CN107267944A - 具有温度自补偿的高温薄膜半桥式电阻应变计及制备方法 - Google Patents

具有温度自补偿的高温薄膜半桥式电阻应变计及制备方法 Download PDF

Info

Publication number
CN107267944A
CN107267944A CN201710542699.8A CN201710542699A CN107267944A CN 107267944 A CN107267944 A CN 107267944A CN 201710542699 A CN201710542699 A CN 201710542699A CN 107267944 A CN107267944 A CN 107267944A
Authority
CN
China
Prior art keywords
layer
strain
temperature
semibridge system
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710542699.8A
Other languages
English (en)
Other versions
CN107267944B (zh
Inventor
蒋书文
刘豪
赵晓辉
蒋洪川
张万里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201710542699.8A priority Critical patent/CN107267944B/zh
Publication of CN107267944A publication Critical patent/CN107267944A/zh
Application granted granted Critical
Publication of CN107267944B publication Critical patent/CN107267944B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明属于薄膜电阻应变计技术领域,提供一种具有温度自补偿的高温薄膜半桥式电阻应变计及制备方法,适用于原位温度不宜直接测得或者温度处于动态波动的高温环境。本发明半桥式电阻应变计,包括从下向上依次层叠的镍基合金基底、缓冲层、绝缘层、功能层及保护层,功能层由两个相同结构的图形化应变敏感单元构成,两个图形化应变敏感单元相互垂直设置、共同构成一个半桥式结构;将该薄膜半桥式电阻应变计接入惠斯通桥式电路中,能够有效的自补偿测试过程中由于温度波动(变化)引起的视应变误差以及敏感层电阻漂移所引起的漂移应变误差,从而提高应变计的测试精度和准确度;另外,其制备工艺简单、制备成本低、利于工业化生产。

