CN107243326A - 一种氧化石墨烯/壳聚糖复合气凝胶微球的制备方法 - Google Patents

一种氧化石墨烯/壳聚糖复合气凝胶微球的制备方法 Download PDF

Info

Publication number
CN107243326A
CN107243326A CN201710341124.XA CN201710341124A CN107243326A CN 107243326 A CN107243326 A CN 107243326A CN 201710341124 A CN201710341124 A CN 201710341124A CN 107243326 A CN107243326 A CN 107243326A
Authority
CN
China
Prior art keywords
graphene oxide
chitosan
microballoon
composite aerogel
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710341124.XA
Other languages
English (en)
Other versions
CN107243326B (zh
Inventor
杨冬芝
俞若梦
于中振
史永正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201710341124.XA priority Critical patent/CN107243326B/zh
Publication of CN107243326A publication Critical patent/CN107243326A/zh
Application granted granted Critical
Publication of CN107243326B publication Critical patent/CN107243326B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种氧化石墨烯/壳聚糖复合气凝胶微球的制备方法属于复合材料领域,采用静电喷雾结合冷冻干燥的方法制备了一种同时具备广谱和快速吸附性能的复合气凝胶微球。该复合气凝胶微球内部为中心发散的定向微通道结构,其中微通道的孔壁为壳聚糖分子链交联氧化石墨烯纳米片形成模块,构建的定向孔结构,在孔中壳聚糖分子链形成定向的蛛网状结构。本发明所述的微球对于多种金属离子和可溶性有机物在吸附速率快的同时具有广谱且高吸附容量的特点。

Description

一种氧化石墨烯/壳聚糖复合气凝胶微球的制备方法
技术领域:
本发明属于复合材料领域,涉及有机无机复合材料,特别是一种氧化石墨烯负载壳聚糖形成的有机无机复合气凝胶微球。
背景技术
随着现代工业的发展,危险化学品泄漏事故频繁发生,引起的水污染是全世界普遍面临的环境问题。污水往往含有多种重金属离子和可溶性有机物,导致的环境、健康和安全问题不容小觑。目前污水净化技术包括吸附,氧化还原,生物降解,过滤,蒸馏,萃取等。其中,吸附是一种快速、经济且有效的从水中分离污染物的技术。
氧化石墨烯(GO)具有生产成本低,比表面积大,亲水性高,含氧官能团丰富等特点,广泛用于高效水体吸附。由于静电或π-π共轭相互作用,GO对许多可溶性阳离子或芳香族污染物表现出很好的亲和力。此外,大比表面积和丰富的含氧官能团使得GO可以与其他功能材料符合,形成三维(3D)结构,提高吸附性能。壳聚糖(CS)作为一种环境友好的天然聚合物,含有大量氨基和羟基结合位点,可以用于金属离子和阴离子有机物的吸附。本专利基于上述几点,结合静电喷雾和冷冻干燥技术,制备了具有中心发散微通道结构的石墨烯壳聚糖复合气凝胶微球(微米),同时综合提升了对水体中金属离子和有机污染物的吸附性能。其中,气凝胶微球的中心发散微通道结构和大的比表面积有助于达到吸附的目的,以亚甲基蓝和甲基橙染料为例,可以在30min内达到吸附平衡。而同样组成的宏观的气凝胶材料,平衡时间需要约4h。同时,由于氧化石墨烯苯环的共轭作用和含氧官能团带负电荷,壳聚糖的氨基带正电荷,使得复合气凝胶微球具有广谱吸附的性质,能够吸附可溶性有机物(亚甲基蓝、甲基橙和苯酚),以及重金属离子(Pb(II)和Cr(VI))。其中亚甲基蓝的平衡吸附容量可达570mg g-1,Pb(II)平衡吸附容量可达780mg g-1
发明内容:
本发明的目的在于介绍一种制备氧化石墨烯/壳聚糖复合气凝胶微球的方法。静电喷雾结合冷冻干燥技术制备的微球,通过工艺参数控制,使得其具有不同的直径及吸附特性。在吸附领域,对比通常的块体状宏观复合气凝胶材料,依照本发明所制备的石墨烯壳聚糖复合气凝胶微球在保持大的吸附容量的同时,拥有广谱和快速吸附性能。
本发明实现目的的技术方案如下:
一种氧化石墨烯壳聚糖复合气凝胶微球的制备方法,其特征在于:该气凝胶微球具有中心发散微通道结构,微球的直径在几百微米至毫米级别可调控。特别的,调控氧化石墨烯和壳聚糖比例,可以针对不同的吸附质,包括染料、苯酚和金属离子进行吸附选择性的调控。
所述复合气凝胶微球的制备,其特征在于,包括以下步骤:
(1)Hummers’法制备氧化石墨烯:
采用天然石墨作为原料,将5g天然石墨,5g硝酸钠,150mL 98%硫酸加入三口烧瓶中,冰浴搅拌下加入15g高锰酸钾,35℃保持6h,加入200mL水,升温至90℃保持30min,加入30%双氧水40mL,静置后水洗离心至中性;将得到的氧化石墨泥浆冷冻干燥,重新分散在去离子水中,超声30min,得到氧化石墨烯分散液;
(2)配制氧化石墨烯壳聚糖分散液:
将氧化石墨烯分散液与壳聚糖溶液按照一定比例混合,得到氧化石墨烯与壳聚糖质量比为10:0.5-10:5的复合分散液;
(3)静电喷雾结合定向冷冻:
分散液置于静电喷雾装置,设置电压为17kV,针头距离收集液液面10cm,收集液为液氮冷却至80℃的正己烷;收集的冰微球抽滤除去正己烷;
(4)冷冻干燥:
将得到的冰微球冷冻干燥,温度为-50℃,压力为50Pa,即可得到氧化石墨烯/壳聚糖复合气凝胶微球。
附图说明
图1是气凝胶微球表观扫描电镜照片
图2是气凝胶微球内部定向微通道的扫描电镜照片
图3是气凝胶微球吸附金属离子和染料的动力学曲线
图4是氧化石墨烯和壳聚糖比例对金属离子和染料吸附容量的影响
图5是气凝胶微球和气凝胶块体亚甲基蓝吸附速率对比
图6是氧化石墨烯/壳聚糖复合气凝胶微球与其他常见吸附材料性能的对比
具体实施方式
下面通过具体实施实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。
实施例1:
将5g天然石墨,5g硝酸钠,150mL 98%硫酸加入三口烧瓶中,冰浴搅拌下加入15g高锰酸钾,35℃保持6h,加入200mL水,升温至90℃保持30min,加入30%双氧水40mL,静置后水洗离心至中性;将得到的氧化石墨泥浆冷冻干燥,重新分散在去离子水中,超声30min,得到氧化石墨烯分散液。将0.1g壳聚糖溶解在10ml去离子水中,搅拌12h,得到10mg/mL壳聚糖溶液。5mL氧化石墨烯分散液、4.75mL去离子水和0.25mL壳聚糖溶液混合,得到氧化石墨烯与壳聚糖质量比为10:0.5的复合分散液。
分散液置于注射器中,采用静电喷雾技术,电压为17kV,针头距离收集液液面10cm,收集液为液氮冷却至80℃的正己烷。收集的冰微球抽滤除去正己烷。将得到的冰微球冷冻干燥,温度低于-50℃,压力低于50Pa,即可得到氧化石墨烯壳聚糖复合气凝胶微球。
吸附测试步骤:在温和搅拌下将10mg氧化石墨烯壳聚糖复合气凝胶微球加入到50mL的亚甲基蓝溶液(500mg L-1)中。在一定的时间间隔,取1mL混合物,并通过紫外可见光谱测定浓度。最终亚甲基蓝的平衡吸附容量为578mg g-1
实施例2:
10mg/mL氧化石墨烯分散液以及10mg/mL壳聚糖溶液的制备过程同实施例1。5mL氧化石墨烯分散液、4.5mL去离子水和0.5mL壳聚糖溶液混合,得到氧化石墨烯与壳聚糖质量比为10:1的复合分散液。
分散液置于注射器中,采用静电喷雾结合冷冻干燥技术制备氧化石墨烯/壳聚糖复合气凝胶微球,过程同实施例1。
吸附测试步骤:在温和搅拌下将10mg氧化石墨烯壳聚糖复合气凝胶微球加入到50mL的甲基橙溶液(500mg L-1)中。在一定的时间间隔,取1mL混合物,并通过紫外可见光谱测定浓度。最终甲基橙平衡吸附容量为352mg g-1
实施例3:
10mg/mL氧化石墨烯分散液以及10mg/mL壳聚糖溶液的制备过程同实施例1。制备氧化石墨烯与壳聚糖质量比为10:2的复合分散液。
分散液置于注射器中,采用静电喷雾结合冷冻干燥技术制备氧化石墨烯/壳聚糖复合气凝胶微球,过程同实施例1。
吸附测试步骤:在温和搅拌下将10mg氧化石墨烯壳聚糖复合气凝胶微球加入到50mL的苯酚溶液(200mg L-1)中。在一定的时间间隔,取1mL混合物,并通过紫外可见光谱测定浓度。最终苯酚平衡吸附容量为78mg g-1
实施例4:
10mg/mL氧化石墨烯分散液以及10mg/mL壳聚糖溶液的制备过程同实施例1。制备氧化石墨烯与壳聚糖质量比为10:5的复合分散液。
分散液置于注射器中,采用静电喷雾结合冷冻干燥技术制备氧化石墨烯/壳聚糖复合气凝胶微球,过程同实施例1。
吸附测试步骤:在温和搅拌下将10mg氧化石墨烯壳聚糖复合气凝胶微球加入到50mL的硝酸铅溶液(500mg L-1)中。在一定的时间间隔,取1mL混合物,并通过电感耦合等离子体原子吸收光谱测定浓度。最终铅离子平衡吸附容量为742mg g-1
实施例5:
10mg/mL氧化石墨烯分散液以及10mg/mL壳聚糖溶液的制备过程同实施例1。制备氧化石墨烯与壳聚糖质量比为10:1的复合分散液。
分散液置于注射器中,采用静电喷雾结合冷冻干燥技术制备氧化石墨烯/壳聚糖复合气凝胶微球,过程同实施例1。
吸附测试步骤:在温和搅拌下将10mg氧化石墨烯壳聚糖复合气凝胶微球加入到50mL的硝酸铜溶液(500mg L-1)中。在一定的时间间隔,取1mL混合物,并通过电感耦合等离子体原子吸收光谱测定浓度。最终铜离子的平衡吸附容量为422mg g-1

Claims (1)

1.一种氧化石墨烯/壳聚糖复合气凝胶微球的制备方法,其特征在于,包括以下步骤:
(1)Hummers’法制备氧化石墨烯:
采用天然石墨作为原料,将5g天然石墨,5g硝酸钠,150mL质量百分比浓度为98%的硫酸加入三口烧瓶中,冰浴搅拌下加入15g高锰酸钾,35℃保持6h,加入200mL水,升温至90℃保持30min,加入质量百分比浓度为30%的双氧水40mL,静置后水洗离心至中性;将得到的氧化石墨泥浆冷冻干燥,重新分散在去离子水中,超声30min,得到氧化石墨烯分散液;
(2)配制氧化石墨烯壳聚糖分散液:
将氧化石墨烯分散液与壳聚糖溶液按照一定比例混合,得到氧化石墨烯与壳聚糖质量比为10:0.5-10:5的复合分散液;
(3)静电喷雾结合定向冷冻:
分散液置于静电喷雾装置,设置电压为17kV,针头距离收集液液面10cm,收集液为液氮冷却至80℃的正己烷;收集的冰微球抽滤除去正己烷;
(4)冷冻干燥:
将得到的冰微球冷冻干燥,温度为-50℃,压力为50Pa,得到氧化石墨烯/壳聚糖复合气凝胶微球。
CN201710341124.XA 2017-05-16 2017-05-16 一种氧化石墨烯/壳聚糖复合气凝胶微球的制备方法 Active CN107243326B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710341124.XA CN107243326B (zh) 2017-05-16 2017-05-16 一种氧化石墨烯/壳聚糖复合气凝胶微球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710341124.XA CN107243326B (zh) 2017-05-16 2017-05-16 一种氧化石墨烯/壳聚糖复合气凝胶微球的制备方法

Publications (2)

Publication Number Publication Date
CN107243326A true CN107243326A (zh) 2017-10-13
CN107243326B CN107243326B (zh) 2019-10-18

Family

ID=60016939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710341124.XA Active CN107243326B (zh) 2017-05-16 2017-05-16 一种氧化石墨烯/壳聚糖复合气凝胶微球的制备方法

Country Status (1)

Country Link
CN (1) CN107243326B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107652815A (zh) * 2017-10-24 2018-02-02 沈阳顺风新材料有限公司 一种吸附并去除甲醛的室内乳胶漆的制备方法
CN107827104A (zh) * 2017-11-30 2018-03-23 石狮市川大先进高分子材料研究中心 一种氧化石墨烯微球、石墨烯微球的制备方法
CN108083377A (zh) * 2017-12-25 2018-05-29 中国科学院合肥物质科学研究院 一种降低重金属砷毒性的方法
CN108176377A (zh) * 2018-01-23 2018-06-19 贵州省建材产品质量监督检验院 开孔泡沫/氧化石墨烯气凝胶复合吸附材料的制备方法
CN108421534A (zh) * 2018-02-08 2018-08-21 中山大学 一种壳聚糖凝胶材料及其制备方法、废水处理方法和应用
CN108905981A (zh) * 2018-07-12 2018-11-30 山东联星能源集团有限公司 一种低成本吸附重金属离子的石墨烯/CNTs气凝胶制备方法
CN109174041A (zh) * 2018-10-19 2019-01-11 常州大学 一种GO-CS多孔印迹水凝胶的制备及其在水中去除Cu(II)的应用
CN109317061A (zh) * 2018-09-21 2019-02-12 广西大学 一种水合氧化铁壳聚糖负载氧化石墨烯气凝胶的制备方法
CN110624125A (zh) * 2018-06-25 2019-12-31 香港城市大学深圳研究院 基于氧化石墨烯和壳聚糖的3d壳结构复合材料制备方法
CN112473630A (zh) * 2020-11-13 2021-03-12 山东东岳化工有限公司 复合石墨烯壳聚糖气凝胶及其制备方法和应用
CN113735554A (zh) * 2021-09-29 2021-12-03 四川大学 功能性二维材料气凝胶复合微球及其宏量制备方法
CN114452949A (zh) * 2022-02-22 2022-05-10 武夷学院 SiO2微球/石墨烯/壳聚糖复合铅离子印迹水凝胶的制备方法
CN115105621A (zh) * 2022-06-04 2022-09-27 浙江理工大学 一种含有壳聚糖修饰氧化石墨烯的蚕丝-蛛丝复合丝素蛋白纳米微球的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012028964A3 (en) * 2010-09-03 2013-07-04 Indian Institute Of Technology Reduced graphene oxide-based-composites for the purification of water
CN105195067A (zh) * 2015-09-15 2015-12-30 四川大学 一种石墨烯气凝胶微球及其制备方法和用途
CN105344329A (zh) * 2015-11-30 2016-02-24 武汉科技大学 一种氧化石墨烯/壳聚糖微球及其制备方法
CN105642246A (zh) * 2016-03-25 2016-06-08 郑州大学 氧化石墨烯/壳聚糖多孔复合微球及其制备方法和应用
CN106032274A (zh) * 2015-03-19 2016-10-19 中国科学院上海应用物理研究所 一种石墨烯水凝胶、石墨烯气凝胶及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012028964A3 (en) * 2010-09-03 2013-07-04 Indian Institute Of Technology Reduced graphene oxide-based-composites for the purification of water
CN106032274A (zh) * 2015-03-19 2016-10-19 中国科学院上海应用物理研究所 一种石墨烯水凝胶、石墨烯气凝胶及其制备方法和应用
CN105195067A (zh) * 2015-09-15 2015-12-30 四川大学 一种石墨烯气凝胶微球及其制备方法和用途
CN105344329A (zh) * 2015-11-30 2016-02-24 武汉科技大学 一种氧化石墨烯/壳聚糖微球及其制备方法
CN105642246A (zh) * 2016-03-25 2016-06-08 郑州大学 氧化石墨烯/壳聚糖多孔复合微球及其制备方法和应用

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107652815A (zh) * 2017-10-24 2018-02-02 沈阳顺风新材料有限公司 一种吸附并去除甲醛的室内乳胶漆的制备方法
CN107652815B (zh) * 2017-10-24 2020-05-12 沈阳顺风新材料有限公司 一种吸附并去除甲醛的室内乳胶漆的制备方法
CN107827104A (zh) * 2017-11-30 2018-03-23 石狮市川大先进高分子材料研究中心 一种氧化石墨烯微球、石墨烯微球的制备方法
CN108083377A (zh) * 2017-12-25 2018-05-29 中国科学院合肥物质科学研究院 一种降低重金属砷毒性的方法
CN108176377A (zh) * 2018-01-23 2018-06-19 贵州省建材产品质量监督检验院 开孔泡沫/氧化石墨烯气凝胶复合吸附材料的制备方法
CN108421534A (zh) * 2018-02-08 2018-08-21 中山大学 一种壳聚糖凝胶材料及其制备方法、废水处理方法和应用
CN110624125A (zh) * 2018-06-25 2019-12-31 香港城市大学深圳研究院 基于氧化石墨烯和壳聚糖的3d壳结构复合材料制备方法
CN110624125B (zh) * 2018-06-25 2022-03-04 香港城市大学深圳研究院 基于氧化石墨烯和壳聚糖的3d壳结构复合材料制备方法
CN108905981A (zh) * 2018-07-12 2018-11-30 山东联星能源集团有限公司 一种低成本吸附重金属离子的石墨烯/CNTs气凝胶制备方法
CN109317061A (zh) * 2018-09-21 2019-02-12 广西大学 一种水合氧化铁壳聚糖负载氧化石墨烯气凝胶的制备方法
CN109174041A (zh) * 2018-10-19 2019-01-11 常州大学 一种GO-CS多孔印迹水凝胶的制备及其在水中去除Cu(II)的应用
CN112473630A (zh) * 2020-11-13 2021-03-12 山东东岳化工有限公司 复合石墨烯壳聚糖气凝胶及其制备方法和应用
CN113735554A (zh) * 2021-09-29 2021-12-03 四川大学 功能性二维材料气凝胶复合微球及其宏量制备方法
CN113735554B (zh) * 2021-09-29 2022-07-05 四川大学 功能性二维材料气凝胶复合微球及其宏量制备方法
CN114452949A (zh) * 2022-02-22 2022-05-10 武夷学院 SiO2微球/石墨烯/壳聚糖复合铅离子印迹水凝胶的制备方法
CN114452949B (zh) * 2022-02-22 2023-10-24 武夷学院 SiO2微球/石墨烯/壳聚糖复合铅离子印迹水凝胶的制备方法
CN115105621A (zh) * 2022-06-04 2022-09-27 浙江理工大学 一种含有壳聚糖修饰氧化石墨烯的蚕丝-蛛丝复合丝素蛋白纳米微球的制备方法

Also Published As

Publication number Publication date
CN107243326B (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
CN107243326B (zh) 一种氧化石墨烯/壳聚糖复合气凝胶微球的制备方法
Alqadami et al. Adsorptive removal of toxic dye using Fe3O4–TSC nanocomposite: equilibrium, kinetic, and thermodynamic studies
Ma et al. Chemical reduction and removal of Cr (VI) from acidic aqueous solution by ethylenediamine-reduced graphene oxide
Liu et al. Recent advances of 3D graphene-based adsorbents for sample preparation of water pollutants: A review
Venkateswarlu et al. Bioinspired 2D-carbon flakes and Fe3O4 nanoparticles composite for arsenite removal
Ge et al. Lignin microspheres: An effective and recyclable natural polymer-based adsorbent for lead ion removal
Liu et al. Simultaneous removal of cationic and anionic dyes from environmental water using montmorillonite-pillared graphene oxide
Javadian et al. Adsorption characteristics of Ni (II) from aqueous solution and industrial wastewater onto Polyaniline/HMS nanocomposite powder
Tang et al. Rapid adsorption of 2, 4-dichlorophenoxyacetic acid by iron oxide nanoparticles-doped carboxylic ordered mesoporous carbon
Al-Degs et al. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon
Bian et al. Adsorption of cadmium ions from aqueous solutions by activated carbon with oxygen-containing functional groups
Li et al. Preparation of polyvinyl alcohol/chitosan hydrogel compounded with graphene oxide to enhance the adsorption properties for Cu (II) in aqueous solution
Govarthanan et al. Synthesis and characterization of lanthanum-based metal organic framework decorated polyaniline for effective adsorption of lead ions from aqueous solutions
CN104475056A (zh) 一种吸附重金属离子的酚胺聚合物的制备方法及其应用
Wang et al. Electrospinning Polyvinyl alcohol/silica-based nanofiber as highly efficient adsorbent for simultaneous and sequential removal of Bisphenol A and Cu (II) from water
CN103432994B (zh) 磁性石墨烯基吸油泡沫材料的制备方法
Yuan et al. Hierarchically porous nitrogen-doped carbon materials as efficient adsorbents for removal of heavy metal ions
CN109608655B (zh) 一种双功能基团MOFs材料及其制备方法与应用
CN105382270A (zh) 一种绿色合成纳米零价铁镍双金属材料的方法及用途
Xinhong et al. Optimization of ex-situ washing removal of polycyclic aromatic hydrocarbons from a contaminated soil using nano-sulfonated graphene
Li et al. Preparation of levofloxacin-imprinted nanoparticles using designed deep eutectic solvents for the selective removal of levofloxacin pollutants from environmental waste water
Yang et al. Adsorption behavior of cross-linked chitosan modified by graphene oxide for Cu (II) removal
Guo et al. Simultaneously efficient adsorption and highly selective separation of U (VI) and Th (IV) by surface-functionalized lignin nanoparticles: a novel pH-dependent process
Yi et al. One‐step synthesis of hierarchical micro‐mesoporous SiO2/reduced graphene oxide nanocomposites for adsorption of aqueous Cr (VI)
CN105597667A (zh) 悬浮球型凹凸棒吸附剂的制备方法及其处理工业废水中重金属的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant