CN111188761A - 一种基于Fourier-CVA模型面向机泵设备的监测方法 - Google Patents
一种基于Fourier-CVA模型面向机泵设备的监测方法 Download PDFInfo
- Publication number
- CN111188761A CN111188761A CN201911426101.4A CN201911426101A CN111188761A CN 111188761 A CN111188761 A CN 111188761A CN 201911426101 A CN201911426101 A CN 201911426101A CN 111188761 A CN111188761 A CN 111188761A
- Authority
- CN
- China
- Prior art keywords
- data
- time
- matrix
- vibration signal
- real
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000013598 vector Substances 0.000 claims abstract description 26
- 238000012549 training Methods 0.000 claims abstract description 14
- 238000012423 maintenance Methods 0.000 claims abstract description 7
- 230000009466 transformation Effects 0.000 claims abstract description 5
- 238000012545 processing Methods 0.000 claims abstract description 4
- 239000011159 matrix material Substances 0.000 claims description 49
- 238000005070 sampling Methods 0.000 claims description 22
- 238000010276 construction Methods 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 7
- 230000002159 abnormal effect Effects 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 230000009286 beneficial effect Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000010797 grey water Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B51/00—Testing machines, pumps, or pumping installations
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
本发明涉及设备监测技术领域,旨在提供一种基于Fourier‑CVA模型面向机泵设备的监测方法。包括:将传感器采集的监测信号作为训练数据,以Fourier变换提取振动信号中的主要频域特征;采用CVA模型提取信号特征,根据上述典型变量与残差变量子空间,构建统计量;以KDE方法计算统计量阈值;针对机泵设备进行实时监测,采集实时在线数据并对数据进行标准化处理;用Fourier变换提取振动信号中幅值数据,根据时间滞后构建过去数据向量、实时数据的典型变量和残差变量、机泵实时监测统计量;用于与阈值比较,觉得是否需要维护。本发明提高了振动信号数据的可用性,保障了变量的一致性,为后续建模奠定基础。同时能有效提升机泵监测准确性,有助于保障设备的安全可靠运行。
Description
技术领域
本发明涉及设备监测技术领域,具体指基于Fourier-CVA模型面向机泵设备的监测方法。
背景技术
机泵设备是一种在生产生活中的重要设备,现已经广泛应用于工业、农业、国防等领域。机泵设备的运行状态也直接影响到相应产业的生产效率,因此保障与提高机泵设备的运行效率对于促进我国的发展有着十分重要的现实意义。
从本世纪以来,设备监测技术以及故障诊断技术得到了广泛的研究,大量的研究成果陆续在国内外权威期刊上发表。主元分析(PCA)、最小二乘分析(PLS)、典型相关分析(CVA)和费舍尔判别分析(FDA)等多元统计方法已经被广泛应用于设备状态监测。然而现有的多元统计方法都是针对时序中数据一一匹配的数据,在面对测量数据的在时序中无法一一匹配的情况(例如:某一时刻,某一传感器采集一个数据而另一传感器采集1024个数据),传统基于多元统计过程监测方法无法适用。并且上述情况在机泵设备的中是非常常见的,机泵设备中振动信号的采样频率往往远远大于其他信号的采样率。这些情况大大限制了过程监测方法的应用,因此急需研究一种设备监测方法以解决实际现场的问题。
发明内容
本发明要解决的技术问题是,克服现有技术的不足,提供一种基于Fourier-CVA模型面向机泵设备的监测方法。
为了解决技术问题,本发明的解决方案是:
提供一种基于Fourier-CVA模型面向机泵设备的监测方法,包括以下步骤:
(1)获取训练数据:
将传感器安装于机泵设备表面,采集机泵设备在正常运行状态下的监测信号数据;
每一次采样得到1行m列的测量向量xk,其中下标k为采样时刻,m为测量变量数;采样n次后可得到采样矩阵其中T表示矩阵的转置(此表示在下文中被广泛使用),表示n行m列数据的矩阵集合;矩阵中至少包括以下数据:设备温度、X轴振动信号及其有效值、Y轴振动信号及其有效值、Z轴振动信号及其有效值;
(2)利用Fourier变换提取X、Y、Z轴振动信号中的主要频域特征,包括以下步骤:
(2.1)将采集到的X轴振动信号、Y轴振动信号、Z轴振动信号根据时段分别使用Fourier变换,得到各个时段的频率的幅值分布;
(2.2)采用各个时间段中的1倍频和2倍频幅值用于表征各个时间段中的频率特征;
(2.3)将变化后的特征结合温度、X轴有效值、Y轴有效值、Z轴有效值组成新训练数据矩阵;
(3)采用CVA模型提取上述训练数据中的信号特征,该步骤通过如下子步骤实现:
(3.1)通过数据的时序关系构建过去与现在将来数据矩阵:
先对所有时刻数据进行均一化处理,对于给定k时刻,构建过去数据向量 其中表示1行m×p列数据的向量集合,p为过去时滞参数;构建将来数据向量其中表示1行m×f列数据的向量集合,f为将来时滞参数;最后使用所有的过去数据向量和将来数据向量组成过去数据矩阵和将来数据矩阵其中N=n-f-p+1表示总样本数目;
(3.3)对上述组成的Hankel矩阵H进行奇异值分解(SVD):
H=UDVT
其中,U和V分别为左右奇异向量,D为奇异值矩阵;
(3.4)计算投影矩阵,以提取典型变量子空间与残差变量子空间:
其中,I为单位矩阵,Vc由V(:,1:c)表示,其中V(:,1:c)表示矩阵V中所有行前c列数据矩阵;
构成典型变量子空间Z=JXp和残差变量子空间E=LXp;
(4)根据上述构成的典型变量与残差变量子空间,可构建T2和Q统计量:
T2=ZTZ
Q=ETE
(5)采用核密度密度估计(KDE)方法分别计算统计量阈值,通过如下子步骤实现:
(5.1)计算T2和Q统计量的概率密度p(T2)和p(Q):
其中N为统计量样本数,h为核函数宽度,K(.)为核密度函数;。
(5.2)其中,步骤(5.1)中所使用的核密度函数K(.)为高斯核,如下:
(6)针对机泵设备进行实时监测,包括以下步骤:
(6.1)采集实时在线数据并对数据进行标准化处理;
(6.2)使用Fourier变换提取X、Y、Z轴振动信号中1倍频和2倍频幅值数据;
(6.3)根据时间滞后使用类似(3.1)的方法,构建过去数据向量xp,new;
(6.4)基于步骤(3.4)中求得的加权矩阵J和L,构建实时数据的典型变量znew和残差变量enew:
znew=JTxp,new
enew=LTxp,new
(6.6)判断机泵设备的实时运行状态:
实时比较步骤(6.5)中构建机泵设备的实时统计量是否小于步骤(5.3)中得到的阈值:若是,则认为机泵装置正常工作无需维护;如果不是,则认为机泵装置发生异常状况,需要停止运行进行维护。
本发明中,步骤(1)中传感器采集的信号数据包括:温度、X轴振动信号及其有效值、Y轴振动信号及其有效值、Z轴振动信号及其有效值7个变量信息。
与现有技术相比,本发明具有的有益效果:
1、针对机泵设备中普遍存在的振动信号采样频率远远大于其他变量的采样率,本发明使用Fourier变换提取了信号中频域的主要特征,使振动信号数据的可用性大大提高,保障了与其他变量的一致性,为后续建模奠定了基础。
