CN107272625B - 一种基于贝叶斯理论的工业过程故障诊断方法 - Google Patents
一种基于贝叶斯理论的工业过程故障诊断方法 Download PDFInfo
- Publication number
- CN107272625B CN107272625B CN201710567036.1A CN201710567036A CN107272625B CN 107272625 B CN107272625 B CN 107272625B CN 201710567036 A CN201710567036 A CN 201710567036A CN 107272625 B CN107272625 B CN 107272625B
- Authority
- CN
- China
- Prior art keywords
- variable
- industrial process
- data
- diagnosing faults
- bayesian theory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Manufacturing & Machinery (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
Abstract
Description
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710567036.1A CN107272625B (zh) | 2017-07-12 | 2017-07-12 | 一种基于贝叶斯理论的工业过程故障诊断方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710567036.1A CN107272625B (zh) | 2017-07-12 | 2017-07-12 | 一种基于贝叶斯理论的工业过程故障诊断方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107272625A CN107272625A (zh) | 2017-10-20 |
CN107272625B true CN107272625B (zh) | 2019-05-28 |
Family
ID=60073408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710567036.1A Active CN107272625B (zh) | 2017-07-12 | 2017-07-12 | 一种基于贝叶斯理论的工业过程故障诊断方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107272625B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109270907B (zh) * | 2018-10-24 | 2020-07-28 | 中国计量大学 | 一种基于分层概率密度分解的过程监测和故障诊断方法 |
CN113485269B (zh) * | 2021-07-20 | 2023-01-03 | 浙江大学 | 一种基于隐变量模型的工业过程监测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102880170A (zh) * | 2012-10-08 | 2013-01-16 | 南京航空航天大学 | 基于基线模型和贝叶斯因子的系统故障早期预警方法 |
EP2369435B1 (en) * | 2010-03-19 | 2013-04-03 | Hamilton Sundstrand Corporation | Bayesian approach to identifying sub-module failure |
CN105700518A (zh) * | 2016-03-10 | 2016-06-22 | 华中科技大学 | 一种工业过程故障诊断方法 |
CN103926919B (zh) * | 2014-04-29 | 2016-08-17 | 华东理工大学 | 基于小波变换和Lasso函数的工业过程故障检测方法 |
JP6048688B2 (ja) * | 2014-11-26 | 2016-12-21 | 横河電機株式会社 | イベント解析装置、イベント解析方法およびコンピュータプログラム |
-
2017
- 2017-07-12 CN CN201710567036.1A patent/CN107272625B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2369435B1 (en) * | 2010-03-19 | 2013-04-03 | Hamilton Sundstrand Corporation | Bayesian approach to identifying sub-module failure |
CN102880170A (zh) * | 2012-10-08 | 2013-01-16 | 南京航空航天大学 | 基于基线模型和贝叶斯因子的系统故障早期预警方法 |
CN103926919B (zh) * | 2014-04-29 | 2016-08-17 | 华东理工大学 | 基于小波变换和Lasso函数的工业过程故障检测方法 |
JP6048688B2 (ja) * | 2014-11-26 | 2016-12-21 | 横河電機株式会社 | イベント解析装置、イベント解析方法およびコンピュータプログラム |
CN105700518A (zh) * | 2016-03-10 | 2016-06-22 | 华中科技大学 | 一种工业过程故障诊断方法 |
Non-Patent Citations (4)
Title |
---|
A Fuzzy Fault Diagnosis Scheme with Application;Xiaochun George Wang等;《Proceedings Joint 9th IFSA World Congress and 20th NAFIP International Conference》;20020807;1489-1493 |
FAILURED DETECTION AND ISOLATION: A NEW PARADIGM;R. Doraiswami, C.P. Diduch等;《Proceedings of the 2001 American Control Conference》;20020807;470-475 |
基于LASSO的故障重构方法;张申波等;《计算机与应用化学》;20161128;第33卷(第11期);1227-1230 |
基于贝叶斯分类的分布式网络故障诊断模型;刘凤玉等;《南京理工大学学报》;20031031;第27卷(第5期);546-550 |
Also Published As
Publication number | Publication date |
---|---|
CN107272625A (zh) | 2017-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108664002B (zh) | 一种面向质量的非线性动态过程监控方法 | |
CN102736546A (zh) | 一种流程工业复杂机电系统的状态监测装置及方法 | |
CN109407652A (zh) | 基于主辅pca模型的多变量工业过程故障检测方法 | |
CN109917777B (zh) | 基于混合多采样率概率主成分分析模型的故障检测方法 | |
CN110751217B (zh) | 基于主元分析的设备能耗占比预警分析方法 | |
CN104914847A (zh) | 基于方向核偏最小二乘的工业过程故障诊断方法 | |
CN111367253B (zh) | 基于局部自适应标准化的化工系统多工况故障检测方法 | |
CN104914850B (zh) | 基于切换线性动态系统模型的工业过程故障诊断方法 | |
CN110209144B (zh) | 基于动静协同差异分析的两层实时监测与报警溯源方法 | |
CN112199409B (zh) | 一种用于催化重整装置实时工况的监测方法及装置 | |
CN107272625B (zh) | 一种基于贝叶斯理论的工业过程故障诊断方法 | |
Li et al. | Canonical variate residuals-based contribution map for slowly evolving faults | |
CN109541350A (zh) | 基于自适应多元累积和控制图的变压器状态评价方法 | |
CN114519382A (zh) | 一种核动力装置关键运行参数提取与异常监测方法 | |
Song et al. | Empirical likelihood ratio charts for profiles with attribute data and random predictors in the presence of within‐profile correlation | |
Tang et al. | Dual attention bidirectional generative adversarial network for dynamic uncertainty process monitoring and diagnosis | |
CN103995985B (zh) | 基于Daubechies小波变换和弹性网的故障检测方法 | |
Bae et al. | Detecting abnormal behavior of automatic test equipment using autoencoder with event log data | |
Zhang et al. | Distributed quality-related process monitoring framework using parallel DVIB-VAE-mRMR for large-scale processes | |
CN117723878A (zh) | 一种配电网干式变压器故障预警装置及方法 | |
CN116125923B (zh) | 基于混合变量字典学习的混杂工业过程监测方法和系统 | |
CN111188761A (zh) | 一种基于Fourier-CVA模型面向机泵设备的监测方法 | |
Valle et al. | Extracting fault subspaces for fault identification of a polyester film process | |
Liu et al. | Dynamic Inner Canonical Variate Network for Incipient Fault Monitoring | |
Xie | Fault monitoring based on locally weighted probabilistic kernel partial least square for nonlinear time‐varying processes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 325000 Zhejiang Economic Development Zone, Ouhai, South East Road, No. 38, Wenzhou National University Science Park Incubator Applicant after: Wenzhou University Address before: 325000 Zhejiang city of Wenzhou Province Higher Education Park (Chashan town of Ouhai District) Applicant before: Wenzhou University |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20171020 Assignee: Intelligent lock Research Institute of Wenzhou University Assignor: Wenzhou University Contract record no.: X2020330000086 Denomination of invention: A fault diagnosis method for industrial process based on Bayesian theory Granted publication date: 20190528 License type: Common License Record date: 20201030 |