获方法
CN109856525A (zh) * 2018-11-07 2019-06-07 宁波大学 一种基于查找表的电路老化检测传感器
CN110262210B (zh) * 2019-06-28 2021-03-26 北斗天汇(北京)科技有限公司 基于计数器的晶振守时方法
CN111190198B (zh) * 2020-01-14 2021-12-14 中国民用航空总局第二研究所 Gbas测试设备的卫星接收机及其伪距生成方法与系统
CN113067578B (zh) * 2021-03-17 2023-03-31 成都金诺信高科技有限公司 一种时钟源的精密补偿方法
CN112737509B (zh) * 2021-04-02 2021-06-25 上海擎昆信息科技有限公司 一种晶振频率漂移补偿方法和系统
US20240061062A1 (en) * 2022-08-17 2024-02-22 Qualcomm Incorporated Adaptive oscillator frequency error estimation based on oscillator temperature noise level
US12050488B2 (en) * 2022-09-29 2024-07-30 Dell Products L.P. System and method to maintain clock stability in a complex computing platform

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519388A (en) * 1995-04-20 1996-05-21 Schlumberger Industries, Inc. Method and apparatus for active temperature compensation in a radiowave transmitter
JP2001339244A (ja) * 2000-05-29 2001-12-07 Nippon Precision Circuits Inc 温度補償型発振器とその製造方法および温度補償型発振用集積回路
CN101842974A (zh) * 2007-10-30 2010-09-22 高通股份有限公司 晶体振荡器的温度补偿

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4746879A (en) 1986-08-28 1988-05-24 Ma John Y Digitally temperature compensated voltage-controlled oscillator
US4922212A (en) 1989-06-05 1990-05-01 Novatel Communications, Ltd. Oscillator temperature compensating circuit using stored and calculated values
JP3019340B2 (ja) * 1989-12-05 2000-03-13 セイコーエプソン株式会社 可変容量装置
US5392005A (en) 1993-09-30 1995-02-21 At&T Corp. Field calibration of a digitally compensated crystal oscillator over a temperature range
IL120119A0 (en) 1997-01-31 1997-04-15 Binder Yehuda Method and system for calibrating a crystal oscillator
GB2360404B (en) * 2000-03-17 2004-03-10 Ericsson Telefon Ab L M Electronic circuit
US6472943B1 (en) 2000-12-21 2002-10-29 Telefonaktie Bolaget L.M. Ericsson Oscillating circuit and method for calibrating same
US7459984B2 (en) 2005-05-26 2008-12-02 Sirf Technology Holdings, Inc. Method and apparatus for self-calibration and adaptive temperature compensation in GPS receivers
US8674778B2 (en) * 2008-05-09 2014-03-18 Apple Inc. Method and system for correcting oscillator frequency drift
WO2010143363A1 (ja) * 2009-06-09 2010-12-16 パナソニック株式会社 共振器およびこれを用いた発振器
EP2871494B1 (en) 2013-11-08 2018-03-21 u-blox AG Phase-alignment between clock signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519388A (en) * 1995-04-20 1996-05-21 Schlumberger Industries, Inc. Method and apparatus for active temperature compensation in a radiowave transmitter
JP2001339244A (ja) * 2000-05-29 2001-12-07 Nippon Precision Circuits Inc 温度補償型発振器とその製造方法および温度補償型発振用集積回路
CN101842974A (zh) * 2007-10-30 2010-09-22 高通股份有限公司 晶体振荡器的温度补偿

Also Published As

Publication number Publication date
US10651854B2 (en) 2020-05-12
CN107276536A (zh) 2017-10-20
JP2017207470A (ja) 2017-11-24
US20170288679A1 (en) 2017-10-05
EP3226419A1 (en) 2017-10-04
JP6980397B2 (ja) 2021-12-15

Similar Documents

Publication Publication Date Title
CN107276536B (zh) 自适应温度补偿
US7548600B2 (en) Apparatus and method for compensating the drift of a local clock used as sampling frequency
US5893044A (en) Real time clock apparatus for fast acquisition or GPS signals
US7015762B1 (en) Reference timing signal apparatus and method
US8446223B2 (en) Systems and methods for calibrating real time clock
DE69714581T2 (de) Spreizspektrumempfänger mit multibitkorrelation
US5697082A (en) Self-calibrating frequency standard system
CN109581856B (zh) 一种基于高性能晶振频率校准的对时守时方法
CN109412588B (zh) 晶振频率驯服方法、装置、电子设备及存储介质
US20020158693A1 (en) Oscillating circuit and method for calibrating same
Davis et al. Development of a Kalman filter based GPS satellite clock time-offset prediction algorithm
CN112540388B (zh) 一种卫星通信模组及其上行信号多普勒补偿方法
CN107086901B (zh) 一种bdt建立方法及utc(ntsc)建立方法
Tang et al. Complexity reduction of the Kalman filter-based tracking loops in GNSS receivers
WO2015200274A1 (en) Systems and methods for clock synchronization in a data acquisition system
US8224606B2 (en) Measuring clock jitter
US6636121B2 (en) Method for estimating crystal coefficient values for a signal generator
CN111948686A (zh) 时间同步方法及装置
CN103605138A (zh) 一种卫星导航接收机时钟修正方法与装置
US7424069B1 (en) Reference timing signal apparatus and method
CN113359191B (zh) 一种恒温晶振的实时校正方法和电磁接收机
CN112236942B (zh) NB-IoT设备的睡眠定时器的数字石英温度和漂移补偿的方法和装置
CA2665540A1 (en) Improved frequency aiding method and system for navigation satellite receiver with crystal oscillator frequency hysteresis
CN101488752A (zh) 温度频率校正装置
EP3355626B1 (en) Method and apparatus for digital quartz temperature and drift compensation for a sleep timer of a nb-iot device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant