CN112458415B - 用于高压氢环境中的薄膜应变片 - Google Patents

用于高压氢环境中的薄膜应变片 Download PDF

Info

Publication number
CN112458415B
CN112458415B CN202011238389.5A CN202011238389A CN112458415B CN 112458415 B CN112458415 B CN 112458415B CN 202011238389 A CN202011238389 A CN 202011238389A CN 112458415 B CN112458415 B CN 112458415B
Authority
CN
China
Prior art keywords
sputtering
substrate
film
target
crmo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011238389.5A
Other languages
English (en)
Other versions
CN112458415A (zh
Inventor
张雯丽
张�林
李晓
张万亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202011238389.5A priority Critical patent/CN112458415B/zh
Publication of CN112458415A publication Critical patent/CN112458415A/zh
Application granted granted Critical
Publication of CN112458415B publication Critical patent/CN112458415B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种用于高压氢环境中的薄膜应变片,包括基底、设于基底上表面上的过渡缓冲层、设于过渡缓冲层上表面上的绝缘层、设于绝缘层上表面上的功能层;基底采用316L不锈钢材料制成,过渡缓冲层为CrMo膜,绝缘层为AlN‑Al2O3双层膜。本发明具有高压氢环境中,薄膜应变片可以牢固地固定于试样上,相互之间连接呈无机质化,因而消除了零点漂移和蠕变,实现了温度自补偿,从而提高了应变片的灵敏度和测量结果的准确性的特点。

Description

用于高压氢环境中的薄膜应变片
技术领域
本发明涉及高压氢环境中的传感器技术领域,具体涉及一种由CrMo膜、AlN-Al2O3膜和FeCrMoAl膜构成的用于高压氢环境中的薄膜应变片。
背景技术
安全高效储氢是氢能规模化利用的关键之一。氢气在使用的过程中,普遍采用高压气态来进行储存和运输,而氢原子很容易进入材料产生氢脆现象。材料的氢脆会导致零部件耐久性下降,降低使用寿命,甚至直接失效,最终会引发事故。事故不仅会造成巨大的经济损失,还会威胁生命安全,同时也阻碍了氢能的产业化进程。
针对这个问题,为确保设备的强度和安全可靠,需要研究材料在高压氢和机械负载综合作用下的强度和刚度问题。因此,材料在临氢环境下的应力应变电测及传感技术至关重要。其中,以电阻作为测量信号是应变片最常用的测量方法。但是普通的箔式电阻应变片的电阻会随氢气的侵入发生变化,这会导致应变片的零点漂移和蠕变现象随时间和压力的增加而加剧,严重影响测量的准确性和稳定性。
目前,我国已研制出高压氢环境下的载荷传感器,其采用铁基合金作为敏感栅材料,可以有效减少高压氢环境中由氢侵入产生的零点漂移、蠕变等问题。但在实际应用过程中发现,安装电阻应变片时通常使用有机胶粘剂进行粘贴,如硝化纤维素型、氰基丙烯酸酯型、聚酯树脂型、环氧树脂型和酚醛树脂型等,这些材料在高压氢环境中存在一些问题,大大限制了应变片的使用寿命。特别地,由于氢气分子极小,当胶粘剂与氢气接触时,氢气会通过吸附、侵入、溶解和扩散过程进入胶粘剂,使其发生吸氢膨胀现象。这种现象会导致胶粘剂形成气泡,气泡逐渐聚集会出现裂纹,最终导致胶粘剂失效,使载荷传感器掉落。另外,由于胶粘剂不是传感元件,且对环境条件敏感,会受时间、温度和压力的影响而发生变化,所以它常常是引起应变片滞后、零点漂移和蠕变等问题的主要因素。因此,需要研发一种高压氢环境中稳定准确的应变片。
目前试验中常用的胶粘剂存在使用时间短、对压力变化敏感等缺点,不能满足试验需求。在这方面,我国也已研制出较耐氢气腐蚀的胶粘剂,如氢化丁腈橡胶硫化胶等。但在试验中,这类胶粘剂使用范围小,获取途径难,而且成本较高,不适于广泛应用。另外,在工业实践中,部分工厂采用特定的配方及工艺制取胶粘剂,以应对氢气致胶起泡开裂的情况,但这种方法不够稳定,很难保证试验中的准确性,所以同样不适于试验应用。
发明内容
本发明的发明目的是为了克服现有技术中的有机胶粘剂在高压氢环境中造成的应变片脱落、零点漂移和蠕变的不足,提供了一种由CrMo膜、AlN-Al2O3膜和FeCrMoAl膜构成的用于高压氢环境中的薄膜应变片。
为了实现上述目的,本发明所采用的技术方案如下:
一种用于高压氢环境中的薄膜应变片,包括基底、设于基底上表面上的过渡缓冲层、设于过渡缓冲层上表面上的绝缘层、设于绝缘层上表面上的功能层;基底采用316L不锈钢材料制成,过渡缓冲层为CrMo膜,绝缘层为AlN-Al2O3双层膜。
作为优选,所述功能层为FeCrMoAl合金膜。
功能层采用掩模板的方法溅射到绝缘层上。掩模板采用光刻技术,经尺寸设计后由激光加工制成。
一种薄膜应变片的制备方法,包括如下步骤:
(3-1)将经过预处理后的基底置于磁控溅射仪的溅射室内,进行固定和整理;
(3-2)将Cr靶材、Mo靶材、Al靶材放入溅射室内,在基底上表面溅射CrMo膜,形成厚度为300nm -500nm的CrMo膜,将CrMo膜作为过渡缓冲层;
(3-3)向溅射室内通入氮气,在CrMo膜的上表面溅射厚度为30nm -100nm的AlN膜;AlN膜溅射完成后,停止通入氮气,向溅射室内通入氧气,在AlN膜的上表面形成厚度为30nm-100nm的Al2O3膜,将AlN-Al2O3双层膜作为绝缘层;
(3-4)使磁控溅射仪断电,停止通入氧气,使溅射室内的温度降至60℃-80℃以下;取出溅射室内的Cr靶材、Mo靶材、Al靶材和基底,在基底的上表面覆盖掩模板;将已覆盖掩模板的基底放入磁控溅射仪的样品台上,将FeCrMoAl合金靶材安装到B靶座,在掩模板上溅射厚度为800nm -1000nm的栅状FeCrMoAl膜;取出溅射室内的溅射了CrMo膜、AlN-Al2O3膜和FeCrMoAl膜的基底;
(3-5)将基底放入真空管式炉中炉管的加热区上,在炉管两端安装好绝热炉塞,进行真空热处理,得到制成的薄膜应变片。
其中,所述步骤一中基底的预处理过程具体如下:将所述基底上表面依次用400#、600#、800#、1000#、1500#、2000#砂纸逐级进行打磨,再采用0.1μm金刚石喷雾抛光剂进行机械抛光,使基底上表面光洁无划痕;将具有光洁表面的基底置于底部铺有无尘布的烧杯中,使基底的光洁表面向下,向烧杯中倒入丙酮和酒精,比例为1:1或1:2。将装有基底的烧杯放入超声波清洗机中,超声振荡15 min -20min,利用超声波在液体中的空化作用使基底上表面的油污杂物振荡和剥离;待超声清洗完成后,取出基底,并进行烘干备用。
作为优选,固定和整理过程包括如下步骤:
分别将Cr靶材、Mo靶材、Al靶材固定于溅射室内的A靶座、B靶座、C靶座上;将经过预处理后的基底放置于溅射室内的样品转台上,使基底的被清洗面向下,正对A靶座、B靶座、C靶座的中心,使各个靶座与样品转台之间距离均为60 mm -80mm,将加热基片插入样品转台背部后,使用夹具固定基底。
作为优选,溅射CrMo膜的过程包括如下步骤:
将溅射室内抽真空至1.5×10-3Pa以下,通过加热基片传热使样品转台的衬底温度升至150℃ -200℃,调节偏压至100V -150V,向溅射室内通入氩气,控制氩气流量为20sccm-25sccm,将溅射室内气压升高至1 Pa -2Pa,使A靶座、B靶座的电压升至250V -300V进行辉光放电,使氩气电离,产生氩气离子,氩气离子轰击Cr靶材和Mo靶材,引起靶材溅射;调整溅射室内工作气压至0.2 Pa -0.3Pa,进行预溅射5 min -10min;经过预溅射过程,使A靶座、B靶座的电压电流稳定后,控制样品转台自转速度在3r/min -5r/min,调节A靶座、B靶座的电压电流使功率达到100±5W,持续溅射20 min -30min,在基底上表面形成CrMo膜。
作为优选,AlN膜过程的溅射参数为:
调整溅射仪的温度控制器,使样品转台的衬底温度升至200℃ -250℃;通入氮气流量为20sccm -25sccm,使Ar : N2为1:(0.8-1.2),溅射过程中溅射室内气压为0.7Pa -0.8Pa,溅射过程中C靶座的功率为150±5W,持续溅射30 min -60min,在溅射了CrMo膜的基底表面形成AlN膜;
溅射Al2O3膜过程中的溅射参数为:通入氧气流量为40 sccm -50sccm,使Ar : O2=1:(1.8-2.2);溅射时间为30 min -60min,在已经溅射了CrMo/AlN膜的基底表面形成Al2O3膜。
作为优选,FeCrMoAl合金靶材的规格为:元素配比组成为Al 5-7%,Mo 10-12%,Cr15-20%,Fe余量;杂质含量小于0.01%,空洞缺陷小于1.0mm,裂痕小于0.1mm,晶粒尺寸小于50μm -60μm。
作为优选,溅射FeCrMoAl膜过程中的溅射参数为:
将溅射室内抽真空至1.0×10-3Pa以下,衬底温度加热至300℃-400℃,通入流量为20sccm-30sccm的氩气,溅射过程中溅射室内的气压为0.5Pa -0.7Pa;溅射过程中B靶座的功率为195W-205W,溅射时间为30 min -40min。
作为优选,真空热处理过程包括如下步骤:
将真空管式炉的炉管内抽真空至0.5MPa -0.075MPa后,向炉管内通入氩气,氩气用于保护薄膜应变片表面,使氩气的流量为3 L/min -5L/min;设置真空管式炉的加热温度为800℃ -1000℃并保温6小时 -8小时;到达保温时长后,使真空管式炉停电,当真空管式炉内的温度低于200℃后,取出薄膜应变片。
本发明的有益效果为:
1)与普通胶粘剂粘贴的应变片相比,薄膜应变片直接以薄膜的形式生长于基底上,在减少氢接触的同时,避免了胶粘剂导致的应变传递误差和压力影响问题。
2)CrMo膜作为过渡缓冲层,在形成薄膜时形成碳的化合物,防止组织缺陷延伸、降低位错密度,较好地缓解了基底与绝缘层之间产生的应力集中;AlN-Al2O3双层膜作为绝缘层,通过减少电子在晶界和界面处的无规则散射,提高了电阻率;FeCrMoAl膜因其为单相铁基固溶体,为bcc结构,具有较低的氢溶解度和氢扩散系数,极大地减少了薄膜应变片中氢的侵入。
3)在高压氢环境中,CrMo/ AlN-Al2O3/FeCrAl多层膜组成的薄膜应变片可以牢固地固定于试样上,相互之间连接呈无机质化,因而消除了零点漂移和蠕变,实现了温度自补偿,从而提高了应变片的灵敏度和测量结果的准确性。
附图说明
图1是本发明的横截面的一种结构示意图;
图2是本发明的一种主观图及功能层模板的放大图;
图3是本发明的一种截面扫描电镜SEM图;
图4是本发明的一种截面EDS线扫描图;
图5是普通粘贴的康铜应变片和本发明在8MPa氢气环境下的零点漂移性能比较图。
图中:1、基底,2、过渡缓冲层,3、绝缘层,4、功能层,5、焊料,6、引线,7、掩模板。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步的描述。
实施例1
如图1、图2所示,一种用于高压氢环境中的薄膜应变片,包括基底1、设于基底上表面上的过渡缓冲层2、设于过渡缓冲层上表面上的绝缘层3、设于绝缘层上表面上的功能层4;基底采用316L不锈钢材料制成,过渡缓冲层为CrMo膜,绝缘层为AlN-Al2O3双层膜。功能层为FeCrMoAl合金膜。两条引线6通过焊料5与功能层连接;
一种薄膜应变片的制备方法,包括如下步骤:
(3-1)将经过预处理后的基底置于磁控溅射仪的溅射室内,进行固定和整理;
将所述基底上表面依次用400#、600#、800#、1000#、1500#、2000#砂纸逐级进行打磨,再采用0.1μm金刚石喷雾抛光剂进行机械抛光,使基底上表面光洁无划痕。将具有光洁表面的基底置于底部铺有无尘布的烧杯中,使基底的光洁表面向下,向烧杯中倒入丙酮和酒精,比例为1:1。将装有基底的烧杯放入超声波清洗机中,超声振荡15 min,利用超声波在液体中的空化作用使基底上表面的油污杂物振荡和剥离。待超声清洗完成后,取出基底,并进行烘干备用。
分别将Cr靶材、Mo靶材、Al靶材固定于磁控溅射仪(JGP450型快速离子镀膜仪)溅射室内的A靶座、B靶座、C靶座上;将经过预处理后的基底放置于溅射室内的样品转台上,使基底的被清洗面向下,正对A靶座、B靶座、C靶座的中心,使各个靶座与样品转台之间距离均为60 mm,将加热基片插入样品转台背部后,使用夹具固定基底。
(3-2)将Cr靶材、Mo靶材、Al靶材放入溅射室内,在基底上表面溅射CrMo膜,形成厚度为400nm的CrMo膜,将CrMo膜作为过渡缓冲层;
将溅射室内抽真空至1.3×10-3Pa,通过加热基片传热使样品转台的衬底温度升至150℃,调节偏压至100 V,向溅射室内通入氩气,控制氩气流量为20sccm,将溅射室内气压升高至1.6Pa,使A靶座、B靶座的电压升至280V进行辉光放电,使氩气电离,产生氩气离子,氩气离子轰击Cr靶材和Mo靶材,引起靶材溅射;调整溅射室内工作气压至0.3Pa,进行预溅射10min;经过预溅射过程,使A靶座、B靶座的电压电流稳定后,控制样品转台自转速度在3r/min,调节A靶座、B靶座的电压电流使功率达到100W,持续溅射20min,在基底上表面形成CrMo膜。
(3-3)向溅射室内通入氮气,在CrMo膜的上表面溅射厚度为50 nm的AlN膜; AlN膜溅射完成后,停止通入氮气,向溅射室内通入氧气,在AlN膜的上表面形成厚度为50nm的Al2O3膜,将Al2O3膜作为绝缘层;
调整溅射仪的温度控制器,使样品转台的衬底温度升至200℃,使溅射过程中参与化合反应的原子能量增加,薄膜结晶度高,通入氮气流量为20sccm,使Ar : N2为1:1,溅射过程中溅射室内的气压为0.8Pa,溅射过程中C靶座的功率为150W,持续溅射30 min,在溅射了CrMo膜的基底表面形成AlN膜;
溅射Al2O3膜过程中的溅射参数为:通入氧气流量为40 sccm,使Ar : O2=1:2;溅射时间为30 min,在已经溅射了CrMo/AlN膜的基底表面形成Al2O3膜。
(3-4)使磁控溅射仪断电,停止通入氧气,使溅射室内的温度降至60℃;取出溅射室内的Cr靶材、Mo靶材、Al靶材和基底,在基底的上表面覆盖掩模板7;将已覆盖掩模板的基底放入磁控溅射仪的样品台上,将FeCrMoAl合金靶材安装到B靶座,在掩模板上溅射厚度为1000nm的栅状FeCrMoAl膜;取出溅射室内的溅射了CrMo膜、AlN-Al2O3膜和FeCrMoAl膜的基底;
FeCrMoAl合金靶材的规格为:元素配比组成为Al 7%,Mo 12%,Cr 20%,Fe 61%;杂质含量小于0.01%,空洞缺陷小于1.0mm,裂痕小于0.1mm,晶粒尺寸小于60μm。
溅射FeCrMoAl膜过程中的溅射参数为:
将溅射室内抽真空至1.0×10-3Pa,衬底温度加热至400℃,通入流量为30sccm的氩气,溅射过程中溅射室内的气压为0.6Pa;溅射过程中B靶座的功率为200W,由于FeCrMoAl合金靶为金属软磁材料,对磁场强度要求较高,因此在一定范围内增大溅射功率,可以增加表面晶粒密度和元素含量;溅射时间为40min。
(3-5)将基底放入真空管式炉(NBD-0系列开启式高温炉)中炉管的加热区上,在炉管两端安装好绝热炉塞,进行真空热处理,得到制成的薄膜应变片。
将真空管式炉的炉管内抽真空至0.5MPa后,向炉管内通入氩气,氩气用于保护薄膜应变片表面,使氩气的流量为5L/min;设置真空管式炉的加热温度为1000℃并保温8小时;此条件下热处理可以消除薄膜应力,增大膜层间的结合力,同时降低缺陷密度,优化薄膜质量;到达保温时长后,使真空管式炉停电,当真空管式炉内的温度低于200℃后,取出薄膜应变片。
使用场发射扫描电子显微镜对所述用于高压氢环境中的薄膜应变片截面进行EDS线扫描,由图3可知,CrMo层厚度为0.4μm,AlN-Al2O3层厚度为100nm,FeCrMoAl层厚度为1μm。另外,从图4中可以观察到,FeCrMoAl薄膜元素含量比与靶材接近一致,说明磁控溅射参数稳定。由于AlN-Al2O3膜不导电,且由于设备原因,EDS分析原子序数小的元素(如N、O元素)不准确,所以图中仅可观察到Al峰在Cr峰出现时才开始减弱,说明AlN-Al2O3膜的存在。
为了对普通粘贴的康铜应变片与所述用于高压氢环境中的薄膜应变片的零点漂移性能进行比较,采用多功能静态应变测量仪测量环境箱中应变片的应变值。试验具体过程如下:
步骤1:用电烙铁将两条引线分别焊接在应变片的焊点上,接着利用接线端子把环境箱上的接头内端的导线与引线焊接在一起;
步骤2:将焊接好的应变片缓慢放入环境箱中,并通过环境箱上的接头外端的导线与应变仪(JM3811静态应变测试仪)连接,再通过应变仪的USB导线连接到PC终端上,盖上环境箱上盖,并用螺栓密封环境箱;
步骤3:打开分子泵,先把与环境箱连接的管道内的气体抽出,然后打开环境箱的上阀门,将环境箱内部的空气全部抽出,使环境箱内压力变成-0.1MPa,再关上环境箱的上阀门,最后关闭分子泵;
步骤4:打开PC终端上的应变采集软件,并向环境箱内通入氢气直到压力达到8MPa,将应变片在环境箱内放置30h左右,并观察应变仪上应变值的变化情况。
图5所示为普通粘贴的康铜应变片与所述用于高压氢环境中的薄膜应变片在8MPa氢气环境下的零点漂移曲线。从图中可以看出,普通粘贴的康铜应变片的应变值在通入氢气后迅速下降,下降速度在10小时后变慢,13小时后基本维持稳定,最小值达到-540με。所述用于高压氢环境中的薄膜应变片的漂移量几乎没有变化,在整个实验过程中基本都能保持稳定。因此,与普通粘贴的康铜应变片相比,所述用于高压氢环境中的薄膜应变片可以抗氢致应变,提高了测量的准确性和稳定性,也扩大了其可以使用的环境范围。
实施例2
本实施例与实施例1的不同之处在于:
CrMo膜作为过渡缓冲层,厚度为500nm。
将溅射室内抽真空至1.0×10-3Pa,通过加热基片传热使样品转台的衬底温度升至200℃,调节偏压至150 V,向溅射室内通入氩气,控制氩气流量为25sccm,将溅射室内气压升高至1.8Pa,使A靶座、B靶座的电压升至300V进行辉光放电,使氩气电离,产生氩气离子,氩气离子轰击Cr靶材和Mo靶材,引起靶材溅射;调整溅射室内工作气压至0.2Pa,进行预溅射5min;经过预溅射过程,使A靶座、B靶座的电压电流稳定后,控制样品转台自转速度在5r/min,调节A靶座、B靶座的电压电流使功率达到105W,持续溅射30min,在基底上表面形成CrMo膜。
其它内容与实施例1中的内容相同。
实施例3
本实施例与实施例1的不同之处在于:
在CrMo膜的上表面溅射AlN膜的厚度为100nm;在AlN膜的上表面溅射Al2O3膜的厚度为100nm,作为AlN-Al2O3绝缘层;
调整溅射仪的温度控制器,使样品转台的衬底温度升至250℃,通入氮气流量为25sccm,使Ar : N2为1:1.2,溅射过程中溅射室内的气压为0.7Pa,溅射过程中C靶座的功率为155W,持续溅射60min,在溅射了CrMo膜的基底表面形成AlN膜;
溅射Al2O3膜过程中的溅射参数为:通入氧气流量为45 sccm,使Ar : O2=1:2.2;溅射时间为60 min,在已经溅射了CrMo/AlN膜的基底表面形成Al2O3膜。
其它内容与实施例1的内容相同。
实施例4
本实施例与实施例1的不同之处在于:
在掩模板上溅射栅状FeCrMoAl膜的厚度为800nm。
溅射FeCrMoAl膜过程中的溅射参数为:将溅射室内抽真空至8.0×10-4Pa,衬底温度加热至300℃,通入流量为20sccm的氩气,溅射过程中溅射室内的气压为0.7Pa;溅射过程中B靶座的功率为195W,溅射时间为30min。
将真空管式炉的炉管内抽真空至0.075MPa后,向炉管内通入氩气,氩气用于保护薄膜应变片表面,使氩气的流量为3L/min;设置真空管式炉的加热温度为800℃并保温6小时。
其它内容与实施例1中相同。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种用于高压氢环境中的薄膜应变片的制备方法,其特征是,所述薄膜应变片包括基底(1)、设于基底上表面上的过渡缓冲层(2)、设于过渡缓冲层上表面上的绝缘层(3)、设于绝缘层上表面上的功能层(4);基底采用316L不锈钢材料制成,过渡缓冲层为CrMo膜,绝缘层为AlN-Al2O3双层膜;
所述制备方法,包括如下步骤:
(1-1)将经过预处理后的基底置于磁控溅射仪的溅射室内,进行固定和整理;
(1-2)将Cr靶材、Mo靶材、Al靶材放入溅射室内,在基底上表面溅射CrMo膜,形成厚度300nm -500nm的CrMo膜,将CrMo膜作为过渡缓冲层;
(1-3)向溅射室内通入氮气,在CrMo膜的上表面溅射厚度为30nm -100nm的AlN膜; AlN膜溅射完成后,停止通入氮气,向溅射室内通入氧气,在AlN膜的上表面形成厚度为30nm-100nm的Al2O3膜,将AlN-Al2O3双层膜作为绝缘层;
(1-4)使磁控溅射仪断电,停止通入氧气,使溅射室内的温度降至60℃-80℃以下;取出溅射室内的Cr靶材、Mo靶材、Al靶材和基底,在基底的上表面覆盖掩模板(7);将已覆盖掩模板的基底放入磁控溅射仪的样品台上,将FeCrMoAl合金靶安装到B靶座,在掩模板上溅射厚度为800nm-1000nm的栅状FeCrMoAl膜;取出溅射室内的溅射了CrMo膜、AlN-Al2O3膜和FeCrMoAl膜的基底;
(1-5)将基底放入真空管式炉中炉管的加热区上,在炉管两端安装好绝热炉塞,进行真空热处理,得到制成的薄膜应变片;
溅射CrMo膜的过程包括如下步骤:
将溅射室泵内抽真空至1.5×10-3Pa以下,通过加热基片传热使样品转台的衬底温度升至150℃ -200℃,调节偏压至100 V-150V,向溅射室内通入氩气,控制氩气流量为20sccm -25sccm,将溅射室内气压升高至1 Pa -2Pa,使A靶座、B靶座的电压升至250 -300V进行辉光放电,使氩气电离,产生氩气离子,氩气离子轰击Cr靶材和Mo靶材,引起靶材溅射;调整溅射室内工作气压至0.2 Pa -0.3Pa,进行预溅射5 min -10min;经过预溅射过程,使A靶座、B靶座的电压电流稳定后,控制样品转台自转速度在3 r/min -5r/min,调节A靶座、B靶座的电压电流使功率达到100±5W,持续溅射20 min -30min,在基底上表面形成CrMo膜;
AlN膜过程的溅射参数为:
调整溅射仪的温度控制器,使样品转台的衬底温度升至200℃-250℃,通入氮气流量为20sccm -25sccm,使Ar : N2为1:(0.8-1.2),溅射过程中溅射室内气压为0.7Pa -0.8Pa,溅射过程中C靶座的功率为150±5W,持续溅射30 min -60min,在溅射了CrMo膜的基底表面形成AlN膜;
溅射Al2O3膜过程中的溅射参数为:通入氧气流量为40 sccm -50sccm,使Ar : O2=1:(1.8-2.2);溅射时间为30 min -60min,在已经溅射了CrMo/AlN膜的基底表面形成Al2O3膜。
2.根据权利要求1所述的一种用于高压氢环境中的薄膜应变片的制备方法,其特征是,所述功能层为FeCrMoAl合金膜。
3.根据权利要求1所述的一种用于高压氢环境中的薄膜应变片的制备方法,其特征是,所述基底的预处理过程包括如下步骤:
将所述基底上表面依次用400#、600#、800#、1000#、1500#、2000#砂纸逐级进行打磨,再采用0.1μm金刚石喷雾抛光剂进行机械抛光,使基底上表面光洁无划痕;将具有光洁表面的基底置于底部铺有无尘布的烧杯中,使基底的光洁表面向下,向烧杯中倒入丙酮和酒精,比例为1:1或1:2;将装有基底的烧杯放入超声波清洗机中,超声振荡15 min -20min,利用超声波在液体中的空化作用使基底上表面的油污杂物振荡和剥离;待超声清洗完成后,取出基底,并进行烘干备用。
4.根据权利要求1所述的一种用于高压氢环境中的薄膜应变片的制备方法,其特征是,所述固定和整理过程包括如下步骤:
分别将Cr靶材、Mo靶材、Al靶材分别固定于溅射室内的A靶座、B靶座、C靶座上;将经过预处理后的基底放置于溅射室内的样品转台上,使基底的被清洗面向下,正对A靶座、B靶座、C靶座的中心,使各个靶座与样品转台之间距离均为60 mm -80mm,将加热基片插入样品转台背部后,使用夹具固定基底。
5.根据权利要求1所述的一种用于高压氢环境中的薄膜应变片的制备方法,其特征是,FeCrMoAl合金靶的规格为:元素配比组成为Al 5-7%,Mo 10-12%,Cr 15-20%,Fe余量;杂质含量小于0.01%,空洞缺陷小于1.0mm,裂痕小于0.1mm,晶粒尺寸小于50μm -60μm。
6.根据权利要求1所述的一种用于高压氢环境中的薄膜应变片的制备方法,其特征是,
溅射FeCrMoAl膜过程中的溅射参数为:
将溅射室内抽真空至1.0×10-3Pa以下,衬底温度加热至300℃-400℃,通入流量为20sccm-30sccm的氩气,溅射过程中溅射室内气压为0.5Pa -0.7Pa;溅射过程中B靶座的功率为195W-205W,溅射时间为30 min -40min。
7.根据权利要求1所述的一种用于高压氢环境中的薄膜应变片的制备方法,其特征是,所述真空热处理过程包括如下步骤:
将真空管式炉的炉管内抽真空至0.5MPa -0.075MPa后,向真空管式炉内通入氩气,氩气用于保护薄膜应变片表面,使氩气的流量为3 L/min -5L/min;设置真空管式炉的加热温度为800℃ -1000℃并保温6小时 -8小时;到达保温时长后,使真空管式炉停电,当真空管式炉内的温度低于200℃后,取出薄膜应变片。
CN202011238389.5A 2020-11-09 2020-11-09 用于高压氢环境中的薄膜应变片 Active CN112458415B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011238389.5A CN112458415B (zh) 2020-11-09 2020-11-09 用于高压氢环境中的薄膜应变片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011238389.5A CN112458415B (zh) 2020-11-09 2020-11-09 用于高压氢环境中的薄膜应变片

Publications (2)

Publication Number Publication Date
CN112458415A CN112458415A (zh) 2021-03-09
CN112458415B true CN112458415B (zh) 2022-10-21

Family

ID=74826706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011238389.5A Active CN112458415B (zh) 2020-11-09 2020-11-09 用于高压氢环境中的薄膜应变片

Country Status (1)

Country Link
CN (1) CN112458415B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118209041B (zh) * 2024-05-17 2024-08-06 白马湖实验室氢能(长兴)有限公司 一种用于掺氢天然气环境中的柔性传感器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105132853A (zh) * 2015-09-06 2015-12-09 天津大学 一种用于高温阻尼件表面的硬质高阻尼涂层制备工艺
CN107267944A (zh) * 2017-07-05 2017-10-20 电子科技大学 具有温度自补偿的高温薄膜半桥式电阻应变计及制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105132853A (zh) * 2015-09-06 2015-12-09 天津大学 一种用于高温阻尼件表面的硬质高阻尼涂层制备工艺
CN107267944A (zh) * 2017-07-05 2017-10-20 电子科技大学 具有温度自补偿的高温薄膜半桥式电阻应变计及制备方法

Also Published As

Publication number Publication date
CN112458415A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
CN106403804B (zh) 一种高温同步补偿薄膜应变计及其制备方法
CN112458415B (zh) 用于高压氢环境中的薄膜应变片
CN107267944B (zh) 具有温度自补偿的高温薄膜半桥式电阻应变计及制备方法
Al-Olayyan et al. The effect of Zircaloy-4 substrate surface condition on the adhesion strength and corrosion of SiC coatings
CN110423989A (zh) 一种低残余应力的硬质类金刚石薄膜的制备方法
CN112525062B (zh) 用于高压硫化氢环境中的薄膜式电阻应变计
CN113555495B (zh) 一种薄膜压力传感器及其制备方法与应用
CN113588434A (zh) 煤制气环境中的试样疲劳裂纹扩展速率检测装置
CN117491199A (zh) 基于真空多弧离子镀的掺氢天然气环境疲劳试验装置
Cui et al. Corrosion resistance of a tungsten modified AISI 430 stainless steel bipolar plate for proton exchange membrane fuel cells
CN104062048B (zh) 高压氢环境下的载荷传感器
Chermant et al. Factors influencing the rupture stress of hardmetals
Nykyforchyn et al. Degradation of steels used in gas main pipelines during their 40-year operation.
CN112432720B (zh) 用于潮湿水环境中的载荷传感器元件
CN112410744B (zh) 用于煤制气环境中的溅射薄膜敏感元件
CN110886001B (zh) 一种有效提高钛合金耐应力腐蚀性能的方法
Jiang et al. Irradiation-induced corrosion tendencies evolution at the phase boundaries containing carbides in duplex stainless steel
CN113567277A (zh) 高温环境中的金属试样疲劳裂纹扩展速率检测装置
Wang et al. Exploring film failure mechanism and scratch toughness characterization of diamond-like carbon film
CN115979478B (zh) 一种金属复合板局部沿层深分布残余应力的测量方法
Jianming et al. The corrosion properties of Al/Al2O3 multilayered coatings on CK45 steel deposited by IBAD
CN118209041B (zh) 一种用于掺氢天然气环境中的柔性传感器及其制备方法
Murarka RF diode sputtered platinum films
Zhao et al. Investigation on Electrochemical Behaviour and Corrosion Resistance of Ti-6Al-4V-0.5 Ni-0.5 Nb-0.05 Ru Alloy in Simulated Conditions for Oil and Gas Exploration
CN220619078U (zh) 一种复合预涂层和金属双极板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant