CN107271509A - 一种光电化学传感电极的制备方法 - Google Patents
一种光电化学传感电极的制备方法 Download PDFInfo
- Publication number
- CN107271509A CN107271509A CN201710436855.2A CN201710436855A CN107271509A CN 107271509 A CN107271509 A CN 107271509A CN 201710436855 A CN201710436855 A CN 201710436855A CN 107271509 A CN107271509 A CN 107271509A
- Authority
- CN
- China
- Prior art keywords
- electrode
- minutes
- quantum dot
- secondary water
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/305—Electrodes, e.g. test electrodes; Half-cells optically transparent or photoresponsive electrodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/307—Disposable laminated or multilayered electrodes
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Light Receiving Elements (AREA)
Abstract
一种光电化学传感电极的制备方法,首先用巯基乙酸、CdCl2·2.5H2O、Na2S·9H2O制备CdS量子点溶液;然后,将洁净的ITO电极交替浸入聚二烯丙基二甲基氯化铵溶液与量子点溶液中。最后,重复该过程2次,便得到了三层量子点膜修饰的ITO电极。最后制得的光电化学传感电极具有良好的稳定性,在4℃的环境下存放一个月后,仍然具有较强的光电流强度,且表面修饰了羧基,易于与其他生物分子相结合。
Description
技术领域
本发明涉及一种光电化学传感电极的制备方法。
背景技术
光电化学分析是基于光电化学过程和化学/生物识别过程建立起来的一种新的分析方法。该方法以光作为激发信号,以光电流作为检测信号,具有灵敏度高、响应快速、设备简单和易微型化等优点,在生物和环境等分析领域受到了广泛关注。光电化学传感系统包含:激发光源(氙灯),单色器,样品室,电化学工作站,数据处理器及光电化学传感电极。作为其核心部件的光电化学传感电极可以将特定的识别反应转换为相应的光电流变化,而这种转换通常需要光电活性材料来实现。因此,从功能结构上看光电化学传感电极一般包括两个部分:光电转换单元(无机半导体材料、有机导电材料及复合材料等光电活性材料)和传感识别单元(DNA、酶、抗原抗体等)。受到光源激发后,电极表面的光电转换单元便会发生电荷分离与电荷转移,进而产生了一个会被电化学工作站检测到的电流信号。利用在光电转换单元上修饰的传感识别单元与待测分子发生氧化还原、分子识别与结合、酶催化等反应而导致的光电流变化,可实现对目标物的检测和定量分析。利用不同的生物识别元件,人们已经设计出了多种PEC生物传感器来检测相应的目标分析物,如DNA,酶,蛋白质。因此,如何选择光电转换单元和传感识别单元是构建光电化学传感电极的关键因素。
发明内容
本发明要解决的技术问题是弥补现有技术的不足提供一种具有高响应、易修饰、高生物相容等的光电化学传感电极的制备方法。
为解决该技术问题,本发明采用的技术方案为:
一种光电化学传感电极的制备方法,其特征在于包括以下步骤:
A、CdS量子点的制备:
在50mL水中加入适量的CdCl2·2.5H2O与250μL巯基乙酸(TGA),随后用1mol/LNaOH调节pH至11.0,通N2除氧20分钟,然后加入一定体积对的Na2S·9H2O溶液,确保S和Cd的物质的量比为1.1:1,100℃下加热回流4小时,制得CdS量子点溶液,用二次水稀释一倍,保存于4℃冰箱备用。
B、PDDA/CdS QDs多层膜在电极上的修饰:
将氧化铟锡导电玻璃(ITO)放入沸腾的KOH异丙醇溶液中清洗15分钟,随后用二次水洗净,120℃干燥2小时,备用。首先,将洗净干燥后的ITO电极浸没在聚二烯丙基二甲基氯化铵溶液中10分钟,取出后用胶头滴管吸取二次水淋洗电极3次,随后将电极放入二次水中浸泡3分钟;再将上述电极浸没在含有0.5mol/LNaCl的CdS量子点溶液中10分钟,取出后用胶头滴管吸取二次水淋洗电极3次,随后将电极放入二次水中浸泡2分钟。最后,重复该过程2次,便得到了三层量子点膜修饰的电极,将电极放入冰箱干燥36h备用。
最后制得的光电传感电极具有良好的稳定性,在4℃的环境下存放一个月后,仍然具有较强的光电流强度,且表面修饰了羧基,易于与其他生物分子相结合。
本发明基于静电层层自组装技术,在电极上修饰表面带有电荷的量子点,抑或某些易电离的有机分子以制备光电化学传感电极。相比于传统的传感电极,我们的电极具有以下几点优势:
(1)光电流强。高的电流信号能够有效降低环境因素带来的背景干扰,有利于提高PEC传感器的灵敏度。在优化了一系列的电极制备条件后,制备的电极具有很高的光电流强度,达到了50微安,其强度是传统电极的8~10倍。
(2)可见光激发。大部分生化样品对紫外光耐受能力较差,若使用紫外作为激发光源会对传感体系产生干扰,扩大了PEC传感器在生物传感领域中的应用范围。
(3)易于修饰。由于量子点表面可以携带各类官能团(如,巯基、羧基、氨基),各类传感识别单元可以轻易地修饰到传感电极的表面,以实现对不同检测目标的检测。
(4)光电活性材料选择广泛。量子点作为一种常见的光电活性材料在光电传感器中发挥重要作用,但不同的量子点有不同的特性,某些PEC传感器需要具有特定光电化学性质的量子点,此方法适用于大部分水溶性量子点,因此,可根据不同的传感体系/检测目标,选择不同类型的量子点在电极上修饰。
综上所述,本方法具有很强的普适性,对于光电化学传感器的发展具有重要意义。
附图说明
图1,量子点中NaCl浓度对光电流的影响
图2,PDDA质量分数对光电流的影响
图3,PDDA中NaCl浓度对光电流的影响
图4,制备温度对光电流的影响
图5,传感电极对不同波长的响应
具体实施方式
第一步:CdS量子点的制备方法:
在三颈烧瓶中依次加入0.1142g CdCl2·2.5H2O固体,50.0ml二次蒸馏水,250μL巯基乙酸(分析纯),搅拌溶解,加入5.8mL 1mol/L的NaOH溶液调节pH至11.0,通N2除氧20分钟,密封,在N2保护下,按S与Cd的物质的量1.1:1的投料比注入5.5mL 0.1mol/L的Na2S·9H2O溶液,100℃下加热回流4小时,制得CdS量子点溶液,用二次水以1:1的体积比稀释量子点溶液,保存于4℃冰箱备用。
第二步:CdS QDs多层膜在电极上的修饰:
将ITO导电玻璃放入沸腾的KOH异丙醇溶液中,清洗15分钟除去电极表面的杂质,随后用大量二次水洗去异丙醇,120℃干燥2小时,备用。首先,将洗净干燥后的ITO电极浸没在聚二烯丙基二甲基氯化铵溶液中10分钟,取出后用胶头滴管吸取二次水淋洗电极3次,随后将电极放入二次水中浸泡3分钟;再将上述电极浸没在含有0.5mol/LNaCl的CdS量子点溶液中10分钟,取出后用胶头滴管吸取二次水淋洗电极3次,随后将电极放入二次水中浸泡2分钟。最后,重复该过程2次,便得到了三层量子点膜修饰的电极,将电极放入冰箱干燥36h备用。
在PDDA/CdS QDs多层膜自组装的过程中,PDDA(电离后带正电荷)与CdS QDs(电离后带负电荷)间的静电相互作用是驱动自组装的核心力量。离子强度、自组装底物的浓度、表面电荷密度、和温度等过程参数直接影响了PDDA和QDs之间的静电相互作用。
图1,在保持PDDA的质量分数和其中的NaCl浓度(c’)的条件下,光电流强度和QDs中NaCl浓度间的关系,结果表明,随着NaCl的浓度的增加,CdS QDs/ITO电极的光电流显著增加,当cNaCl=0.06mol/L时,光电流达到最大值。NaCl的引入能够有效屏蔽同层相邻量子点之间的静电排斥力,从而使得CdS QDs可以更紧密地安排。当cNaCl大于0.06mol/L后,光电流开始下降,这可能因为NaCl在屏蔽同层相邻量子点之间的排斥力的同时也削弱与下一层PDDA间的静电引力。因此,NaCl的作用具有两面性,在一定范围内增加其浓度可以有效增加光电流。另外,NaCl浓度超过0.12mol/L,CdS量子点会因过渡的电荷补偿而变混浊或团聚沉淀。
图2与图3是在固定CdS QDs浓度及其中的NaCl浓度(c)的条件下,考察了PDDA浓度及PDDA中NaCl浓度对光电流的影响。结果表明,聚电解质(PDDA)溶液的浓度与离子强度影响光电流强度可归结于浓度与离子强度引起的聚电解质在溶液中链段构象的变化。聚电解质的稀溶液中,由于相邻带电基团间存在静电斥力,聚合物链在溶液中采取伸展的构像,这样吸附在基底上的聚合物单层膜就薄;当聚合物浓度较大或离子强度较高时,聚合物链上的带电基团可以部分的相互屏蔽,此时,聚合物链在溶液中采取较为卷曲的构象,被吸附到基底上的厚度相对较大。另外,高浓度的PDDA有利于超过自组装要求的最低阈值浓度,同时还可以防止多次浸渍后PDDA被过度消耗。
图4为最适条件下,考察了温度对光电流的影响,结果表明CdS QDs/ITO电极的光电流随着温度的增加而增加。这可能是由于温度提高有利于QDs/PDDA在电极上的吸附。
图5为最适条件下制备的光电化学传感电极对不同波长的响应情况。
Claims (1)
1.一种光电化学传感电极的制备方法,其特征在于包括以下步骤:
A、CdS量子点的制备
在50mL水中加入CdCl2·2.5H2O与250μL巯基乙酸,随后用NaOH调节pH至11.0,通N2除氧20分钟,然后加入Na2S·9H2O溶液,100℃下加热回流4小时,制得CdS量子点溶液,用二次水稀释,保存于4℃冰箱备用,其中S和Cd的物质的量比为1.1:1;
B、CdS QDs多层膜在电极上的修饰
将ITO放入沸腾的KOH异丙醇溶液中清洗15分钟,随后用二次水洗净,120℃干燥2小时,备用;首先,将洗净干燥后的ITO电极浸没在聚二烯丙基二甲基氯化铵溶液中10分钟,取出后用胶头滴管吸取二次水淋洗电极3次,随后将电极放入二次水中浸泡3分钟;再将上述电极浸没在含有0.5mol/LNaCl的CdS量子点溶液中10分钟,取出后用胶头滴管吸取二次水淋洗电极3次,随后将电极放入二次水中浸泡2分钟;最后,重复该过程2次,便得到了三层量子点膜修饰的电极,将电极放入冰箱干燥36h备用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710436855.2A CN107271509A (zh) | 2017-06-12 | 2017-06-12 | 一种光电化学传感电极的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710436855.2A CN107271509A (zh) | 2017-06-12 | 2017-06-12 | 一种光电化学传感电极的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107271509A true CN107271509A (zh) | 2017-10-20 |
Family
ID=60067089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710436855.2A Pending CN107271509A (zh) | 2017-06-12 | 2017-06-12 | 一种光电化学传感电极的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107271509A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109990915A (zh) * | 2017-12-29 | 2019-07-09 | Tcl集团股份有限公司 | 温度传感器 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1884430A (zh) * | 2006-06-30 | 2006-12-27 | 上海师范大学 | 一种荧光碳纳米管及其制备方法和应用 |
CN101503560A (zh) * | 2009-01-16 | 2009-08-12 | 上海师范大学 | 一种碳纳米管/聚合物/金属硫化物纳米复合材料及其制备方法 |
CN103399062A (zh) * | 2013-08-01 | 2013-11-20 | 台州学院 | 一种基于光电化学传感的Pb2+超灵敏检测新方法 |
-
2017
- 2017-06-12 CN CN201710436855.2A patent/CN107271509A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1884430A (zh) * | 2006-06-30 | 2006-12-27 | 上海师范大学 | 一种荧光碳纳米管及其制备方法和应用 |
CN101503560A (zh) * | 2009-01-16 | 2009-08-12 | 上海师范大学 | 一种碳纳米管/聚合物/金属硫化物纳米复合材料及其制备方法 |
CN103399062A (zh) * | 2013-08-01 | 2013-11-20 | 台州学院 | 一种基于光电化学传感的Pb2+超灵敏检测新方法 |
Non-Patent Citations (3)
Title |
---|
GUANG-LI WANG 等: "A Label-Free Photoelectrochemical Immunosensor Based on Water-Soluble CdS Quantum Dots", 《THE JOURNAL OF PHYSICAL CHEMISTRY C》 * |
WEIBO ZHANG 等: "Preparation of photoactive multilayer films with high photocurrent response and detection of thrombin", 《JOURNAL OF ELECTROANALYTICAL CHEMISTRY》 * |
YANG-WEI LIN 等: "Using a Layer-by-Layer Assembly Technique to Fabricate Multicolored-Light-Emitting Films of CdSe@CdS and CdTe Quantum Dots", 《ADVANCED MATERIALS》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109990915A (zh) * | 2017-12-29 | 2019-07-09 | Tcl集团股份有限公司 | 温度传感器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zheng et al. | Photoelectrochemical sensing of glucose based on quantum dot and enzyme nanocomposites | |
Ensafi et al. | Voltammetric determination of isoproterenol using multiwall carbon nanotubes‐ionic liquid paste electrode | |
Feng et al. | Self-powered cathodic photoelectrochemical aptasensor comprising a photocathode and a photoanode in microfluidic analysis systems | |
De Jongh et al. | Charge carrier dynamics in illuminated, particulate ZnO electrodes | |
Xu et al. | Electrochemiluminescent Detection of Chlorpromazine by Selective Preconcentration at a Lauric Acid-Modified Carbon Paste Electrode Using Tris (2, 2 ‘-bipyridine) ruthenium (II) | |
Zheng et al. | A novel near-infrared light-responsive photoelectrochemical platform for detecting microcystin-LR in fish based on Ag2S cubes and plasmonic Au nanoparticles | |
CN104280365A (zh) | 双重检测生物传感芯片及其制备方法和dna检测方法 | |
Hao et al. | A novel strategy for the construction of photoelectrochemical sensing platform based on multifunctional photosensitizer | |
da Silva et al. | Self-powered sensor for tannic acid exploiting visible LED light as excitation source | |
Ren et al. | Photoelectrochemical sensor with a Z-scheme Fe2O3/CdS heterostructure for sensitive detection of mercury ions | |
AU2020103344A4 (en) | Method for preparing photoelectrochemical sensing electrode | |
Liu et al. | α‐Fe2O3 film with highly photoactivity for non‐enzymatic photoelectrochemical detection of glucose | |
Zhao et al. | Electrochemiluminescence oxalic acid sensor having a platinum electrode coated with chitosan modified with a ruthenium (II) complex | |
Wang et al. | Photoelectrochemical sensing for hydroquinone based on gold nanoparticle-modified indium tin oxide glass electrode | |
Sun et al. | Photoelectrochemical biosensing of leukemia gene based on CdS/AuNPs/FeOOH Z-scheme heterojunction and a facile reflective device | |
CN107271509A (zh) | 一种光电化学传感电极的制备方法 | |
Gao et al. | Solid‐State Electrochemiluminescence of F‐doped SnO2 Nanocrystals and Its Sensing Application | |
Wang et al. | A signal-on photoelectrochemical aptasensor based on ferrocene labeled triple helix DNA molecular switch for detection of antibiotic amoxicillin | |
CN106124585A (zh) | 一种基于PPy/CdS/g‑C3N4光电适配体传感器的制备方法及应用 | |
CN105588865A (zh) | 一种基于双活性工作电极的光电化学检测装置 | |
Yao et al. | Photoelectrochemical biosensor based on DNA aptamers and dual nano-semiconductor heterojunctions for accurate and selective sensing of chloramphenicol | |
Zhao et al. | Photoelectrochemical Detection of Glucose by Using an Enzyme‐Modified Photoelectrode | |
CN107505378B (zh) | 基于上转换材料的光电化学dna传感器及其检测方法 | |
Tian et al. | Enhanced electrochemiluminescence of TiO2 nanoparticles modified electrode by nafion film and its application in selective detection of dopamine | |
Li et al. | CuInS2/Red Phosphorus Nanosheet Interleaved Heterostructures with Improved Interfacial Charge Transfer for Photoelectrochemical Aptasensing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20171020 |