CN107268018B - 一种铁基非晶合金催化电极及生产方法 - Google Patents

一种铁基非晶合金催化电极及生产方法 Download PDF

Info

Publication number
CN107268018B
CN107268018B CN201710462813.6A CN201710462813A CN107268018B CN 107268018 B CN107268018 B CN 107268018B CN 201710462813 A CN201710462813 A CN 201710462813A CN 107268018 B CN107268018 B CN 107268018B
Authority
CN
China
Prior art keywords
amorphous alloy
based amorphous
plate
catalysis electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710462813.6A
Other languages
English (en)
Other versions
CN107268018A (zh
Inventor
苑晨洲
黄沁源
其他发明人请求不公开姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201710462813.6A priority Critical patent/CN107268018B/zh
Publication of CN107268018A publication Critical patent/CN107268018A/zh
Application granted granted Critical
Publication of CN107268018B publication Critical patent/CN107268018B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

一种铁基非晶合金催化电极,其特征在于,电极由槽型电极架和可抽插式催化电极板组成,可抽插式催化电极板由金属网包覆铁基非晶合金的片状颗粒制成,铁基非晶合金片状颗粒的具体成分为Fe30‑95wt%,其余合金元素为可与铁一起电沉积的元素,如P、Co、Ni、Cr、Mo、W、Re等中的一种或多种元素的组合;槽型电极架则由金属薄板冲压成型,在槽型电极架的两侧板均匀开设有长方形孔,由长方形孔位置的金属冲裁、弯曲制成催化电极的固定板。

Description

一种铁基非晶合金催化电极及生产方法
技术领域
本发明涉及到电化学领域的催化电极,特别涉及到一种铁基非晶合金复合催化电极及生产方法。
背景技术
非晶合金由于具有以下特点;①非晶态合金在很宽的范围内可以制成各种组成的样品,从而可以在较宽大范围内调变它们的电子性质;②催化活性中心可以以单一的形式均匀分布在化学均匀的环境中;③非晶态合金表面具有浓度较高的不饱和中心,且不饱和中心的配位数具有一定的范围,因而使其催化活性和选择性一般优于相应的晶态催化剂;④其表面的非多孔性是其摆脱了多项催化剂存在的反应物种的扩散影响表面反应的问题。
非晶态合金催化剂可以用于加氢、氧化、裂解、异构化等反应。目前,非晶态合金催化剂的制备方法有多种,一般来说可以将其分为两大类:液体骤冷法和原子(离子)沉积法。非晶合金催化电极以沉积薄膜或镀层的二维催化电极为主,但其反应器面积较小,导致产率较小。
发明内容
针对以上问题,本发明提出一种铁基非晶合金催化电极及生产方法。本发明的技术解决方案是提供一种铁基非晶合金催化电极,其特征在于,电极由槽型电极架和可抽插式催化电极板组成,可抽插式催化电极板由金属网包覆铁基非晶合金的片状颗粒制成,铁基非晶合金片状颗粒的具体成分为Fe35-95 wt %,其余合金元素为可与铁一起电沉积的元素,如P、Co、Ni、Cr、Mo、W、Re等中的一种或多种元素的组合。槽型电极架则由金属薄板冲压成型,在槽型电极架的两侧板均匀开设有长方形孔,由长方形孔位置的金属冲裁、弯曲制成催化电极固定板。
本发明的技术解决方案是再提供一种铁基非晶合金催化电极的制备方法,包括以下步骤:
(1)可抽插式催化电极板的制备工艺
1)铁基合金非晶镀层的生产
(a)金属基板被镀表面的脱脂及氧化膜去除,金属基板材料应适宜进行常温下的塑性加工;
(b)电镀液组成;主盐为可溶性亚铁盐0.5-4.5mol/L,酸0.2-0.8mol/L、络合剂0.5-5g/L、合金元素添加剂0.2-4mol/L,还原剂0.5-4g/L,水余量;
上所述合金元素添加剂中,镍以可溶性镍盐、钴以硫酸钴、铬以铬酐、钼以钼酸钠、钨以钨酸钠、磷以亚磷酸或可溶性次磷酸盐、Re以Re可溶盐的形式添加;
上述酸包括硼酸、磷酸等多元中强酸;
上述络合剂包括十二烷基苯磺酸钠、酒石酸、柠檬酸盐等有机络合剂;
(c)采用电镀或电刷镀制备铁基非晶合金镀层,阳极采用石墨或不锈钢,电解液温度为40-90℃,滴定强酸溶液使Ph值不大于2;
2)非晶合金镀层的剥离
采用机械或物理的方法,如拉伸、弯曲、轧制压延、刮擦等方法使非晶合金镀层与金属基板发生剥离;
3)颗粒的破碎
(a)利用球磨机、行星式球磨机等,采用球磨(3-10min)、停转(3-10min)这种间隔循环的方式,或采用球磨同时可附加强制冷却的球磨方式,非晶颗粒在真空或保护气体条件下进行球磨,球磨总时间(包含球磨和停转的时间)为0.5-3h,球料比为2-8:1;
(b)筛分成不同粗细的铁基非晶合金颗粒;
4)可抽插式催化电极金属包覆网的成型
采用金属网,裁剪、弯曲、钎焊制备板状包覆金属网,
5)非晶合金颗粒的注入与封装
往板状包覆金属网中注入铁基非晶合金颗粒,然后采用钎焊等方式封闭板状包覆金属网。
(2)槽型电极架的制备工艺
采用铜或铜合金薄板,裁剪、冲孔、弯曲制备槽型电极架。
(3)装配成铁基非晶合金催化电极
把可抽插式催化电极板置于两催化电极固定板中,制成铁基非晶合金催化电极。
与现有技术相比,本发明的优点:
1. 由于采用铁基非晶合金颗粒作为催化剂,可提高电极的催化性能;
2. 由于采用电镀+剥离+破碎制备铁基非晶合金微粒,微粒基本形状为层片状,这提高了非晶合金催化剂反应的表面积;
3.由于采用槽型电极架,并在两侧板开设有长方形孔,端部也未封闭,最大限度提高了溶液在电极内部的可流动性,增大催化电极与溶液的相对流动,可提高催化电极的催化效率;
4. 由于采用抽插式结构,因此电极的反应器面积以及催化电极板的间距很容易调整,也便于更换与维修。
附图说明
图1为本发明设备示意图。其中,槽型电极架(1),可采用铜或铜合金薄板制成;可抽插式催化电极板(2),采用板状金属网包覆铁基非晶合金颗粒制成;催化电极固定板(3);长方形孔(4)。
具体实施方式
以下结合实施例对本发明作进一步说明。
1.铁-磷非晶合金催化电极的生产
(1)可抽插式催化电极板的制备工艺
1)铁磷非晶合金镀层的生产
(a)金属基板采用黄铜板,黄铜板表面的脱脂及氧化膜去除;
(b)电镀液组成;硫酸亚铁1.8 mol/L,磷酸0.4 mol/L、十二烷基苯磺酸钠0.6 g/L、柠檬酸钠0.3g/L,次磷酸酸钠0.6 mol/L,碘化钾1g/L,水余量;
(c)采用电镀法制备铁磷非晶合金镀层,阳极采用石墨,电解液温度为75℃,滴定硫酸溶液使Ph值为1;
2)非晶合金镀层的剥离
采用反复弯曲的方法使铁磷非晶合金镀层与黄铜板发生剥离;
3)颗粒的破碎
(a)利用行星式球磨机,采用球磨5 min、停转8 min这种间隔循环的方式进行,将剥落的非晶颗粒在真空条件下进行球磨,球磨总时间(包含球磨和停转的时间)为1 h,球料比为4:1;
(b)筛分成不同粗细的铁磷非晶合金颗粒;
4)可抽插式催化电极金属包覆网的成型
采用100目的不锈钢筛网,裁剪、弯曲、钎焊制备板状包覆金属网,
5)非晶合金颗粒的注入与封装
往板状包覆金属网中注入大于100目的铁磷非晶合金颗粒,然后采用钎焊等方式封闭成板状包覆金属网。
(2)槽型电极架的制备工艺
采用黄铜薄板裁剪、冲孔、弯曲制备槽型电极架。
(3)装配成铁基非晶合金催化电极
把可抽插式催化电极板置于两催化电极固定板中,制成铁基非晶合金催化电极。
2.铁-钴-磷非晶合金催化电极
(1)可抽插式催化电极板的制备工艺
1)铁-钴-磷非晶合金镀层的生产
(a)08F薄钢板表面的脱脂及氧化膜去除;
(b)电镀液组成;氯化亚铁3.5mol/L,硼酸0.7 mol/L、柠檬酸钠2 g/L、硫酸钴1.2mol/L,次磷酸钠0.65mol/L,碘化钾1.5g/L,水余量;
(c)采用电刷镀制备铁-钴-磷非晶合金镀层,阳极采用石墨板,电解液温度为70℃,滴定强酸溶液使Ph值为1,电极板的相对移动速度为100 mm/s,电极板的平均电流密度为10A/cm2
2)非晶合金镀层的剥离
采用双向拉伸的方法使非晶合金镀层与08F薄钢板发生剥离;
3)颗粒的破碎
(a)利用行星式球磨机,采用球磨3min、停转5min这种间隔循环的方式,将剥落的非晶颗粒氮气保护条件下进行球磨,球磨总时间(包含球磨和停转的时间)为0.5 h,球料比为5:1;
(b)筛分成不同粗细的铁-钴-磷非晶合金颗粒;
4)可抽插式催化电极金属包覆网的成型
采用100目的金属网,裁剪、弯曲、钎焊制备板状包覆金属网,
5)非晶合金颗粒的注入与封装
往板状包覆金属网中注入大于100目的铁-钴-磷非晶合金颗粒,然后采用钎焊等方式封闭板状包覆金属网。
(2)槽型电极架的制备工艺
采用青铜薄板,裁剪、冲孔、弯曲制备槽型电极架。
(3)装配成铁基非晶合金催化电极
把可抽插式催化电极板置于两催化电极固定板中,制成铁-钴-磷非晶合金催化电极。

Claims (2)

1.一种铁基非晶合金催化电极,其特征在于,电极由槽型电极架和可抽插式催化电极板组成,可抽插式催化电极板由金属网包覆铁基非晶合金的片状颗粒制成,铁基非晶合金片状颗粒的具体成分为Fe 30-95wt %,其余合金元素为可与铁一起电沉积的元素,该元素为P、Co、Ni、Cr、Mo、W、Re中的一种或多种元素的组合;槽型电极架则由金属薄板冲压成型,在槽型电极架的两侧板均匀开设有长方形孔,由长方形孔位置的金属冲裁、弯曲制成催化电极的固定板。
2.铁基非晶合金催化电极的生产方法,其特征在于,包括以下步骤:
(1)可抽插式催化电极板的制备工艺:
1)采用电镀或电刷镀方式制备铁基非晶合金镀层,其中电镀液组成:主盐为可溶性亚铁盐0.5-4.5mol/L,酸0.2-0.8mol/L、络合剂0.5-5g/L、合金元素添加剂0.2-4mol/L,还原剂0.5-4g/L,水余量;阳极采用石墨或不锈钢,电解液温度为40-90℃,滴定强酸溶液使电镀液内pH值不大于2;
2)采用物理的方法使非晶合金镀层与金属基板发生剥离;
3)采用球磨3-10min、停转3- 10min这种间隔循环的方式,或采用球磨时附加强制冷却的球磨方式,非晶颗粒在真空或惰性保护气体条件下以球料比为2-8:1进行球磨0.5-3h;
4)采用金属网,裁剪、弯曲、钎焊制备板状包覆金属网;
5)往板状包覆金属网中注入铁基非晶合金颗粒,采用钎焊方式封闭板状包覆金属网制成可抽插式催化电极板;
(2)采用铜或铜合金薄板,裁剪、冲孔、弯曲制备槽型电极架;
(3)把可抽插式催化电极板置于两催化电极固定板中,制成铁基非晶合金催化电极。
CN201710462813.6A 2017-06-19 2017-06-19 一种铁基非晶合金催化电极及生产方法 Expired - Fee Related CN107268018B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710462813.6A CN107268018B (zh) 2017-06-19 2017-06-19 一种铁基非晶合金催化电极及生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710462813.6A CN107268018B (zh) 2017-06-19 2017-06-19 一种铁基非晶合金催化电极及生产方法

Publications (2)

Publication Number Publication Date
CN107268018A CN107268018A (zh) 2017-10-20
CN107268018B true CN107268018B (zh) 2019-05-03

Family

ID=60067888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710462813.6A Expired - Fee Related CN107268018B (zh) 2017-06-19 2017-06-19 一种铁基非晶合金催化电极及生产方法

Country Status (1)

Country Link
CN (1) CN107268018B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109208025A (zh) * 2017-06-29 2019-01-15 刘志红 一种铁基非晶合金催化反应器的制造方法
CN108193242A (zh) * 2017-12-27 2018-06-22 中国人民解放军陆军装甲兵学院 一种在铜合金表面电刷镀制备镍钴镀层的方法
CN111172380B (zh) * 2020-01-16 2022-04-15 暨南大学 一种机械超声处理提高Fe基非晶合金电解水析氢催化活性的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101389A (en) * 1976-05-20 1978-07-18 Sony Corporation Method of manufacturing amorphous alloy
CN1051060A (zh) * 1990-11-10 1991-05-01 机械电子工业部武汉材料保护研究所 耐磨非晶态铁镍磷合金电沉积溶液及其工艺
JPH07173699A (ja) * 1993-12-17 1995-07-11 Nkk Corp 電気めっき用ガス拡散電極装置
CN102603038B (zh) * 2012-04-11 2014-01-15 苏州科技学院 一种处理水中有机污染物的电化学反应器与方法
CN103436944B (zh) * 2013-08-22 2015-09-30 北京科技大学 一种非晶铁磷合金/v8c7复合镀层及其电镀工艺
CN103695988A (zh) * 2013-12-19 2014-04-02 北京科技大学 一种非晶铁磷合金复合镀层及其电镀工艺
CN105420797B (zh) * 2015-11-26 2018-09-28 扬中市宏飞镀业有限公司 一种新型电镀槽
CN106756641B (zh) * 2016-12-14 2019-02-26 刘志红 一种Fe基非晶合金粉末及其制备工艺

Also Published As

Publication number Publication date
CN107268018A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
CN107267892B (zh) 一种镍基非晶合金催化电极及生产方法
CN110344078B (zh) 一种泡沫镍@钴钼磷化物/镍铁双氢氧化物电极及其制备方法与应用
CN106756641B (zh) 一种Fe基非晶合金粉末及其制备工艺
CN107268018B (zh) 一种铁基非晶合金催化电极及生产方法
Hong et al. High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis
Pérez-Alonso et al. Ni–Co electrodes prepared by electroless-plating deposition. A study of their electrocatalytic activity for the hydrogen and oxygen evolution reactions
Guo et al. The hydrogen generation from alkaline NaBH4 solution by using electroplated amorphous Co–Ni–P film catalysts
Halim et al. Electrodeposition and Characterization of Nanocrystalline Ni‐Mo Catalysts for Hydrogen Production
Xu et al. Electrodeposition mechanism and characterization of Ni–Mo alloy and its electrocatalytic performance for hydrogen evolution
CN102703887B (zh) 化学镀-电镀用镍铜合金液及镍铜合金非晶基复合镀层的制备方法
Hong et al. Fabrication and evaluation of nickel cobalt alloy electrocatalysts for alkaline water splitting
Ma et al. Electrodeposition of nanocrystalline nickel–cobalt binary alloy coatings: a review
Sun et al. Electrodeposition of Mo-Rich, MoNi alloys from an aqueous electrolyte
Mollamahale et al. Electrodeposited Ni-W nanoparticles: Enhanced catalytic activity toward hydrogen evolution reaction in acidic media
Ćirović et al. Synthesis, structure and properties of nickel-iron-tungsten alloy electrodeposits-part I: Effect of synthesis parameters on chemical composition, microstructure and morphology
Xu et al. Chromium–palladium films on 316L stainless steel by pulse electrodeposition and their corrosion resistance in hot sulfuric acid solutions
CN101717951A (zh) 煤炭电解加氢液化工艺中阴极催化电极的制备方法
Wang et al. Three-dimensional hierarchical nanostructured Cu/Ni–Co coating electrode for hydrogen evolution reaction in alkaline media
He et al. Composition-performance relationship of NixCuy nanoalloys as hydrogen evolution electrocatalyst
Ma et al. Effects of additives on microstructure and properties of electrodeposited nanocrystalline Ni–Co alloy coatings of high cobalt content
Hassan et al. Electroless Ni–B supported on carbon for direct alcohol fuel cell applications
Zhang et al. Electrochemical preparation and post-treatment of composite porous foam NiZn alloy electrodes with high activity for hydrogen evolution
CN107267891B (zh) 一种钴基非晶合金催化电极及生产方法
Ahmad et al. Electrochemical Hydrogen Evolution Reaction Evaluation of CoNi (Cr/V) Medium-Entropy Alloys in an Acidic Environment
Rosen et al. Microwave heating of nanocrystals for rapid, low-aggregation intermetallic phase transformations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190503

CF01 Termination of patent right due to non-payment of annual fee