Description

具有温度自补偿的高温薄膜半桥式电阻应变计及制备方法
技术领域
本发明属于薄膜电阻应变计技术领域,提供一种具有温度自补偿的高温薄膜半桥式电阻应变计及其制备方法,适用于原位温度不宜直接测得或者温度处于动态波动的高温环境。
技术背景
随着使用环境温度的普遍提高,某些关键部位的材料已经接近其使用极限温度,例如新一代航空发动机燃烧室温度已达到1500℃以上,工作在其中的涡轮叶片随着使用时间的增加会出现裂纹、脱落,造成灾难性后果。因此,需要对涡轮叶片表面原位的应力、应变等力学参数进行监测。
基于真空技术的发展,采用真空镀膜的方法将应变敏感材料直接沉积在被测试样的表面,制备成薄膜化的应变计,诸如美国NASA(National Aeronautics and SpaceAdministration)研制的TaN薄膜电阻式应变计以及罗德岛大学Otto J.Gregory团队研发的ITO薄膜电阻应变计等,这类薄膜化应变计厚度只有几十微米,不仅具有与微型化、结构与功能一体化的特点,而且具有较高的灵敏度、准确度,适用于航空发动机涡轮叶片表面应变的原位测量。但是,在高温环境中,各种类型的应变敏感材料的电子、空穴等载流子浓度及迁移率随温度变化都具有一定变化,以及不同材料具有不同的热膨胀系数,导致各种应变计都具有一定的电阻温度系数及热膨胀系数,进而使应变计对应变的测量带来视应变误差;而且,即使在高温温度恒定时,应变敏感材料存在一定的电阻漂移,产生漂移应变;这些误差都影响应变计对实际应变的测试准确度。
为了提高高温环境下应变测试的精度及准确度,需要对应变测量进行温度补偿。例如,采用接入铂(Pt)作为补偿材料或者采用具有正温度系数的材料(Pt)与具有负温度系数的材料(ITO)复合以减小温度对应变计所带来的误差;但这两种方法不仅需要探究多种材料性能,而且需要不同种材料之间进行协调配比,进行多次敏感层图形化沉积复合,即增加了操作步骤,又增加了技术难度。
发明内容
本发明的目的在于针对以上技术难点,提出了一种具有温度自补偿的高温薄膜半桥式电阻应变计及其制备方法;利用惠斯通桥式电路原理,采用两个相互垂直且具有相同结构的图形化应变敏感层共同构成惠斯通桥式电路中的一个半桥结构,从而形成半桥式应变计;将该薄膜半桥式电阻应变计接入惠斯通桥式电路中,能够有效的自补偿测试过程中由于温度波动(变化)引起的视应变误差以及敏感层电阻漂移所引起的漂移应变误差,从而提高应变计的测试精度和准确度。
为实现上述目的,本发明采用的技术方案为:
具有温度自补偿的高温薄膜半桥式电阻应变计,包括从下向上依次层叠的镍基合金基底、缓冲层、绝缘层、功能层及保护层,其特征在于,所述功能层由两个相同结构的图形化应变敏感单元构成,所述两个图形化应变敏感单元相互垂直设置、共同构成一个半桥式结构。
进一步的,所述缓冲层为NiCrAlY缓冲层,所述绝缘层为从下向上依次层叠的YSZ层、Al2O3层、YSZ层及Al2O3层构成的组合绝缘层,所述缓冲层与绝缘层之间还设置有热氧化α-Al2O3层,所述保护层为Al2O3保护层,所述两个图形化应变敏感单元均为PdCr应变敏感层。
更进一步的,上述具有温度自补偿的高温薄膜半桥式电阻应变计的制备方法,其特征在于,包括以下步骤:
步骤1:对镍基合金基底进行抛光及清洗;
步骤2:采用射频磁控溅射在镍基合金基底表面沉积一层NiCrAlY缓冲层;
步骤3:将已沉积有NiCrAlY缓冲层的镍基合金基底进行热氧化形成热氧化α-Al2O3层;
步骤4:采用直流反应溅射在热氧化α-Al2O3层表面依次制备YSZ层、Al2O3层、YSZ层、Al2O3层得到组合绝缘层;待基底冷却后,将制备得到了组合绝缘层放置于大气800℃环境中退火2小时;
步骤5:采用金属掩膜方法,在组合绝缘层表面直流反应溅射制备PdCr应变敏感层的敏感栅以及连接点、Pad并构成具有半桥结构的功能层,并在真空环境中退火2小时;
步骤6:采用直流反应溅射在在功能层表面制备Al2O3保护层,提高PdCr应变敏感层的高温抗氧化能力,即制备得具有温度自补偿的高温薄膜半桥式电阻应变计。
其中,步骤2中射频磁控溅射的溅射参数为:本底真空优于5×10-3Pa、温度为350~600℃、溅射气压为0.3~0.4Pa、溅射功率为300~500W,以NiCrAlY合金为靶材,以体积百分比纯度不低于99.999%的氩气作为反应介质,沉积厚度为12~18μm;步骤3中,在本底真空优于8×10-4Pa、1050℃的真空环境中恒温6小时,使NiCrAlY中Al析出富集到表面形成富Al层,随后在1050℃恒温环境中持续通入以体积百分比纯度不低于99.999%的氧气氧化富Al层。步骤4中,直流反应溅射参数为:本底真空优于8×10-4Pa、溅射温度为400~600℃、溅射气压为0.3~0.6Pa、溅射功率为80~150W,以YZr和AlZr合金为靶材,以体积百分比纯度不低于99.999%的氩气和氧气作为反应介质,YSZ和Al2O3薄膜沉积厚度分别为0.5~0.8μm和1.5~2.3μm。步骤5中,直流反应溅射参数为:本底真空优于8×10-4Pa、溅射温度为300~450℃、溅射气压为0.3~0.6Pa、溅射功率为50~100W,以PdCr合金为靶材,以体积百分比纯度不低于99.999%的氩气作为反应介质,沉积厚度为1~1.8μm。步骤6中,直流反应溅射参数为:本底真空优于8×10-4Pa、溅射温度为400~600℃、溅射气压为0.3~0.6Pa、溅射功率为80~150W,以金属Al为靶材,以体积百分比纯度不低于99.999%的氩气和氧气作为反应介质,Al2O3保护层厚度为2~2.5μm。