2、本发明将CVA建模方法与机泵设备监测相结合,构造了相关模型,并进行了实时装置监测。该方法有效提升了对于机泵装置的监测准确性,有助于生产厂家对于机泵装置进行有效及时地监测,有助于保障设备的安全可靠运行,同时达到了提高厂家经济效益的目的。
附图说明
图1为本发明面向机泵装置的监测方法流程图;
图2中(a)(b)分别为采集数据经过Fourier变换前后内容示意图;
图3为本发明的实际工程监测结果图。
具体实施方式
下面结合附图及具体实例,对本发明进行进一步说明。
本发明以绍兴某化工厂#4灰水循环泵为例,通过传感器采集设备收集机泵设备的温度、X轴振动信号及其有效值、Y轴振动信号及其有效值、Z轴振动信号及其有效值7个变量信息。需要注意,这里X轴振动信号、Y轴振动信号和Z轴振动信号三个变量的采样频率远大于其于变量的采样率。
如图1所示,本发明基于Fourier-CVA模型面向机泵设备的监测方法,包括以下步骤:
(1)获取训练数据:将传感器安装于机泵设备表面,用于采集机泵装置中需要进行监测的信号数据,每一次采样得到1行m列的测量向量xk,其中下标k为采样时刻,m为测量变量数;采样n次后可得到采样矩阵其中表示n行m列数据的矩阵集合,包括设备温度、X轴振动信号及其有效值、Y轴振动信号及其有效值、Z轴振动信号及其有效值等7个变量信息;训练数据应当选取机泵设备在正常运行状态下的采样数据。
(2)如图2所示,利用Fourier变化提取X、Y、Z轴振动信号中的主要频域特征,该步骤通过以下子步骤实现:
(2.1)将采集到的X轴振动信号、Y轴振动信号、Z轴振动信号根据时段分别使用Fourier变换,得到各个时段的频率的幅值分布;
(2.2)采用各个时间段中的1倍频和2倍频以表征各个时间段中的频率特征;
(2.3)将变化后的特征结合温度、X轴有效值、Y轴有效值、Z轴有效值组成新训练数据矩阵,其可用于后续CVA模型的训练。
如图2(a)所示,此为采集得到的原始数据,从表中可看出Xvalues、Yvalues和Zvalues三个数据格式和其他变量数据格式不同,此三个变量一次采集均包含1024个样本,这是由于振动信号的采样频率远大于其他变量的采样频率,但是对于振动信号来说高采样频率也是必须的,这种数据不一一匹配的情况大大增加的后续建模的复杂度。为解决上述情况,本发明首先采用Fourier变换,提取其中的1倍频和2倍频幅值信息来表征相应时间中的振动信号特征。如图2(b)所示,经过Fourier变换不仅使得变量的数据格式做到了统一,而且保留了振动信号中的主要特征,有效提高的模型建立的便捷性。
(3)采用CVA模型提取上述训练数据中的信号特征,该步骤通过如下子步骤实现:
(3.1)通过数据的时序关系构建过去与现在将来数据矩阵:先对所有时刻数据进行均一化处理,对于给定k时刻,构建过去数据向量其中表示1行m×p列数据的向量集合,p为过去时滞参数;构建将来数据向量 其中表示1行m×f列数据的向量集合,f为将来时滞参数;最后使用所有的过去数据向量和将来数据向量组成过去数据矩阵和将来数据矩阵其中N=n-f-p+1表示总样本数目;
(3.3)对上述组成的Hankel矩阵H进行奇异值分解(SVD):
H=UDVT
其中,U和V分别为左右奇异向量,D为奇异值矩阵;
(3.4)计算投影矩阵,以提取典型变量子空间与残差变量子空间:
其中,I为单位矩阵,Vc由V(:,1:c)表示,其中V(:,1:c)表示矩阵V中所有行和前c列数据矩阵;
构成典型变量子空间Z=JXp和残差变量子空间E=LXp。
(4)使用如下方法,计算T2和Q统计量:
T2=ZTZ
Q=ETE
(5)分别计算统计量阈值,这里采用了一种优选的核密度密度估计(KDE)方法,该步骤通过如下子步骤实现:
(5.1)计算T2和Q统计量的概率密度p(T2)和p(Q):
其中N为统计量样本数,h为核函数宽度,K(.)为核密度函数;
(5.2)其中,步骤(5.1)中所使用的核密度函数K(.)为高斯核,如下:
(6)针对机泵设备进行实时监测,包括以下步骤:
(6.1)采集实时在线数据并对数据进行标准化处理;
(6.2)使用Fourier变换提取X、Y、Z轴振动信号中1倍频和2倍频幅值数据;
(6.3)根据时间滞后构建过去数据向量xp,new;
(6.4)基于步骤(3.4)中求得的加权矩阵J和L,构建实时数据的典型变量znew和残差变量enew:
znew=JTxp,new
enew=LTxp,new
(6.6)判断机泵设备的实时运行状态:
实时比较步骤(6.5)中构建机泵设备的实时统计量是否小于步骤(5.3)中得到阈值:若是,则认为机泵装置正常工作无需维护;如果不是,则认为机泵装置发生异常状况,需要停止运行进行维护。
如图3所示,在置信水平α=0.05的条件下,采用5月19日之前的正常数据作为训练样本,并用其建立的模型对后续时刻的信息进行监测。如图所示,图中虚线表示根据KDE方法建立的阈值,实线表示根据实时信号计算得出的实时监测统计量,可以明显看出统计量T2在2019年5月28日之后明显超出阈值,据此可以判断装置发生异常。
本发明针对机泵设备中普遍存在的振动信号采样频率远远大于其他变量的采样率,使用Fourier变换提取了信号中频域的主要特征,使振动信号数据的可用性大大提高,保障了与其他变量的一致性,为后续建模奠定了基础。其后,将CVA建模方法与机泵设备监测相结合,构造了相关模型,并进行了实时装置监测。该方法有效提升了对于机泵装置的监测准确性,有助于生产厂家对于机泵装置进行有效及时地监测,有助于保障设备的安全可靠运行,同时达到了提高厂家经济效益的目的。
Claims (2)
1.一种基于Fourier-CVA模型面向机泵设备的监测方法,其特征在于,包括以下步骤:
(1)获取训练数据:
将传感器安装于机泵设备表面,采集机泵设备在正常运行状态下的监测信号数据;
每一次采样得到1行m列的测量向量xk,其中下标k为采样时刻,m为测量变量数;采样n次后得到采样矩阵其中T表示矩阵的转置,表示n行m列数据的矩阵集合;该矩阵中至少包括以下数据:设备温度、X轴振动信号及其有效值、Y轴振动信号及其有效值、Z轴振动信号及其有效值;
(2)利用Fourier变换提取X、Y、Z轴振动信号中的主要频域特征,包括以下步骤:
(2.1)将采集到的X轴振动信号、Y轴振动信号、Z轴振动信号根据时段分别使用Fourier变换,得到各个时段的频率的幅值分布;
(2.2)采用各个时间段中的1倍频和2倍频幅值表征各个时间段中的频率特征;
(2.3)将变化后的特征结合温度、X轴有效值、Y轴有效值、Z轴有效值组成新训练数据矩阵;
(3)采用CVA模型提取上述训练数据中的信号特征,该步骤通过如下子步骤实现:
(3.1)通过数据的时序关系构建过去与现在将来数据矩阵:
先对所有时刻数据进行均一化处理:对于给定k时刻,构建过去数据向量 其中表示1行m×p列数据的数据集合,p为过去时滞参数;构建将来数据向量其中表示1行m×f列数据的数据集合,f为将来时滞参数;最后使用所有的过去数据向量和将来数据向量组成过去数据矩阵和将来数据矩阵其中N=n-f-p+1表示总样本数目;
(3.3)对上述组成的Hankel矩阵H进行奇异值分解,进行如下表示:
H=UDVT
其中,U和V分别为左右奇异向量,D为奇异值矩阵;
(3.4)计算投影矩阵,提取典型变量子空间与残差变量子空间:
其中,I为单位矩阵,Vc由V(:,1:c)表示,其中V(:,1:c)表示矩阵V中所有行前c列数据矩阵;
随后,构成典型变量子空间Z=JXp和残差变量子空间E=LXp;
(4)根据上述构成的典型变量与残差变量子空间,构建T2和Q统计量:
T2=ZTZ
Q=ETE
(5)采用核密度密度估计方法分别计算统计量阈值,通过如下子步骤实现:
(5.1)计算T2和Q统计量的概率密度p(T2)和p(Q):
其中N为统计量样本数,h为核函数宽度,K(.)为核密度函数;
(5.2)其中,步骤(5.1)中所使用的核密度函数K(.)为高斯核,具体如下:
(6)针对机泵设备进行实时监测,具体包括以下步骤:
(6.1)采集实时在线数据并对数据进行标准化处理;
(6.2)使用Fourier变换提取X、Y、Z轴振动信号中1倍频和2倍频幅值数据;
(6.3)根据时间滞后使用(3.1)的方法,构建实时过去数据向量xp,new;
(6.4)基于步骤(3.4)中求得的加权矩阵J和L,构建实时数据的典型变量znew和残差变量enew:
znew=JTxp,new
enew=LTxp,new
(6.6)判断机泵设备的实时运行状态:
实时比较步骤(6.5)中构建机泵设备的实时统计量是否小于步骤(5.3)中得到的阈值:若是,则认为机泵装置正常工作无需维护;如果不是,则认为机泵装置发生异常状况,需要停止运行进行维护。
2.根据权利要求1所述的方法,其特征在于,步骤(1)中传感器采集的信号数据包括:温度、X轴振动信号及其有效值、Y轴振动信号及其有效值、Z轴振动信号及其有效值7个变量信息。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911426101.4A CN111188761B (zh) | 2019-12-31 | 2019-12-31 | 一种基于Fourier-CVA模型面向机泵设备的监测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911426101.4A CN111188761B (zh) | 2019-12-31 | 2019-12-31 | 一种基于Fourier-CVA模型面向机泵设备的监测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111188761A true CN111188761A (zh) | 2020-05-22 |
CN111188761B CN111188761B (zh) | 2021-09-10 |
Family
ID=70706014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911426101.4A Active CN111188761B (zh) | 2019-12-31 | 2019-12-31 | 一种基于Fourier-CVA模型面向机泵设备的监测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111188761B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111914210A (zh) * | 2020-06-13 | 2020-11-10 | 宁波大学 | 一种基于相关特征分析的复杂化工过程状态监测方法 |
CN112817282A (zh) * | 2020-12-28 | 2021-05-18 | 杭州哲达科技股份有限公司 | 一种基于数字孪生系统的高炉炉顶压力控制回路参数优化方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102072144A (zh) * | 2011-03-11 | 2011-05-25 | 大连大学 | 涡旋压缩机在线振动、噪声监测及故障诊断系统 |
CN103969069A (zh) * | 2014-04-26 | 2014-08-06 | 常州大学 | 机械设备工况监测与故障诊断方法 |
CN109580224A (zh) * | 2018-12-28 | 2019-04-05 | 北京中科东韧科技有限责任公司 | 滚动轴承故障实时监测方法 |
CN109869286A (zh) * | 2019-02-12 | 2019-06-11 | 苏州热工研究院有限公司 | 风力发电机组振动状态监测方法 |
CN110374854A (zh) * | 2019-08-20 | 2019-10-25 | 无锡市德仕比智能流体科技有限公司 | 一种泵的智能监控系统 |
CN109538311B (zh) * | 2018-09-21 | 2020-08-04 | 浙江大学 | 面向高端发电装备中汽轮机的控制性能实时监测方法 |
-
2019
- 2019-12-31 CN CN201911426101.4A patent/CN111188761B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102072144A (zh) * | 2011-03-11 | 2011-05-25 | 大连大学 | 涡旋压缩机在线振动、噪声监测及故障诊断系统 |
CN103969069A (zh) * | 2014-04-26 | 2014-08-06 | 常州大学 | 机械设备工况监测与故障诊断方法 |
CN109538311B (zh) * | 2018-09-21 | 2020-08-04 | 浙江大学 | 面向高端发电装备中汽轮机的控制性能实时监测方法 |
CN109580224A (zh) * | 2018-12-28 | 2019-04-05 | 北京中科东韧科技有限责任公司 | 滚动轴承故障实时监测方法 |
CN109869286A (zh) * | 2019-02-12 | 2019-06-11 | 苏州热工研究院有限公司 | 风力发电机组振动状态监测方法 |
CN110374854A (zh) * | 2019-08-20 | 2019-10-25 | 无锡市德仕比智能流体科技有限公司 | 一种泵的智能监控系统 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111914210A (zh) * | 2020-06-13 | 2020-11-10 | 宁波大学 | 一种基于相关特征分析的复杂化工过程状态监测方法 |
CN111914210B (zh) * | 2020-06-13 | 2023-09-19 | 宁波大学 | 一种基于相关特征分析的复杂化工过程状态监测方法 |
CN112817282A (zh) * | 2020-12-28 | 2021-05-18 | 杭州哲达科技股份有限公司 | 一种基于数字孪生系统的高炉炉顶压力控制回路参数优化方法 |
CN112817282B (zh) * | 2020-12-28 | 2022-05-10 | 杭州哲达科技股份有限公司 | 一种基于数字孪生系统的高炉炉顶压力控制回路参数优化方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111188761B (zh) | 2021-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108803520B (zh) | 一种基于变量非线性自相关性剔除的动态过程监测方法 | |
CN105425779B (zh) | 基于局部邻域标准化和贝叶斯推断的ica-pca多工况故障诊断方法 | |
CN107895224B (zh) | 一种基于扩展核熵负载矩阵的mkeca发酵过程故障监测方法 | |
CN110083860B (zh) | 一种基于相关变量选择的工业故障诊断方法 | |
CN109740687B (zh) | 一种基于dlae的发酵过程故障监测方法 | |
CN104699077B (zh) | 一种基于嵌套迭代费舍尔判别分析的故障变量隔离方法 | |
CN108549908B (zh) | 基于多采样概率核主成分模型的化工过程故障检测方法 | |
CN102736546A (zh) | 一种流程工业复杂机电系统的状态监测装置及方法 | |
CN106680012A (zh) | 一种面向大型燃煤发电机组非平稳过程的故障检测方法和诊断方法 | |
CN111188761B (zh) | 一种基于Fourier-CVA模型面向机泵设备的监测方法 | |
CN110119579B (zh) | 一种基于oica的复杂工业过程故障监测方法 | |
CN110209145B (zh) | 一种基于核矩阵近似的二氧化碳吸收塔故障诊断方法 | |
CN103995985B (zh) | 基于Daubechies小波变换和弹性网的故障检测方法 | |
CN110942258A (zh) | 一种性能驱动的工业过程异常监测方法 | |
CN112947649B (zh) | 一种基于互信息矩阵投影的多变量过程监控方法 | |
CN112149054B (zh) | 基于时序扩展的正交邻域保持嵌入模型的构建与应用 | |
CN111983994B (zh) | 一种基于复杂工业化工过程的v-pca故障诊断方法 | |
CN107817784B (zh) | 一种基于并发偏最小二乘的过程故障检测方法 | |
CN111915121B (zh) | 一种基于广义典型变量分析的化工过程故障检测方法 | |
CN109522657B (zh) | 一种基于相关性网络和svdd的燃气轮机异常检测方法 | |
CN114707424B (zh) | 基于质量相关慢特征分析算法的化工过程软测量方法 | |
CN114879612A (zh) | 一种基于Local-DBKSSA的高炉炼铁过程监测方法 | |
CN111459140B (zh) | 一种基于hht-dcnn的发酵过程故障监测方法 | |
CN113919224A (zh) | 一种主蒸汽流量预测方法及其系统 | |
Wang et al. | Multimode process fault detection method based on variable local outlier factor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |