CN107257776B - 用于生产氨的方法 - Google Patents

用于生产氨的方法 Download PDF

Info

Publication number
CN107257776B
CN107257776B CN201680011307.9A CN201680011307A CN107257776B CN 107257776 B CN107257776 B CN 107257776B CN 201680011307 A CN201680011307 A CN 201680011307A CN 107257776 B CN107257776 B CN 107257776B
Authority
CN
China
Prior art keywords
reforming
gas
make
steam
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680011307.9A
Other languages
English (en)
Other versions
CN107257776A (zh
Inventor
E·菲利皮
R·奥斯图尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casale SA
Original Assignee
Casale SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casale SA filed Critical Casale SA
Publication of CN107257776A publication Critical patent/CN107257776A/zh
Application granted granted Critical
Publication of CN107257776B publication Critical patent/CN107257776B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0417Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the synthesis reactor, e.g. arrangement of catalyst beds and heat exchangers in the reactor
    • C01C1/0441Reactors with the catalyst arranged in tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/025Preparation or purification of gas mixtures for ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0476Purge gas treatment, e.g. for removal of inert gases or recovery of H2
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/06Details of tube reactors containing solid particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/068Ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

用于从烃原料合成氨的方法和装置,包括:利用蒸汽的一次重整和燃烧空气的二次重整,其中一次重整在至少790℃的温度和50巴的压力下进行,并且在基本上不存在过量空气的情况下进行二次重整,所得到的补充合成气的H2与N2摩尔比在2.5至3的范围内。

Description

用于生产氨的方法
技术领域
本发明涉及一种通过由重整烃原料产生的补充合成气的催化反应来生产氨的方法。
背景技术
氨的工业生产涉及通常在约80-300巴操作的高压(HP)合成回路内的包含氢和氮的合成气(“补充气体”)的催化反应。
补充气体通过烃原料的重整在HP合成回路上游的前端部分产生。
从烃原料合成氨基本上包括:用蒸汽进行一次重整;用氧化剂进行二次重整,得到原料气产物;纯化所述原料气产物,得到补充合成气;在高压合成回路中将所述补充合成气转化为氨。
纯化可能包括一氧化碳向二氧化碳的转变转化、二氧化碳的去除和任选的甲烷化。将纯化的合成气在多级气体压缩机中压缩以供给合成回路。所述气体压缩机通常由蒸汽轮机直接驱动。
所述一次重整的步骤是在填充有催化剂的一束外部加热的管(催化管)中进行的。
为了降低所述催化管的最大工作温度,现有技术教导用氧气或富集空气进行二次重整的步骤。然而,生产氧气或富集空气需要空气分离单元并消耗能量,因此是昂贵的。
保持管的相对低温的替代现有技术是用相比于理论化学计量显著过量的空气进行燃烧空气的二次重整,而不需要氧气或空气富集。空气的理论化学计量是在送到氨合成的纯化的补充气体中获得H2与N2摩尔比为3所需的空气量。
然而,这种技术的缺点是在前端引入大量的氮。这导致流量大而需要更大和更昂贵的管道。此外,当处理非常大容量例如超过3000MTD(公吨每天)时,主合成气压缩机及其驱动涡轮机可能成为装置的瓶颈。
在这样的大容量的情况下,气体压缩机将需要处理相关的流量并产生大的压缩比。为了驱动压缩机,通过所述涡轮机的大的蒸汽流将需要大的转子直径不能达到压缩机所需的升高速度(例如10000rpm),主要是由于涡轮机的低压级叶片的过量尖端速度决定的限制。因此,可以合成氨的氨装置的最大容量主要受到合成气压缩机-涡轮组件的容量的限制。
避免该缺点的现有技术解决方案不令人满意。例如,在压缩机和涡轮机之间引入齿轮级是不期望的,因为可靠性降低和效率损失。克服这个问题的其它尝试包括:引入级间反应器以生产一些氨,然而其增加成本和混乱;使用较低的合成压力,然而其不利地影响合成。
还已知从HP合成回路中取出吹扫流,以除去惰性气体,否则可能积聚并降低总体效率。EP2316792公开了从所述吹扫流中回收氢气,并使用回收的氢气来平衡过量的氮气。然而,由于在二次重整中引入的大量的空气,氢的所需量大,这意味着使用昂贵的分离技术,例如低温、TSA或PSA。
发明内容
本发明的目的是克服现有技术的前述缺陷和限制。
该目的通过从烃原料合成氨的方法来实现,该方法包括:
用蒸汽对所述烃原料进行一次重整的步骤,以得到第一重整气体;
对所述第一重整气体进行燃烧空气的二次重整的步骤,以得到原料气产物;
纯化所述原料气产物,以得到补充合成气;
在合成回路中将所述补充合成气转化成氨;
其特征在于,所述一次重整在至少790℃的温度和至少50巴的压力下进行;所述二次重整的步骤在相比于空气的化学计量基本上不存在过量的空气的情况下进行,所述补充合成气的H2与N2摩尔比在2.5至3的范围内。
温度和压力的所述值是指一次重整的催化管出口处的工艺气体。
优选地,上述的至少790℃的温度大于800℃。
优选地,所述H2与N2摩尔比在2.6至2.8的范围内。
如上所述,空气的化学计量被理解为在进入合成回路的补充气体中实现H2与N2摩尔比为3所需的量,即其基本上取决于所述补充气体的氢气H2的量。基本上不存在过量的空气应理解为导致H2与N2摩尔比为2.5或更大的空气量。
优选地,将补充合成气转化成氨在回路压力下进行,回路压力是在一次重整催化管出口处的工艺气体压力的2至3.5倍。所述回路压力被理解为回路循环器的输送压力。更优选地,回路压力在100至200巴的范围内,甚至更优选地在120至150巴的范围内。
本发明的一个方面是提高一次重整温度和压力,同时使用相比于化学计量不过量的空气。进入二次重整的空气基本上是化学计量或少量过量,因此,H2与N2摩尔比等于或略小于3。该方法不需要过量空气或富含O2的空气。
在特别优选的实施方式中,一次重整的催化管由选自以下的合金制成:
GX45NiCrSiNbTi3525、GX40NiCrSiNb3525(根据EN 10027分类);
HP合金、HP模合金(mod alloy)、HP模微合金(mod Microalloy)、HP Nb微合金(Microalloy)、HP微合金(microalloy)、HK微合金(ASTM A-608和ASTM A-297分类)。
上述材料适合在本发明的升高的压力和温度下工作。
在一些实施方式中,本发明的方法包括从所述回路中提取吹扫流、从所述吹扫流中分离含氢流、和将所述含氢流加入所述补充气体中以调节所述H2与N2比。当以小于3的H2与N2摩尔比生产合成气时,所述含氢流用于将所述比例调节至等于或接近3的值。
本发明的优点在于,由于比例接近3,因此需要较少的氢气来调节H2与N2比,因此可以使用较便宜的技术用于分离氢,例如膜式氢回收单元(membrane hydrogen recoveryunit)。申请人已惊奇地发现,即使膜式回收单元的H2和N2回收率低于低温回收单元,由于渗透物的高压力,工艺性能仍然是有吸引力的。
合成回路包括循环压缩机(也称为循环器)。根据本发明的实施方式,主气体压缩机的输出被送到回路的所述循环压缩机的吸入侧。优点是使主压缩机的占空比减小,因为压缩的一部分由循环器给出。
在另一个优选的实施方式中,在主压缩机中压缩之前或在两个压缩阶段之间通过氨洗涤对合成气进行干燥处理。
本发明的主要优点是降低了主合成气压缩机的占空比。对于给定的容量,由压缩机吸收的功率相应减少。因此,本发明允许达到大容量,例如超过3000MTD,而不超过与合成气压缩机联接的蒸汽轮机的上述极限,即保持合成气压缩机和涡轮机之间的直接驱动。例如,本发明允许达到4000MTD的容量。
在本发明的一些实施方式中,空气压缩机(代替合成气压缩机)成为最大功率用户。因此,使用最高压力的可用蒸汽来驱动与所述空气压缩机联接的蒸汽轮机;由所述涡轮机排出或从其提取的蒸汽优选地用于一次重整。
这对于工艺的效率是有利的,因为与合成气压缩相比,可以更有效地实现空气压缩。这主要是由于可以使用不适于合成气的整体齿轮式的空气压缩机。
此外,空气压缩机的速度(转数/分钟)低于合成气压缩机的速度:因此,对与空气压缩机联接的蒸汽轮机的尺寸没有限制。
本发明的另一个实施方式是扩大蒸汽以比所述蒸汽轮机中的工艺空气压缩机所需的蒸汽更多。因此,与空气压缩机联接的涡轮机也可以驱动发电机产生电力。
根据优选实施方式,包括一次重整和燃烧空气的二次重整的重整工艺以等于或大于2.9的整体蒸汽/碳比进行操作。整体蒸汽/碳比表示进入重整工艺的蒸汽和碳的总比例。
这种相对较高的蒸汽/碳比有利于原料的转化和随后一氧化碳的转变。它也与一次重整的升高压力(即至少50巴)是协同的。与常规重整相比,增加的蒸汽量(由于较高的蒸汽/碳比)意味着在高温下可以从重整工艺中回收更多的热量,并且可以在内部前端进一步使用,例如用于再生用于CO2吸收的溶液。因此,前端的能量效率得到改善,减少例如热输入的需要。
本发明的一个方面也是适于进行上述方法的装置。
特别地,本发明的一个方面是用于合成氨的装置,其中,一次重整部分包括管式重整器,管内填充有催化剂,并且所述管由上述合金之一制成。
从下面的详细描述中,优点将更加明显。
附图说明
图1是根据本发明的实施方式的用于合成氨的装置的方案。
具体实施方式
图1示出了用于合成氨的装置1的方框图,其包括前端部分2和氨合成回路3。前端2产生补充合成气21,其在气体压缩机9中被压缩并且被送入氨合成回路3。
前端部分2包括:一次重整器4;二次重整器5;空气压缩机6;纯化部分7;气体干燥单元8。空气压缩机6和合成气主压缩机9由各自的蒸汽轮机10和11直接驱动。空气压缩机6优选为整体齿轮式。
回路3包括方框12,其包括至少一个催化反应器、气体冷却器和液体分离器以产生液氨23。未反应气体24通过另外的压缩机14(也称为循环器)在回路3中被再循环。
烃原料15(例如天然气)和蒸汽16在一次重整器4中在至少790℃的温度和至少50巴的压力下进行催化反应。
离开一次重整器1的部分重整气体17在二次重整器5中借助于由空气压缩机6输送的空气供应18而进一步反应。
驱动空气压缩机6的涡轮机10由优选地在氨装置1中产生的高压蒸汽30供能,例如通过从一次重整器的对流段的废气中回收热量。根据优选的实施方式,用于一次重整的蒸汽16从所述涡轮机10中被提取。
在一些实施方式中,蒸汽30的量超过为压缩机6供能所需的量。因此,涡轮机10也可以联接至发电机以产生电力。
离开二次重整器5的完全重整气体19在纯化部分7中被处理,例如通过转变转化、去除二氧化碳和甲烷化,从而产生纯化的合成气20。所述气体20进一步被送至干燥单元8以除去其中所含的水,获得基本上无水的物流21。所述干燥单元8优选为氨洗涤单元。
根据本发明,所述物流21的氢/氮摩尔比为2.5-3。
所述物流21被送到合成气主压缩机9的吸入侧,且所得到的高压合成气22优选地被送到循环器14,如图中所示。
从回路3中提取包含未反应的氢气和氮气和非活性气体(例如氩气和甲烷)的吹扫流27,例如形成循环器14的输送流26。所述吹扫流27被送至氢回收单元13以分离富氢气流25,使其返回至循环器14的吸入口,在那里与物流24混合。该富氢气流25用于调节H2与N2之比,特别是当物流21和22(由前端2产生)低于3时。根据合成氨的需要,通过加入从吹扫流27分离的氢气,将所述比例调节至3或接近3。

Claims (12)

1.一种用于从烃原料合成氨的方法,所述方法包括:
用蒸汽对所述烃原料进行一次重整的步骤,以得到第一重整气体,
对所述第一重整气体进行燃烧空气的二次重整的步骤,以得到原料气产物,
纯化所述原料气产物,以得到补充合成气,
在合成回路中将所述补充合成气转化成氨,
其特征在于:
所述一次重整在至少790℃的温度和至少50巴的压力下进行;所述二次重整的步骤在相比于化学计量不存在过量的空气的情况下进行;所述补充合成气的H2与N2摩尔比为2.5或更大且小于3,并且所述方法包括从所述回路中提取吹扫流、从所述吹扫流中分离含氢流、和将所述含氢流加入所述补充气中以调节所述H2与N2比。
2.根据权利要求1所述的方法,其中,一次重整在填充有催化剂的管中进行,并且所述管由选自以下的合金制成:
根据EN 10027分类的GX45NiCrSiNbTi3525或GX40NiCrSiNb3525;或
根据ASTM A-608和ASTM A-297分类的HP合金、HP模合金、HP模微合金、HP Nb微合金、HP微合金、HK微合金。
3.根据权利要求1所述的方法,所述H2与N2摩尔比在2.6至2.8的范围内。
4.根据权利要求1所述的方法,所述补充合成气转化成氨是在所述一次重整的压力的2.0至3.5倍的压力下进行。
5.根据权利要求4所述的方法,所述补充合成气转化成氨在100至200巴范围内的压力下进行。
6.根据权利要求5所述的方法,所述补充合成气转化成氨在120至150巴范围内的压力下进行。
7.根据权利要求1所述的方法,所述分离用膜式氢回收单元进行。
8.根据权利要求1所述的方法,包括在气体压缩机中压缩所述补充气的步骤,所述合成回路包括循环压缩机,并且所述气体压缩机的输出被送至所述回路的所述循环压缩机的吸入侧。
9.根据权利要求1所述的方法,其中,用于所述二次重整的空气进料在由蒸汽轮机供能的空气压缩机中被压缩,所述蒸汽轮机被供以高压蒸汽,并且从所述蒸汽轮机中提取用于所述一次重整步骤的蒸汽。
10.根据权利要求9所述的方法,其中,所述蒸汽轮机以相对于所述空气压缩机所需的蒸汽而言过量的方式使蒸汽膨胀,并驱动发电机以产生电力。
11.根据权利要求1所述的方法,其中,所述纯化的合成气通过氨洗涤进行干燥处理。
12.根据权利要求1所述的方法,其中,包括所述一次重整和燃烧空气的二次重整的重整工艺以等于或大于2.9的整体蒸汽/碳比进行。
CN201680011307.9A 2015-02-20 2016-01-27 用于生产氨的方法 Active CN107257776B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15156001.8 2015-02-20
EP15156001.8A EP3059210A1 (en) 2015-02-20 2015-02-20 Process for the ammonia production
PCT/EP2016/051658 WO2016131623A1 (en) 2015-02-20 2016-01-27 Process for the ammonia production

Publications (2)

Publication Number Publication Date
CN107257776A CN107257776A (zh) 2017-10-17
CN107257776B true CN107257776B (zh) 2021-02-02

Family

ID=52692367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680011307.9A Active CN107257776B (zh) 2015-02-20 2016-01-27 用于生产氨的方法

Country Status (13)

Country Link
US (2) US10647587B2 (zh)
EP (2) EP3059210A1 (zh)
CN (1) CN107257776B (zh)
AU (1) AU2016222007B2 (zh)
BR (1) BR112017017796A2 (zh)
CA (1) CA2977239C (zh)
CL (1) CL2017002119A1 (zh)
MX (1) MX2017010500A (zh)
MY (1) MY185718A (zh)
RU (1) RU2706059C2 (zh)
SA (1) SA517382134B1 (zh)
UA (1) UA119810C2 (zh)
WO (1) WO2016131623A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180230009A1 (en) * 2017-02-15 2018-08-16 Kwamina BEDU-AMISSAH Steam methane reformer tube outlet assembly
IT201800000620A1 (it) * 2018-01-08 2019-07-08 Nuovo Pignone Tecnologie Srl Impianto di produzione di ammoniaca
CN112262106A (zh) * 2018-06-08 2021-01-22 卡萨尔公司 甲醇生产方法
EP3623343A1 (en) * 2018-09-11 2020-03-18 Casale Sa Process for the synthesis of ammonia
CN116157359A (zh) * 2020-10-30 2023-05-23 卡萨乐有限公司 在部分负载下的氨合成回路的控制
EP4313847A1 (en) * 2021-03-30 2024-02-07 Casale Sa Process for ammonia synthesis using green hydrogen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101878181A (zh) * 2007-11-27 2010-11-03 阿梅尼亚·卡萨莱股份有限公司 生产氨合成气的方法
CN102596808A (zh) * 2009-10-27 2012-07-18 阿梅尼亚·卡萨莱股份有限公司 制备氨的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4077780A (en) * 1976-10-20 1978-03-07 Union Carbide Corporation Recovery of hydrogen and nitrogen from ammonia plant purge gas
GB1579577A (en) * 1977-04-14 1980-11-19 Robinson L F Reforming of hydrocarbons
DE2860718D1 (en) * 1977-09-16 1981-08-27 Ici Plc Process and plant for producing ammonia
US4687498A (en) * 1986-02-24 1987-08-18 The Boc Group, Inc. Argon recovery from hydrogen depleted ammonia plant purge gas utilizing a combination of cryogenic and non-cryogenic separating means
SU1770277A1 (ru) * 1989-10-30 1992-10-23 Gni Pi Azotnoj Promy Produktov Способ производства аммиака
CA2391500C (en) * 2000-03-03 2008-11-18 Process Management Enterprises Ltd. Ammonia synthesis process and apparatus for use therein
US7501078B2 (en) * 2007-01-10 2009-03-10 Air Products And Chemicals, Inc. Process for generating synthesis gas using catalyzed structured packing
JP5552284B2 (ja) * 2009-09-14 2014-07-16 信越化学工業株式会社 多結晶シリコン製造システム、多結晶シリコン製造装置および多結晶シリコンの製造方法
EP2374758A1 (en) * 2010-04-07 2011-10-12 Ammonia Casale S.A. Hydrogen and nitrogen recovery from ammonia purge gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101878181A (zh) * 2007-11-27 2010-11-03 阿梅尼亚·卡萨莱股份有限公司 生产氨合成气的方法
CN102596808A (zh) * 2009-10-27 2012-07-18 阿梅尼亚·卡萨莱股份有限公司 制备氨的方法

Also Published As

Publication number Publication date
RU2706059C2 (ru) 2019-11-13
MY185718A (en) 2021-05-31
UA119810C2 (uk) 2019-08-12
EP3059210A1 (en) 2016-08-24
CL2017002119A1 (es) 2018-03-16
MX2017010500A (es) 2017-11-28
CA2977239C (en) 2022-07-19
AU2016222007B2 (en) 2020-03-26
EP3259233A1 (en) 2017-12-27
US10647587B2 (en) 2020-05-12
US20180044192A1 (en) 2018-02-15
CN107257776A (zh) 2017-10-17
SA517382134B1 (ar) 2021-12-08
US20190367379A1 (en) 2019-12-05
CA2977239A1 (en) 2016-08-25
AU2016222007A1 (en) 2017-09-07
EP3259233B1 (en) 2019-01-23
WO2016131623A1 (en) 2016-08-25
BR112017017796A2 (pt) 2018-04-10
RU2017132708A (ru) 2019-03-20
RU2017132708A3 (zh) 2019-03-20

Similar Documents

Publication Publication Date Title
CN107257776B (zh) 用于生产氨的方法
EP3658491B1 (en) Method for the preparation of ammonia synthesis gas
AU2018308863B2 (en) Process for the co-production of methanol and ammonia
AU2018308586B2 (en) Method for the preparation of ammonia synthesis gas
CN107021450B (zh) 用于制备氨和尿素的方法
US20170267524A1 (en) Increasing hydrogen recovery from co + h2 synthesis gas
EP3802426B1 (en) Process for methanol production
EP2316792A1 (en) Ammonia production process
JPH0733253B2 (ja) アンモニア及びメタノールの併産方法
EP3366645A1 (en) Ammonia-urea integrated process and plant
RU2774658C1 (ru) Способ производства метанола
RU2800952C2 (ru) Способ и установка синтеза метанола
WO2023020771A1 (en) Process for the preparation of green ammonia synthesis gas
CN116710394A (zh) 用于甲醇生产的方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant