CN107265491A - 原位生长氧化亚铜纳米棒锂离子电池负极材料的制备方法 - Google Patents

原位生长氧化亚铜纳米棒锂离子电池负极材料的制备方法 Download PDF

Info

Publication number
CN107265491A
CN107265491A CN201710485183.4A CN201710485183A CN107265491A CN 107265491 A CN107265491 A CN 107265491A CN 201710485183 A CN201710485183 A CN 201710485183A CN 107265491 A CN107265491 A CN 107265491A
Authority
CN
China
Prior art keywords
lithium ion
ion battery
growth
cuprous oxide
situ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710485183.4A
Other languages
English (en)
Inventor
魏明灯
陈文强
陈聪荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201710485183.4A priority Critical patent/CN107265491A/zh
Publication of CN107265491A publication Critical patent/CN107265491A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于材料技术领域,具体涉及一种泡沫铜氧化物基的锂离子电池负极材料。通过添加少量的表面活性剂PVP在异丙醇溶液中,然后把泡沫铜放在溶液中160℃1h生长 Cu(OH)2(NO3)2纳米棒,之后在惰性气氛下高温煅烧 Cu(OH)2(NO3)2转变成氧化铜,同时PVP在高温下分解成碳,还原生成的氧化铜,从而很简单的制备了氧化亚铜纳米棒。本发明制备的Cu2O纳米棒生长在泡沫铜上作为锂离子电池负极具有优异的循环稳定性和大倍率性能,在电流密度为1.5C时充放电循环100次后具有385.3mAh/g的容量。

Description

原位生长氧化亚铜纳米棒锂离子电池负极材料的制备方法
技术领域
本发明属于材料技术领域,具体涉及一种泡沫铜氧化物基的锂离子电池负极材料。
背景技术
Cu2O是一种新型的p型半导体材料,具有活性的空穴-电子对和良好的催化活性,在涂料、红色玻璃、催化剂、锂离子电池等领域有着广泛的用途,而由于氧化铜具有很大的储量、无毒成本低而且形貌比较多样性等优点,被视为一种极具前景的储锂材料。但是,一方面传统电极在制备过程中会添加很多高分子聚合物作为粘结剂,而这些高分子聚合物导电性特别差,从而使整个电极的导电性能降低,另一方面加入的高分子有机聚合物和导电炭黑减小了整个电极的体积能量密度,从而影响大倍率性能和实际中的使用。
发明内容
本发明的目的在于提供一种泡沫铜氧化物基的锂离子电池负极材料。本发明采用简单的溶剂法和后期的煅烧,合成了一种Cu2O纳米棒自支持生长在泡沫铜基底上,其作为锂离子电池负极具有优异的循环稳定性和大倍率性能。
为实现上述目的,本发明采用如下技术方案:
所述锂离子负极材料的制备方法是通过添加少量的表面活性剂PVP在异丙醇溶液中,然后把泡沫铜放在溶液中160℃1h生长 Cu(OH)2(NO3)2纳米棒,之后在惰性气氛下高温煅烧Cu(OH)2(NO3)2转变成氧化铜,同时PVP在高温下分解成碳,还原生成的氧化铜,从而很简单的制备了氧化亚铜纳米棒。
具体步骤为:
(1)称取0.05g表面活性剂聚乙烯吡咯烷酮PVP(分子量=58000)溶于30ml异丙醇溶液中,搅拌溶解30分钟;
(2)将1.5*3cm泡沫铜置于步骤(1)溶液中,在160℃下反应1h,生长 Cu(OH)2(NO3)2纳米棒;
(3)将Cu(OH)2(NO3)2纳米棒用乙醇溶液清洗3到4次,然后在70℃真空烘箱中干燥12h.然后在惰性气氛氩气下进行450℃2h高温煅烧。
本发明的显著优点在于:
(1)本发明制备的Cu2O纳米棒生长在泡沫铜上作为锂离子电池负极具有优异的循环稳定性和大倍率性能,在电流密度为1.5C时充放电循环100次后具有385.3mAh/g的容量。
(2)本发明提供了Cu2O纳米棒生长在泡沫铜的简单合成方法,该材料合成方法简单,重现性好,储锂性能优异。
附图说明
图1为泡沫铜上生长的Cu2O纳米棒的XRD图。
图2为泡沫铜上生长的Cu2O纳米棒的扫描电镜图。
图3为泡沫铜上生长的Cu2O纳米棒的电化学性能图。
图4为泡沫铜上生长的Cu2O纳米棒的循环稳定曲线图。
具体实施方式
为进一步公开而不是限制本发明,以下结合实例对本发明作进一步的详细说明。
实施例1
具体步骤为:
(1)称取表面活性剂聚乙烯吡咯烷酮0.05gPVP(分子量=58000)溶于30ml异丙醇溶液中,搅拌溶解30分钟;
(2)将1.5*3cm泡沫铜置于步骤(1)溶液中,在160℃下反应1h,生长 Cu(OH)2(NO3)2纳米棒;
(3)将Cu(OH)2(NO3)2纳米棒用乙醇溶液清洗3到4次,然后在70℃真空烘箱中干燥12h.然后在惰性气氛氩气下进行450℃2h高温煅烧。
锂电池组装:把泡沫铜上原位生长的氧化铜做工作电极,参比电极和对电极均为金属锂,电解质为1M LiPF6的EC+DMC+EMC (EC/DMC/EMC=1/1/1 v/v) 溶液。以CR2025型扣式电池作为测试载体。所有组装均在具有惰性气氛保护的手套箱中进行。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1.一种原位生长氧化亚铜纳米棒锂离子电池负极材料的制备方法,其特征在于:通过将聚乙烯吡咯烷酮PVP溶于异丙醇溶液中,记为溶液A,然后把泡沫铜放在溶液A中160℃1h生长 Cu(OH)2(NO3)2纳米棒,再在惰性气氛下高温煅烧 Cu(OH)2(NO3)2转变成氧化铜,同时PVP在高温下分解成碳,来还原生成的氧化铜,从而得到氧化亚铜纳米棒。
2.根据权利要求1所述的原位生长氧化亚铜纳米棒锂离子电池负极材料的制备方法,其特征在于:
具体步骤为:
(1)称取0.05g表面活性剂聚乙烯吡咯烷酮PVP溶于30ml异丙醇溶液中,搅拌溶解30分钟;
(2)将1.5*3cm泡沫铜置于步骤(1)溶液中,在160℃下反应1h,生长 Cu(OH)2(NO3)2纳米棒;
(3)将Cu(OH)2(NO3)2纳米棒用乙醇溶液清洗3到4次,然后在70℃真空烘箱中干燥12h,然后在氩气惰性气氛下进行高温煅烧。
3.根据权利要求2所述的原位生长氧化亚铜纳米棒锂离子电池负极材料的制备方法,其特征在于:步骤(1)中PVP的分子量为58000。
4.根据权利要求2所述的原位生长氧化亚铜纳米棒锂离子电池负极材料的制备方法,其特征在于:步骤(3)所述的高温煅烧是在450℃下煅烧2h。
CN201710485183.4A 2017-06-23 2017-06-23 原位生长氧化亚铜纳米棒锂离子电池负极材料的制备方法 Pending CN107265491A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710485183.4A CN107265491A (zh) 2017-06-23 2017-06-23 原位生长氧化亚铜纳米棒锂离子电池负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710485183.4A CN107265491A (zh) 2017-06-23 2017-06-23 原位生长氧化亚铜纳米棒锂离子电池负极材料的制备方法

Publications (1)

Publication Number Publication Date
CN107265491A true CN107265491A (zh) 2017-10-20

Family

ID=60068331

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710485183.4A Pending CN107265491A (zh) 2017-06-23 2017-06-23 原位生长氧化亚铜纳米棒锂离子电池负极材料的制备方法

Country Status (1)

Country Link
CN (1) CN107265491A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109713279A (zh) * 2018-12-29 2019-05-03 江西正拓新能源科技股份有限公司 泡沫铜氧化物基的锂离子电池负极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WENQIANG CHEN, ET AL.: "Facile synthesis of Cu2O nanorod arrays on Cu foam as a self-supporting anode material for lithium ion batteries", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109713279A (zh) * 2018-12-29 2019-05-03 江西正拓新能源科技股份有限公司 泡沫铜氧化物基的锂离子电池负极材料的制备方法

Similar Documents

Publication Publication Date Title
CN108923030B (zh) 一种硫/氮化钴/多孔碳片/碳布自支撑锂硫电池正极材料制备方法
CN110299516B (zh) 碳纳米管阵列负载钛酸锂柔性电极材料的制备方法
Xiao et al. A sulfur host based on cobalt–graphitic carbon nanocages for high performance lithium–sulfur batteries
CN110931795B (zh) 一种柔性自支撑复合电极及其制备方法和应用
CN106532012B (zh) 一种硫-生物质碳/过渡金属复合电极材料及其制备方法和应用
CN110364693B (zh) 一种纳米三维导电骨架/MnO2复合结构材料的制备方法及其在锌电池正极中的应用
CN107681091B (zh) 一种锂硫电池功能化复合隔膜及其制备方法
CN111017998B (zh) 一种MOFs衍生的多孔Mn3O4@碳纳米棒阵列及其制备方法和应用
CN107994225A (zh) 一种多孔硅碳复合负极材料及其制备方法、锂离子电池
CN110085813B (zh) 一种硬碳复合材料及其制备方法
CN108183224A (zh) 一种原位掺氮多孔核壳结构碳/硒复合材料及其制备方法和应用
CN113725432B (zh) 一种zif-67及其衍生硒化钴/碳电极材料制备方法
CN106410153B (zh) 一种氮化钛包覆钛酸镍复合材料及其制备方法和应用
CN109713279A (zh) 泡沫铜氧化物基的锂离子电池负极材料的制备方法
CN108933237A (zh) 一种锂离子电池正极材料的制备方法及应用
CN111646459A (zh) 一种硼掺杂石墨烯材料的制备方法及其应用
CN111320761B (zh) 一种金属有机框架纳米复合材料及其制备方法与应用
CN109728261A (zh) 一种三元正极材料及其制备方法
CN111276694A (zh) 一种聚酰亚胺衍生碳/二硫化钼负极材料的制备方法及其在钾离子电池中的应用
CN113113576B (zh) 一种Bi/ SnOx@C钠离子电池复合电极材料及其制备方法
CN109473634B (zh) 固相共热合成二硒化钼/氮掺杂碳棒的方法
CN111554905B (zh) 一种氧化锌基碳复合纳米材料制备方法、产品及应用
CN113097490A (zh) 十二面体ZIF-67/Co3O4复合材料、制备方法及其应用
WO2024087567A1 (zh) 一种氮掺杂碳膜包裹的一氧化锰纳米线锂电材料及其制备方法
CN107265491A (zh) 原位生长氧化亚铜纳米棒锂离子电池负极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171020

RJ01 Rejection of invention patent application after publication