与现有技术相比,本发明的有益效果在于:
本发明中提供一种具有自温度补偿的高温薄膜半桥式电阻应变计及其制备方法,具有以下优点:
1、本发明半桥式电阻应变计采用相同的结构且相互垂直的两个图形化应变敏感单元构成功能层;测试时处于同一温度环境中,使温度对应变计电阻特性具有一致的影响;因此,将半桥式应变计接入惠斯通桥式测试电路中,能够有效的消除由于温度变化所带来的视应变误差;
2、本发明中,构成该半桥式结构的两个应变敏感单元和敏感材料完全相同,使得高温环境下的两个应变计具有相同的漂移电阻;因此,利用本发明半桥式结构应变计和惠斯通测试电路也能够有效消除由于高温下应变计电阻漂移所带来的漂移应变误差;
3、本发明半桥式电阻应变计采用两个相互垂直的结构,在单轴应变测试时能够最小化两个应变计之间横向应变误差。
附图说明
图1为实施例中具有温度自补偿PdCr薄膜半桥式电阻应变计的惠斯通桥式电路连接示意图。
图2为实施例中具有温度补偿的高温薄膜半桥式电阻应变计结构示意图;其中,(a)为剖面图,(b)为俯视图。
图3为实施例中具有温度补偿的高温薄膜半桥式电阻应变计的中应变敏感层结构示意图;其中(a)为半桥式结构的应变敏感栅,(b)为半桥式结构的应变敏感栅连接点以及Pad,(c)为半桥式结构示意图。
具体实施方式
下面结合附图和实施例对本发明做进一步的说明。
本实施例提供一种具有温度自补偿的高温薄膜半桥式电阻应变计及其制备方法,该应变计的惠斯通桥路连接方式示意图如图1所示,器件结构示意图如图2所示,包括从下往上依次层叠设置的镍基合金基底、NiCrAlY缓冲层、热氧化α-Al2O3层、YSZ/Al2O3/YSZ/Al2O3组合绝缘层、具有半桥式结构的PdCr应变敏感层(功能层)、Al2O3保护层;其制备方法包括以下步骤:
步骤1:采用机械或者人工将长×宽×高分别为100×30×3mm的镍基合金基底进行抛光,并用丙酮、酒精、去离子水超声清洗;
步骤2:将步骤1中所得基底放置于离子镀膜机中,采用射频磁控溅射镀膜方式,在本底真空优于5×10-3Pa、温度为450℃、溅射气压为0.31Pa、溅射功率为500W,以NiCrAlY合金为靶材,以体积百分比纯度不低于99.999%的氩气作为反应介质,沉积厚度为15μm的NiCrAlY缓冲层,以提高绝缘层与基底之间的附着力;
步骤3:将步骤2中所得NiCrAlY缓冲层放置有真空管式炉中,在真空度优于8×10- 4Pa、温度为1050℃环境中真空处理6小时,使NiCrAlY薄膜层中的Al析出到膜层表面形成富Al层;随后在1050℃恒温中通入以体积百分比纯度不低于99.999%的氧气作为反应介质,持续通入6小时,使表面的富Al层发生热氧化反应生成α-Al2O3
步骤4:将步骤3中所得基底放置于可调真空镀膜机中,采用直流反应溅射镀膜方式,在本底真空优于1×10-3Pa、温度为550℃、溅射气压为0.5Pa、溅射功率为100W,以YZr合金为靶材,以体积百分比纯度不低于99.999%的氩气和氧气作为反应介质,沉积厚度为0.65μm的YSZ层;以同样的参数,以AlZr合金为靶材,沉积厚度为1.7μm的Al2O3层;并依次重复2遍,制备得到YSZ/Al2O3/YSZ/Al2O3组合绝缘层以达到敏感层与金属基底之间的绝缘性需求;冷却后,在大气800℃中退火2小时;
步骤5:采用金属掩膜和直流溅射沉积的方式,在本底真空优于8×10-4Pa、温度为400℃、溅射气压为0.4Pa、溅射功率为100W,以PdCr合金为靶材,以体积百分比纯度不低于99.999%的氩气和氧气作为反应介质,分两次分别将具有半桥式结构厚度为1μm的敏感栅(如图3(a))以及厚度为1.5μm的连接点和Pad(如图3(b))沉积在步骤4中所得组合绝缘层表面共同构成具有半桥式结构的PdCr敏感层(如图3(c)),并在真空800℃环境中退火2小时;
步骤6:采用步骤4中Al2O3所用溅射参数,将步骤5中制备的PdCr敏感层Pad以外区域溅射沉积一层厚度为2μm的Al2O3保护层;从而制备得到具有温度自补偿的高温薄膜半桥式电阻应变计;
步骤7:采用如图1的连接方式,将制备有自补偿的高温薄膜半桥式电阻应变计接入惠斯通桥式测试电路。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (8)

1.具有温度自补偿的高温薄膜半桥式电阻应变计,包括从下向上依次层叠的镍基合金基底、缓冲层、绝缘层、功能层及保护层,其特征在于,所述功能层由两个相同结构的图形化应变敏感单元构成,所述两个图形化应变敏感单元相互垂直设置、共同构成一个半桥式结构。
2.按权利要求1所述具有温度自补偿的高温薄膜半桥式电阻应变计,其特征在于,所述缓冲层为NiCrAlY缓冲层,所述绝缘层为从下向上依次层叠的YSZ层、Al2O3层、YSZ层及Al2O3层构成的组合绝缘层,所述缓冲层与绝缘层之间还设置有热氧化α-Al2O3层,所述保护层为Al2O3保护层,所述两个图形化应变敏感单元均为PdCr应变敏感层。
3.按权利要求2所述具有温度自补偿的高温薄膜半桥式电阻应变计的制备方法,其特征在于,包括以下步骤:
步骤1:对镍基合金基底进行抛光及清洗;
步骤2:采用射频磁控溅射在镍基合金基底表面沉积一层NiCrAlY缓冲层;
步骤3:将已沉积有NiCrAlY缓冲层的镍基合金基底进行热氧化形成热氧化α-Al2O3层;
步骤4:采用直流反应溅射在热氧化α-Al2O3层表面依次制备YSZ层、Al2O3层、YSZ层、Al2O3层得到组合绝缘层;待基底冷却后,将制备得到了组合绝缘层放置于大气800℃环境中退火2小时;
步骤5:采用金属掩膜方法,在组合绝缘层表面直流反应溅射制备PdCr应变敏感层的敏感栅以及连接点、Pad并构成具有半桥式结构的功能层,并在真空环境中退火2小时;
步骤6:采用直流反应溅射在在功能层表面制备Al2O3保护层,提高PdCr应变敏感层的高温抗氧化能力,即制备得具有温度自补偿的高温薄膜半桥式电阻应变计。
4.按权利要求3所述具有温度自补偿的高温薄膜半桥式电阻应变计的制备方法,其特征在于,步骤2中,射频磁控溅射的溅射参数为:本底真空优于5×10-3Pa、温度为350~600℃、溅射气压为0.3~0.4Pa、溅射功率为300~500W,以NiCrAlY合金为靶材,以体积百分比纯度不低于99.999%的氩气作为反应介质,沉积厚度为12~18μm。
5.按权利要求3所述具有温度自补偿的高温薄膜半桥式电阻应变计的制备方法,其特征在于,步骤3中,在本底真空优于8×10-4Pa、1050℃的真空环境中恒温6小时,使NiCrAlY中Al析出富集到表面形成富Al层,随后在1050℃恒温环境中持续通入以体积百分比纯度不低于99.999%的氧气氧化富Al层,形成热氧化α-Al2O3层。
6.按权利要求3所述具有温度自补偿的高温薄膜半桥式电阻应变计的制备方法,其特征在于,步骤4中,直流反应溅射参数为:本底真空优于8×10-4Pa、溅射温度为400~600℃、溅射气压为0.3~0.6Pa、溅射功率为80~150W,以YZr和Al合金为靶材,以体积百分比纯度不低于99.999%的氩气和氧气作为反应介质,YSZ和Al2O3薄膜沉积厚度分别为0.5~0.8μm和1.5~2.3μm。
7.按权利要求3所述具有温度自补偿的高温薄膜半桥式电阻应变计的制备方法,其特征在于,步骤5中,直流反应溅射参数为:本底真空优于8×10-4Pa、溅射温度为300~450℃、溅射气压为0.3~0.6Pa、溅射功率为50~100W,以PdCr合金为靶材,以体积百分比纯度不低于99.999%的氩气作为反应介质,沉积厚度为1~1.8μm。
8.按权利要求3所述具有温度自补偿的高温薄膜半桥式电阻应变计的制备方法,其特征在于,步骤6中,直流反应溅射参数为:本底真空优于8×10-4Pa、溅射温度为400~600℃、溅射气压为0.3~0.6Pa、溅射功率为80~150W,以金属Al为靶材,以体积百分比纯度不低于99.999%的氩气和氧气作为反应介质,Al2O3保护层厚度为2~2.5μm。
CN201710542699.8A 2017-07-05 2017-07-05 具有温度自补偿的高温薄膜半桥式电阻应变计及制备方法 Active CN107267944B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710542699.8A CN107267944B (zh) 2017-07-05 2017-07-05 具有温度自补偿的高温薄膜半桥式电阻应变计及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710542699.8A CN107267944B (zh) 2017-07-05 2017-07-05 具有温度自补偿的高温薄膜半桥式电阻应变计及制备方法

Publications (2)

Publication Number Publication Date
CN107267944A true CN107267944A (zh) 2017-10-20
CN107267944B CN107267944B (zh) 2020-05-12

Family

ID=60071625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710542699.8A Active CN107267944B (zh) 2017-07-05 2017-07-05 具有温度自补偿的高温薄膜半桥式电阻应变计及制备方法

Country Status (1)

Country Link
CN (1) CN107267944B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111656129A (zh) * 2018-02-02 2020-09-11 美蓓亚三美株式会社 应变片
CN112410744A (zh) * 2020-11-09 2021-02-26 浙江工业大学 用于煤制气环境中的溅射薄膜敏感元件
CN112458415A (zh) * 2020-11-09 2021-03-09 浙江工业大学 用于高压氢环境中的薄膜应变片
CN112525062A (zh) * 2021-01-08 2021-03-19 浙江工业大学 用于高压硫化氢环境中的薄膜式电阻应变计
CN113984253A (zh) * 2021-10-23 2022-01-28 浙江维思无线网络技术有限公司 一种电阻应变栅传感器制备方法
CN114322740A (zh) * 2021-12-03 2022-04-12 电子科技大学长三角研究院(湖州) 一种基于磁控溅射的复合薄膜应变计及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102269567A (zh) * 2010-06-03 2011-12-07 陈彦平 一种自补偿的混凝土集成应变计
CN106403804A (zh) * 2016-08-23 2017-02-15 上海交通大学 一种高温同步补偿薄膜应变计及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102269567A (zh) * 2010-06-03 2011-12-07 陈彦平 一种自补偿的混凝土集成应变计
CN106403804A (zh) * 2016-08-23 2017-02-15 上海交通大学 一种高温同步补偿薄膜应变计及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨晓东: "PdCr高温薄膜应变计的研制", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111656129A (zh) * 2018-02-02 2020-09-11 美蓓亚三美株式会社 应变片
US11326967B2 (en) 2018-02-02 2022-05-10 Minebea Mitsumi Inc. Strain gauge with improved temperature effect detection
CN111656129B (zh) * 2018-02-02 2023-08-22 美蓓亚三美株式会社 应变片
CN112410744A (zh) * 2020-11-09 2021-02-26 浙江工业大学 用于煤制气环境中的溅射薄膜敏感元件
CN112458415A (zh) * 2020-11-09 2021-03-09 浙江工业大学 用于高压氢环境中的薄膜应变片
CN112410744B (zh) * 2020-11-09 2022-10-04 浙江工业大学 用于煤制气环境中的溅射薄膜敏感元件
CN112458415B (zh) * 2020-11-09 2022-10-21 浙江工业大学 用于高压氢环境中的薄膜应变片
CN112525062A (zh) * 2021-01-08 2021-03-19 浙江工业大学 用于高压硫化氢环境中的薄膜式电阻应变计
CN112525062B (zh) * 2021-01-08 2023-11-14 浙江工业大学 用于高压硫化氢环境中的薄膜式电阻应变计
CN113984253A (zh) * 2021-10-23 2022-01-28 浙江维思无线网络技术有限公司 一种电阻应变栅传感器制备方法
CN114322740A (zh) * 2021-12-03 2022-04-12 电子科技大学长三角研究院(湖州) 一种基于磁控溅射的复合薄膜应变计及其制备方法

Also Published As

Publication number Publication date
CN107267944B (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
CN107267944A (zh) 具有温度自补偿的高温薄膜半桥式电阻应变计及制备方法
Kayser et al. High-temperature thin-film strain gauges
CN105755438B (zh) 一种高温自补偿多层复合薄膜应变计及其制备方法
Liu et al. YSZ/Al2O3 multilayered film as insulating layer for high temperature thin film strain gauge prepared on Ni-based superalloy
CN106403804B (zh) 一种高温同步补偿薄膜应变计及其制备方法
CN109338290A (zh) 一种用于航空发动机涡轮叶片的薄膜温度传感器
CN108088610A (zh) 一种复合保护层的高温薄膜应变计及其制备方法
US6729187B1 (en) Self-compensated ceramic strain gage for use at high temperatures
Liu et al. Effect of thickness on the electrical properties of PdCr strain sensitive thin film
Li et al. High-Sensitive Thin Film Heat Flux Gauge With ITO/In 2 O 3 Thermopile on Nickel Alloys for Turbine Blade Applications
Liu et al. Influence of a heterolayered Al2O3–ZrO2/Al2O3 ceramic protective overcoat on the high temperature performance of PdCr thin film strain gauges
Liu et al. Influence of substrate temperature on the microstructure of YSZ films and their application as the insulating layer of thin film sensors for harsh temperature environments
CN110823714B (zh) 高温环境热障涂层表面和界面断裂韧性三点弯曲检测方法
Liu et al. Effect of thermally grown Al2O3 on electrical insulation properties of thin film sensors for high temperature environments
Liu et al. Stability enhancement of the nitrogen-doped ITO thin films at high temperatures using two-step mixed atmosphere annealing technique
Wu et al. Multilayer co-sintered Pt thin-film strain gauge for high-temperature applications
Liu et al. High temperature protection performance of sandwich structure Al2O3/Si3N4/YAlO multilayer films for Pt–Pt10% Rh thin film thermocouples
Yang et al. An in-situ prepared synchronous self-compensated film strain gage for high temperature
Li et al. Effect of AlN/Al 2 O 3 Thin-Film Protective Layer on the High-Temperature Performance of ITO Thin-Film Strain Gauge
CN116399398A (zh) 一种应变温度双参量高温薄膜传感器及其制备方法
Zhao et al. 3D Printing of Platinum-Rhodium High-temperature Thick Film Strain Gauge
Gregory et al. A low TCR nanocomposite strain gage for high temperature aerospace applications
Yang et al. Laser deposited high temperature thin film sensors for gas turbines
Dong et al. Development and evaluation of temperature sensing smart skin for high-temperature measurements in pipes
Xie et al. A new method of making thin-film thermocouples at sharp surfaces of aero-engine hot component

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant