CN107231590B - 用于调谐扬声器的失真响应的技术 - Google Patents

用于调谐扬声器的失真响应的技术 Download PDF

Info

Publication number
CN107231590B
CN107231590B CN201710176967.9A CN201710176967A CN107231590B CN 107231590 B CN107231590 B CN 107231590B CN 201710176967 A CN201710176967 A CN 201710176967A CN 107231590 B CN107231590 B CN 107231590B
Authority
CN
China
Prior art keywords
speaker
audio signal
tuned
response
transfer function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710176967.9A
Other languages
English (en)
Other versions
CN107231590A (zh
Inventor
A.伊耶
J.哈钦斯
R.A.克雷费尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harman International Industries Inc
Original Assignee
Harman International Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harman International Industries Inc filed Critical Harman International Industries Inc
Publication of CN107231590A publication Critical patent/CN107231590A/zh
Application granted granted Critical
Publication of CN107231590B publication Critical patent/CN107231590B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • H04R3/08Circuits for transducers, loudspeakers or microphones for correcting frequency response of electromagnetic transducers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/02Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos
    • G10H1/06Circuits for establishing the harmonic content of tones, or other arrangements for changing the tone colour
    • G10H1/12Circuits for establishing the harmonic content of tones, or other arrangements for changing the tone colour by filtering complex waveforms
    • G10H1/125Circuits for establishing the harmonic content of tones, or other arrangements for changing the tone colour by filtering complex waveforms using a digital filter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/155Musical effects
    • G10H2210/311Distortion, i.e. desired non-linear audio processing to change the tone color, e.g. by adding harmonics or deliberately distorting the amplitude of an audio waveform
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/14Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means
    • G10H3/18Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means using a string, e.g. electric guitar
    • G10H3/186Means for processing the signal picked up from the strings
    • G10H3/187Means for processing the signal picked up from the strings for distorting the signal, e.g. to simulate tube amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers
    • H04R29/003Monitoring arrangements; Testing arrangements for loudspeakers of the moving-coil type

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本发明提供了一种校正器,其被配置来变换音频信号以补偿不希望的扬声器失真特性。本发明还提供了一种调谐滤波器,其被配置来变换音频信号以并入与目标扬声器相关联的期望的失真特性。通过将所述调谐滤波器和所述校正器链接在一起,可以修改音频信号,使得所述扬声器在输出所述音频信号时具有所述目标扬声器的响应特性。

Description

用于调谐扬声器的失真响应的技术
技术领域
所公开的实施方案大体上涉及信号处理,并且更具体地说涉及用于调谐扬声器的失真响应的技术。
背景技术
常规扬声器是基于电输入信号生成声信号的物理装置。扬声器可以具有各式各样的物理结构,但通常扬声器包括一个或多个磁体、一个或多个音圈以及一个或多个扬声器纸盆。与给定扬声器相关联的磁体、音圈和扬声器纸盆规定扬声器的线性和非线性响应特性。
扬声器的非线性响应特性产生本领域已知为“失真”的声效应。在一些情况下,失真可能是不合乎期望的,但在其他情况下,失真可以被感知为向由扬声器生成的声信号添加期望的“纹理”。例如,吉他放大器通常包括一个或多个失真滤波器,所述失真滤波器放大接收的吉他信号的某些非线性特性,从而产生一些收听者发现听觉上令人满意的失真的吉他信号。
与常规扬声器相关联的一个缺点是与给定扬声器相关联的失真取决于所述扬声器的物理结构。因此,失真的特性通常不能在不更改扬声器的物理结构的情况下改变。因此,由扬声器添加的任何失真通常包括扬声器的声输出的一部分。
如前所述,用于调节扬声器的失真响应的更有效的技术将是有用的。
发明内容
陈述的一个或多个实施方案包括用于生成扬声器的期望响应的计算机实现的方法,其包括:调谐音频信号以增强与第一输出装置相关联的一个或多个期望的失真特性以便产生调谐的音频信号;校正调谐的音频信号以衰减与第二输出装置相关联的一个或多个不期望的失真特性以便产生校正的音频信号;通过第二输出装置输出基于校正的音频信号的最终信号,其中最终信号包括与第一输出装置相关联的一个或多个期望的失真特性。
公开实施方案的至少一个优点是,与扬声器相关联的不想要的失真特性可以减轻,而与另一扬声器相关联的期望的失真特性可以并入到音频信号中。
附图说明
因此,为了详细理解上文阐述的一个或多个实施方案的特征,通过参考某些特定实施方案来对以上简要概述的一个或多个实施方案进行更具体的描述,这些实施方案中的一些在附图中示出。然而,应注意,附图仅示出典型的实施方案,且因此不应被视为以任何方式限制其范围,因为各种实施方案的范围也包括其他实施方案。
图1示出被配置来实现各种实施方案的一个或多个方面的系统;
图2示出根据各种实施方案的图1的系统的示例性实现;
图3A至图3D示出根据各种实施方案的将图1的扬声器的原始响应与校正的响应进行比较的各个曲线图;
图4A至图4D示出根据各种实施方案的将图1的扬声器的原始响应与期望响应进行比较的各个曲线图;
图5A至图5D示出根据各种实施方案的将图3A至图3D的校正的响应与图4A至图4D的期望响应进行比较的各个曲线图;
图6A至图6D示出根据各种实施方案的将图1的扬声器的最终响应与图4A至图4D的期望响应进行比较的各个曲线图;
图7是根据各种实施方案的用于修改扬声器的失真响应的方法步骤的流程图;
图8A至图8B示出根据各种实施方案的对图1的调谐滤波器和校正器进行建模的示例性子系统;并且
图9是根据各种实施方案的配置调谐滤波器和校正器以修改扬声器的失真响应的方法步骤的流程图。
具体实施方式
在以下描述中,阐述众多具体细节以提供对某些具体实施方案的更透彻理解。然而,本领域的技术人员将明白,其他实施方案可在没有这些具体细节中的一个或多个细节的情况下或在具有另外特定细节的情况下加以实践。
系统概述
图1示出被配置来实现各种实施方案的一个或多个方面的系统。如图所示,信号链100包括以级联方式联接在一起的信号源110、调谐滤波器120、校正器130、放大器140以及扬声器150。信号链100和其中包括的元件可以通过硬件和/或软件元件的任何技术上可行的组合来实现,如下面结合图2更详细地描述的。
在信号链100的操作期间,信号源110生成音频信号112并且随后将所述音频信号传输到调谐滤波器120。调谐滤波器120基于调谐参数122处理音频信号112,并且生成调谐的信号124。调谐滤波器120将调谐的信号124传输到校正器130。校正器130基于扬声器参数132处理调谐的信号124,以便生成预校正的信号134。校正器130将预校正的信号134传输到放大器140。放大器140放大预校正的信号134以生成放大的信号142。放大器140将放大的信号142传输到扬声器150。扬声器150基于放大的信号142生成声信号152,并且随后输出声信号152。
信号源110可以是任何技术上可行的电音频信号源,包括例如但不限于麦克风、电吉他拾音器、数字信号发生器等。音频信号112是可以表示由信号源110转换的声信号或者由信号源110生成的纯虚拟信号的电信号。
调谐滤波器120是模拟或数字滤波器,所述模拟或数字滤波器被配置来对音频信号112执行信号处理操作以将期望的线性和/或非线性特性包括到所述信号中,包括期望的失真特性。那些失真特性由调谐参数122定义。调谐参数122定义可对应于不同扬声器的不同组的失真特性,所述扬声器150可以被配置来通过信号链100的各个级仿真。
调谐滤波器120和调谐参数122可以通过各种各样的不同类型的过程生成,包括例如但不限于物理系统建模、Hammerstein模型以及Volterra核等。下面结合图8B至图9更详细地描述用于生成调谐滤波器120和调谐参数122的示例性方法。如上所述,调谐滤波器120基于调谐参数122处理音频信号112以生成调谐的信号124。调谐的信号124表示被修改以包括上述期望的失真特性的音频信号112。
校正器130是模拟或数字滤波器,所述模拟或数字滤波器被配置来对调谐的信号124执行信号处理操作,以便补偿某些线性和/或非线性特性,包括随后可能由扬声器150感应的不期望的失真特性。那些失真特性由扬声器参数132定义。扬声器参数132表示扬声器150的模型,并且可以由校正器130用作扬声器150的逆传递函数。因此,校正器130“预校正”调谐的信号124以预先减轻扬声器150的不想要的失真效应。
校正器130和扬声器参数132可以通过各种各样的不同类型的过程生成,包括例如但不限于物理系统建模、Hammerstein模型以及Volterra核等。下面结合图8A至图9更详细地描述用于生成校正器130和扬声器参数132的示例性方法。如上所述,校正器130基于扬声器参数132处理调谐的信号124,以便生成预校正的信号134。
放大器140是被配置来放大预校正的信号134的幅值的信号处理元件。这样做时,放大器140生成放大的信号142。扬声器150接收放大的信号142,并且随后生成声信号152。因为如所描述的,调谐滤波器120将期望的失真特性并入到音频信号112中,并且校正器130补偿扬声器150内的不想要的失真特性,所以声信号152可以被特别设计为具有精确特性。因此,信号链100作为整体将音频信号112转换为具有特别设计的线性和/或非线性特性的声信号152。如上所述,信号链100可以以许多不同的方式实现。图2示出一个示例性实现。
图2示出根据各种实施方案的图1的系统的示例性实现。如图所示,信号链100的实现200包括联接到计算装置210的信号源110,所述计算装置210进而联接到放大系统220。
计算装置210包括处理器212、输入/输出(I/O)装置214以及存储器216。存储器216包括仿真应用218。仿真应用218包括调谐滤波器120、调谐参数122、校正器130以及扬声器参数132。
处理器212可以是用于处理数据和执行应用的任何技术上可行的硬件,包括例如但不限于中央处理单元(CPU)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)等。I/O装置214可以包括:用于接收输入的装置,例如像但不限于键盘、鼠标或麦克风;用于提供输出的装置,例如像但不限于显示屏或扬声器;以及用于接收输入和提供输出的装置,例如像但不限于触摸屏。
存储器216可以是被配置来存储数据的任何技术上可行的介质,包括例如但不限于硬盘、随机存取存储器(RAM)、只读存储器(ROM)等。仿真应用218包括当由处理器212执行时执行先前结合图1描述的调谐滤波器120和校正器130的各种操作的程序代码。
放大系统220包括放大器140和扬声器150。放大系统220可以是例如但不限于乐器放大器或公共广播(PA)系统以及其他可能性。在一个实施方案中,放大系统220是模拟装置。
同样,信号链100可以以任何技术上可行的方式来实现。在此提供实现200仅用于说明的目的,并且不意味着限制。下面结合图3A至图6D更详细地描述信号链100的操作。
信号链元件的响应特性的比较
图3A至图3D示出根据各种实施方案的将图1的扬声器的原始响应与校正的响应进行比较的各个曲线图。
如图3A所示,曲线图300包括X轴302和Y轴304,沿着所述X轴302和Y轴304显示扬声器150的原始响应306以及校正器130和扬声器150的级联的校正的响应308。在图3A中,原始响应306和校正的响应308是线性响应。
如图3B所示,曲线图310包括X轴312和Y轴314,沿着所述X轴312和Y轴314显示扬声器150的原始响应316以及校正器130和扬声器150的级联的校正的响应318。在图3B中,原始响应316和校正的响应318是二次谐波失真响应。
如图3C所示,曲线图320包括X轴322和Y轴324,沿着所述X轴322和Y轴324显示扬声器150的原始响应326以及校正器130和扬声器150的级联的校正的响应328。在图3C中,原始响应326和校正的响应328是三次谐波失真响应。
如图3D所示,曲线图330包括X轴332和Y轴334,沿着所述X轴332和Y轴334显示扬声器150的原始响应336以及校正器130和扬声器150的级联的校正的响应338。在图3D中,原始响应336和校正的响应338是四次谐波失真响应。
大体参考图3A至图3D,所示的各个曲线图说明校正器130致使扬声器150在各种线性和非线性方案中生成校正的响应,在许多频率下具有与扬声器150的原始响应相比修改的幅值。因此,校正器130可以减少或消除与某些频率相关联的特定响应特性。那些特定响应特性可以表示在生成声信号时由扬声器150潜在地感应的不想要的失真。校正器130预先校正所接收的信号,以便在扬声器150生成所述失真之前补偿这种不想要的失真。所示的特定校正的响应通常从扬声器参数132导出。
图4A至图4D示出根据各种实施方案的将图1的扬声器的原始响应与期望响应进行比较的各个曲线图;
如图4A所示,曲线图400包括X轴402和Y轴404,沿着所述X轴402和Y轴404显示扬声器150的原始响应306以及调谐滤波器120的期望响应408。在图4A中,原始响应306和期望响应408是线性响应。
如图4B所示,曲线图410包括X轴412和Y轴414,沿着所述X轴412和Y轴414显示扬声器150的原始响应316以及调谐滤波器120的期望响应418。在图4B中,原始响应316和期望响应418是二次谐波失真响应。
如图4C所示,曲线图420包括X轴422和Y轴424,沿着所述X轴422和Y轴424显示扬声器150的原始响应326以及调谐滤波器120的期望响应428。在图4C中,原始响应326和期望响应428是三次谐波失真响应。
如图4D所示,曲线图430包括X轴432和Y轴434,沿着所述X轴432和Y轴434显示扬声器150的原始响应336以及调谐滤波器120的期望响应438。在图4D中,原始响应336和期望响应438是四次谐波失真响应。
大体参考图4A至图4D,所示的各个曲线图说明调谐滤波器120在各种线性和非线性方案中生成期望响应,在许多频率下具有与扬声器150的原始响应相比修改的幅值。因此,调谐滤波器120可以引入与某些频率相关联的特定响应特性。那些特定响应特性可以表示与具有与扬声器150相比不同的物理构造的扬声器相关联的期望失真。调谐滤波器120调谐所接收的信号以添加期望失真,之后扬声器150输出那些信号。所示的特定期望响应通常从调谐参数122导出。
图5A至图5D示出根据各种实施方案的将图3A至图3D的校正的响应与图4A至图4D的期望响应进行比较的各个曲线图。
如图5A所示,曲线图500包括X轴502和Y轴504,沿着所述X轴502和Y轴504显示校正器130和扬声器150的级联的校正的响应308以及调谐滤波器120的期望响应408。在图5A中,校正的响应308和期望响应408是线性响应。
如图5B所示,曲线图510包括X轴512和Y轴514,沿着所述X轴512和Y轴514显示校正器130和扬声器150的级联的校正的响应318以及调谐滤波器120的期望响应418。在图5B中,校正的响应318和期望响应418是二次谐波失真响应。
如图5C所示,曲线图520包括X轴522和Y轴524,沿着所述X轴522和Y轴524显示校正器130和扬声器150的级联的校正的响应328以及调谐滤波器120的期望响应428。在图5C中,校正的响应328和期望响应428是三次谐波失真响应。
如图5D所示,曲线图530包括X轴532和Y轴534,沿着所述X轴532和Y轴534显示校正器130和扬声器150的级联的校正的响应338以及调谐滤波器120的期望响应438。在图5D中,校正的响应338和期望响应438是四次谐波失真响应。
大体参考图5A至图5D,所示的各个曲线图在各种线性和非线性方案中将与调谐滤波器120相关联的期望响应与校正器130和扬声器150的级联相关联的校正的响应进行比较。当通过调谐滤波器120、校正器130和扬声器150处理音频信号从而应用这些图中所示的各种响应时,可以生成缺少特定不想要的失真特性并且包括目标失真特性的声信号。
图6A至图6D示出根据各种实施方案的将图1的扬声器的最终响应与图4A至图4D的期望响应进行比较的各个曲线图。
如图6A所示,曲线图600包括X轴602和Y轴604,沿着所述X轴602和Y轴604显示调谐滤波器120的期望响应408以及扬声器150的最终响应608。在图6A中,期望响应408和最终响应608是线性响应。
如图6B所示,曲线图610包括X轴612和Y轴614,沿着所述X轴612和Y轴614显示调谐滤波器120的期望响应418以及扬声器150的最终响应618。在图6B中,期望响应418和最终响应618是二次谐波失真响应。
如图6C所示,曲线图620包括X轴622和Y轴624,沿着所述X轴622和Y轴624显示调谐滤波器120的期望响应428以及扬声器150的最终响应628。在图6C中,期望响应428和最终响应628是三次谐波失真响应。
如图6D所示,曲线图630包括X轴632和Y轴634,沿着所述X轴632和Y轴634显示调谐滤波器120的期望响应438以及扬声器150的最终响应638。在图6D中,期望响应438和最终响应638是四次谐波失真响应。
大体参考图6A至图6D,所示的各个曲线图在各种线性和非线性方案中将与调谐滤波器120相关联的期望响应与扬声器150的最终响应进行比较。理想地,任何特定方案中的两个响应是相同的。然而,由于对扬声器150进行建模的潜在限制,扬声器150的实际响应可能与所述扬声器的期望响应稍有不同。具体地,校正器130可以不执行扬声器150的理想逆,并因此可能不能消除由扬声器150引入的所有失真特性。尽管如此,校正器130可以以可接近理想逆的任意精度近似扬声器150的逆。
本领域技术人员将认识到,出于示例性目的提供图3A至图6D中所示的不同曲线图以便示出调谐滤波器120、校正器130和扬声器150的可能响应。这些元件的实际响应曲线可以基于调谐参数122、扬声器参数132以及扬声器150的物理性质而变化。
图7是根据各种实施方案的用于修改扬声器的失真响应的方法步骤的流程图。虽然结合图1至图6D的系统描述了方法步骤,但本领域技术人员将理解的是,被配置来以任何顺序执行方法步骤的任何系统均在公开实施方案的范围内。
如图所示,方法700在步骤702处开始,其中调谐滤波器120从音频源110接收音频信号112。信号源110可以是任何技术上可行的电音频信号源,包括例如但不限于麦克风、电吉他拾音器、数字信号发生器等。音频信号112是可以表示由信号源110转换的声信号或者由信号源110生成的纯虚拟信号的电信号。
在步骤704处,调谐滤波器变换音频信号112以增强期望的失真特性。这样做时,调谐滤波器120生成调谐的信号124。调谐滤波器120是模拟或数字滤波器,所述模拟或数字滤波器被配置来对音频信号112执行信号处理操作以将期望的线性和/或非线性特性包括到所述信号中,包括期望的失真特性。那些失真特性由调谐参数122定义。调谐参数122定义可对应于不同扬声器的不同组的失真特性,所述扬声器150可以被配置来通过信号链100的各个级仿真。
在步骤706处,校正器变换调谐的信号124以衰减潜在地由扬声器150引入的不想要的失真特性。在这样做时,校正器130生成预校正的信号134。校正器130是模拟或数字滤波器,所述模拟或数字滤波器被配置来对调谐的信号124执行信号处理操作,以便补偿某些线性和/或非线性特性,包括随后可能由扬声器150感应的不期望的失真特性。那些失真特性由扬声器参数132定义。扬声器参数132表示扬声器150的模型,并且可以由校正器130用作扬声器150的逆传递函数。因此,校正器130“预校正”调谐的信号124以预先减轻扬声器150的不想要的失真效应。
在步骤708处,放大器140放大预校正的信号134以产生放大的信号142。放大的信号142表示具有较大振幅的预校正的信号142的放大版本。在步骤710处,扬声器150输出具有由调谐滤波器120引入的期望失真特性的声信号152,但没有名义上与扬声器150相关联的不想要的失真特性。因为如所描述的,调谐滤波器120将期望的失真特性并入到音频信号112中,并且校正器130补偿调谐的信号124内的不想要的失真特性,所以声信号152可以被特别设计为具有精确特性。因此,信号链100作为整体将音频信号112转换为具有特别设计的线性和/或非线性特性的声信号152。
如上所述,调谐滤波器120和/或调谐参数122以及校正器130和/或扬声器参数132可以通过多种不同的技术上可行的方法生成。下面结合图8A和图8B更详细地描述用于生成这些元件的示例性方法。
调谐滤波器和校正器配置
图8A至图8B示出根据各种实施方案的对图1的调谐滤波器和校正器进行建模的示例性子系统。如上面结合图1所讨论的,可以应用许多技术上可行的方法来生成调谐滤波器120和校正器130。图8A至图8B示出示例性、非限制性方法。
如图8A所示,信号链800包括图1的扬声器150,所述扬声器150被配置来接收测试输入802并响应于这些输入生成输出804。测试输入802可以由测试设备生成,并且可以包括例如但不限于扫描正弦波、啁啾、阶跃函数以及可能地用于测量物理系统的动态响应的其他类型的信号。
传感器阵列806联接到扬声器150,并且被配置来在扬声器150对测试输入802做出响应时测量与扬声器150相关联的各种时变物理量808。这些量包括扬声器的输出压力P、与扬声器150相关联的音圈的位移D以及响应于测试信号802驱动扬声器150的音圈电流I。自适应算法810被配置来接收物理属性808以及输出804,并且随后生成集中参数模型812。
集中参数模型812是包括扬声器参数132的扬声器150的物理模型。集中参数模型812可以由一组微分方程定义,所述微分方程与扬声器参数132的数值结合来定义扬声器150的动态响应。自适应算法810可以采用梯度下降算法以便估计扬声器参数132的值。基于这些扬声器参数132,随后可以评估上述微分方程。下面结合方程式1至4和表1阐述微分方程和扬声器参数132。
.给定输入(电压)刺激u(t),可以使用方程式1计算语音线圈电流I(t):
Figure GDA0002668402520000111
可以使用方程式2计算位移x(t):
Figure GDA0002668402520000112
使用方程式3计算磁阻力:
Figure GDA0002668402520000113
可以使用方程式4计算输出压力p(t):
Figure GDA0002668402520000114
集中参数模型的输出是p(t),其基于扬声器参数132将压力定义为时间的函数。下面结合表1列出这些扬声器参数,其中一些在上面的方程式1至4中引用:
·力因数Bl(x)系数
·刚度Kms(x)系数
·音圈电感Le(x)多项式
·纸盆表面积Sd
·机械阻力Rms
·音圈DC电阻Re
·总移动质量(Mms)
·寄生电感L2(x)
·寄生电阻R2(x)
·通量调制Le(i)
·空气密度ρ
·扬声器纸盆到麦克风的距离xmic
表1
基于集中参数模型812和扬声器参数132,模型逆函数814可以计算用于扬声器150的逆传递函数816。在其中通过信号链800生成所述校正器的实施方案中,此逆传递函数可以提供校正器130的响应曲线。调谐滤波器120可以通过类似方法生成,如结合图8B所描述的。
如图8B所示,信号链820包括扬声器850,所述扬声器850被配置来接收测试输入822并响应于这些输入生成输出824。测试输入822可以由测试设备生成,并且可以包括例如但不限于扫描正弦波、啁啾、阶跃函数以及可能地用于测量物理系统的动态响应的其他类型的信号。
传感器阵列826联接到扬声器850,并且被配置来在扬声器850对测试输入822做出响应时测量与扬声器850相关联的各种时变物理量828。这些量包括扬声器850的输出压力P、与扬声器850相关联的音圈的位移D以及响应于测试信号822驱动扬声器850的音圈电流I。自适应算法830被配置来接收物理属性828以及输出824,并且随后生成集中参数模型832。
集中参数模型832是扬声器850的物理模型,其包括与扬声器850相关联的调谐参数122。集中参数模型832可以由一组微分方程定义,所述微分方程与调谐参数122的数值结合来定义扬声器850的动态响应。自适应算法830可以采用梯度下降算法以便估计调谐参数122的值。随后可以使用那些调谐参数来评估上述微分方程。微分方程和调谐参数122可以基本上类似于方程式1至4和表1中阐述的那些。
大体上参考图8A至图8B,信号链800和820是类似的,在于两个链都可以用于对物理系统和相关联参数进行建模。不过,与信号链820相对比,信号链800特别地确定物理系统的逆传递函数,使得可以减轻所述物理系统的响应特性。相反,信号链820确定系统模型,使得可以再现所述系统的响应特性。实际上,信号链800和820都可以作为整体或部分地由图2中所示的仿真应用218实现。
如所述,可以实现用于对物理系统进行建模的任何技术上可行的方法以便生成调谐滤波器120、校正器130以及对应的参数。下面结合图9更详细地描述通用的逐步方法。
图9是根据各种实施方案的配置调谐滤波器和校正器以修改扬声器的失真响应的方法步骤的流程图。虽然结合图1至图8B的系统描述了方法步骤,但本领域技术人员将理解的是,被配置来以任何顺序执行方法步骤的任何系统均在公开实施方案的范围内。
如图所示,方法900在步骤902处开始,图2的仿真应用218分析扬声器150的响应以生成扬声器参数132。在一个实施方案中,仿真应用218实现自适应算法810以计算集中参数模型812,所述集中参数模型812并入有这些参数,如上面结合图8A所讨论的。
在步骤904处,仿真应用218基于在步骤902处生成的扬声器参数132配置校正器130。在这样做时,仿真应用可以以与上面结合图8A所描述的方式相同的方式计算扬声器150的集中参数模型的逆。
在步骤906处,仿真应用218分析扬声器850的响应以生成调谐参数122。在一个实施方案中,仿真应用218实现自适应算法822以计算集中参数模型832,所述集中参数模型832并入有这些参数,如上面结合图8B所讨论的。
在步骤908处,仿真应用218基于在步骤906处生成的调谐参数122配置调谐滤波器120。在这样做时,仿真应用218可以依赖于梯度下降算法来估计调谐参数122,如上面结合图8B所描述的。
通过实现上面结合图9阐述的通用方法或上面结合图8A至图8B讨论的更具体的方法,可以生成和使用各种模型来减轻由扬声器150生成的不想要的失真,并且并入与另一个扬声器相关联的期望失真。
总之,校正器被配置来变换音频信号以补偿扬声器的不想要的失真特性。调谐滤波器被配置来变换音频信号以并入与目标扬声器相关联的期望的失真特性。通过将调谐滤波器和校正器链接在一起,可以修改音频信号,使得扬声器在输出音频信号时具有目标扬声器的响应特性。
公开技术的至少一个优点是,与扬声器相关联的不想要的失真特性可以减轻,而与另一扬声器相关联的期望的失真特性可以并入到音频信号中。因此,扬声器可以被配置来模拟目标扬声器的声音。更一般地,在不改变扬声器的物理构造的情况下,可以调谐扬声器的响应以具有任何期望的响应。
出于说明的目的已经呈现了对各种实施方案的描述,但并不旨在为详尽的或限制公开实施方案。在不背离公开实施方案的范围和精神的情况下,许多修改和变化对于本领域普通技术人员来说将是显而易见的。
本实施方案的方面可以实施为系统、方法或计算机程序产品。因此,本公开的各方面可以采用以下形式:完全硬件实施方案、完全软件实施方案(包括固件、常驻软件、微代码等)或结合软件方面与硬件方面的实施方案,所述实施方案在本文中全部可总体上称为“电路”、“模块”或“系统”。另外,本公开的各方面可采用体现在一个或多个计算机可读介质中的计算机程序产品的形式,所述一个或多个计算机可读介质上体现有计算机可读程序代码。
可以使用一个或多个计算机可读介质的任何组合。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读存储介质可以是(例如)但不限于电子、磁性、光学、电磁、红外或半导体系统、设备或装置或者前述介质的任何合适组合。计算机可读存储介质的更具体示例(并非详尽清单)将包括以下介质:具有一个或多个导线的电连接、便携式计算机软盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦可编程只读存储器(EPROM或闪存)、光纤、便携式光盘只读存储器(CD-ROM)、光学存储装置、磁性存储装置或前述介质的任何合适组合。在本文件的上下文中,计算机可读存储介质可以是可包含或存储供指令执行系统、设备或装置使用或与其联用的程序的任何有形介质。
上文中参照根据本公开实施方案的方法、设备(系统)和计算机程序产品的流程图图解和/或框图来描述本公开的各方面。应当理解,流程图和/或框图的每个块以及流程图和/或框图中的块的组合可以由计算机程序指令实现。可以将这些计算机程序指令提供给通用计算机、专用计算机或其他可编程数据处理设备的处理器来产生一种机器,以使得通过计算机或其他可编程数据处理设备的处理器来执行的指令允许实现在流程图和/或框图的一个或多个块中指定的功能/操作。此类处理器可不限于通用处理器、专用处理器、应用特定处理器或现场可编程处理器。
附图中的流程图和框图示出根据本公开的各种实施方案的系统、方法和计算机程序产品的可能实行方案的架构、功能性和操作。在这方面,流程图或框图中的每个块可以表示代码模块、代码区段或代码的一部分,其包括用于实施所指定的逻辑功能的一个或多个可执行指令。也应注意到,在一些替代实现方案中,块中提到的功能可以不按附图中提到的顺序出现。例如,连续展示的两个块实际上可以大致上同时执行,或者这些块有时可以按相反的顺序执行,这取决于所涉及的功能性。也应指出的是,框图和/或流程图图解的每个块以及框图和/或流程图图解中的块的组合可以由执行指定功能或动作的、基于专用硬件的系统或者专用硬件和计算机指令的组合来实现。
虽然上述内容是针对本公开的实施方案,但是可以在不背离其基本范围的情况下,设想出本公开的其他和另外实施方案,而且其范围由随附的权利要求书加以确定。

Claims (20)

1.一种用于生成扬声器的期望响应的计算机实现的方法,所述方法包括:
调谐音频信号以增强与第一扬声器相关联的一个或多个期望的失真特性以便产生调谐的音频信号;
校正所述调谐的音频信号以衰减与第二扬声器相关联的一个或多个不期望的失真特性以便产生校正的音频信号;
通过所述第二扬声器输出基于所述校正的音频信号的最终信号,其中所述最终信号包括与所述第一扬声器相关联的所述一个或多个期望的失真特性。
2.如权利要求1所述的计算机实现的方法,其中所述最终信号包括较少或不包括与所述第二扬声器相关联的所述一个或多个不期望的失真特性。
3.如权利要求1所述的计算机实现的方法,其中调谐所述音频信号包括基于与所述第一扬声器相关联的第一传递函数修改所述音频信号。
4.如权利要求3所述的计算机实现的方法,其中所述第一传递函数指示与所述第一扬声器相关联的线性响应特性和非线性响应特性两者。
5.如权利要求3所述的计算机实现的方法,其还包括生成所述第一扬声器的模型以确定所述第一传递函数,其中所述模型包括物理系统模型、Hammerstein模型、Volterra核或集中参数模型。
6.如权利要求1所述的计算机实现的方法,其中校正所述调谐的音频信号包括基于与所述第二扬声器相关联的第二传递函数修改所述调谐的音频信号。
7.如权利要求6所述的计算机实现的方法,其中所述第二传递函数指示与所述第二扬声器相关联的线性响应特性和非线性响应特性两者。
8.如权利要求6所述的计算机实现的方法,其还包括生成所述第二扬声器的模型以确定所述第二传递函数,其中所述模型包括物理系统模型、Hammerstein模型、Volterra核或集中参数模型。
9.一种非暂时性计算机可读介质,其在由处理器执行时配置所述处理器以通过执行以下步骤生成扬声器的期望响应:
调谐音频信号以增强与第一扬声器相关联的一个或多个期望的失真特性以便产生调谐的音频信号;
校正所述调谐的音频信号以衰减与第二扬声器相关联的一个或多个不期望的失真特性以便产生校正的音频信号;
通过所述第二扬声器输出基于所述校正的音频信号的最终信号,其中所述最终信号包括与所述第一扬声器相关联的所述一个或多个期望的失真特性。
10.如权利要求9所述的非暂时性计算机可读介质,其中所述最终信号包括较少或不包括与所述第二扬声器相关联的所述一个或多个不期望的失真特性。
11.如权利要求9所述的非暂时性计算机可读介质,其中调谐所述音频信号包括基于与所述第一扬声器相关联的第一传递函数修改所述音频信号。
12.如权利要求11所述的非暂时性计算机可读介质,其还包括通过梯度下降算法估计第一组参数以确定所述第一传递函数,其中所述第一组参数管理所述第一扬声器的动态。
13.如权利要求9所述的非暂时性计算机可读介质,其中校正所述调谐的音频信号包括基于与所述第二扬声器相关联的第二传递函数修改所述调谐的音频信号。
14.如权利要求13所述的非暂时性计算机可读介质,其还包括通过梯度下降算法估计第二组参数以确定所述第二传递函数,其中所述第二组参数管理所述第二扬声器的动态。
15.一种被配置来生成扬声器的期望响应的系统,其包括:
存储仿真应用的存储器;以及
联接到所述存储器的处理器,其在执行所述仿真应用时被配置来:
调谐音频信号以增强与第一扬声器相关联的一个或多个期望的失真特性以便产生调谐的音频信号,
校正所述调谐的音频信号以衰减与第二扬声器相关联的一个或多个不期望的失真特性以便产生校正的音频信号,
通过所述第二扬声器输出基于所述校正的音频信号的最终信号,其中所述最终信号包括与所述第一扬声器相关联的所述一个或多个期望的失真特性。
16.如权利要求15所述的系统,其中所述最终信号包括较少或不包括与所述第二扬声器相关联的所述一个或多个不期望的失真特性。
17.如权利要求15所述的系统,其中所述处理器被配置来通过基于与所述第一扬声器相关联的第一传递函数修改所述音频信号来调谐所述音频信号。
18.如权利要求15所述的系统,其中所述处理器被配置来通过基于与所述第二扬声器相关联的第二传递函数修改所述调谐的音频信号来校正所述调谐的音频信号。
19.如权利要求18所述的系统,其中所述处理器通过将所述第二传递函数的逆函数应用到所述调谐的音频信号来修改所述调谐的音频信号。
20.如权利要求15所述的系统,其中所述第一扬声器包括用于放大乐器的第一放大器,并且所述第二扬声器包括用于放大被配置来生成所述音频信号的乐器的第二放大器。
CN201710176967.9A 2016-03-23 2017-03-23 用于调谐扬声器的失真响应的技术 Active CN107231590B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/078,896 2016-03-23
US15/078,896 US9848262B2 (en) 2016-03-23 2016-03-23 Techniques for tuning the distortion response of a loudspeaker

Publications (2)

Publication Number Publication Date
CN107231590A CN107231590A (zh) 2017-10-03
CN107231590B true CN107231590B (zh) 2021-09-10

Family

ID=58347208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710176967.9A Active CN107231590B (zh) 2016-03-23 2017-03-23 用于调谐扬声器的失真响应的技术

Country Status (3)

Country Link
US (1) US9848262B2 (zh)
EP (1) EP3223536B1 (zh)
CN (1) CN107231590B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10374566B2 (en) * 2016-07-29 2019-08-06 Maxim Integrated Products, Inc. Perceptual power reduction system and method
CN107480408A (zh) * 2017-10-17 2017-12-15 江苏裕成电子有限公司 扬声器参数仿真方法及装置
US11039244B2 (en) 2018-06-06 2021-06-15 Dolby Laboratories Licensing Corporation Manual characterization of perceived transducer distortion
CN108600915B (zh) * 2018-08-09 2024-02-06 歌尔科技有限公司 一种音频输出的方法、装置、谐波失真滤除设备及终端
US10904663B2 (en) 2019-04-25 2021-01-26 Samsung Electronics Co., Ltd. Reluctance force compensation for loudspeaker control
CN110225433B (zh) * 2019-05-16 2021-04-13 音王电声股份有限公司 一种扬声器系统的非线性测量与音质调谐方法
CN111800713B (zh) * 2020-06-12 2022-03-04 瑞声科技(新加坡)有限公司 一种信号非线性补偿方法、装置、电子设备和存储介质
CN111796791A (zh) * 2020-06-12 2020-10-20 瑞声科技(新加坡)有限公司 一种低音增强方法、系统、电子设备和存储介质
CN111818421B (zh) * 2020-06-12 2023-01-13 瑞声科技(新加坡)有限公司 音频信号的控制方法及装置、存储介质及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1378764A (zh) * 1999-08-26 2002-11-06 美国技术公司 用于参数扬声器系统的调制器处理
CN1592491A (zh) * 2003-09-03 2005-03-09 三星电子株式会社 用于对扬声器系统的非线性失真补偿的方法和装置
WO2011077408A1 (en) * 2009-12-23 2011-06-30 Alma Mater Studiorum - Universita' Di Bologna Method for artificially reproducing an output signal of a non-linear time invariant system
CN102404673A (zh) * 2011-11-24 2012-04-04 苏州上声电子有限公司 数字化扬声器系统通道均衡与声场控制方法和装置
CN102447993A (zh) * 2010-09-30 2012-05-09 Nxp股份有限公司 声音场景操纵

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6766025B1 (en) 1999-03-15 2004-07-20 Koninklijke Philips Electronics N.V. Intelligent speaker training using microphone feedback and pre-loaded templates
US7873172B2 (en) * 2005-06-06 2011-01-18 Ntt Docomo, Inc. Modified volterra-wiener-hammerstein (MVWH) method for loudspeaker modeling and equalization
US20130077801A1 (en) * 2011-09-23 2013-03-28 David James Tarnowski Distortion control techniques and configurations
GB2495129B (en) * 2011-09-30 2017-07-19 Skype Processing signals
US9515629B2 (en) * 2013-05-16 2016-12-06 Apple Inc. Adaptive audio equalization for personal listening devices
US10015593B2 (en) 2014-03-03 2018-07-03 University Of Utah Digital signal processor for audio extensions and correction of nonlinear distortions in loudspeakers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1378764A (zh) * 1999-08-26 2002-11-06 美国技术公司 用于参数扬声器系统的调制器处理
CN1592491A (zh) * 2003-09-03 2005-03-09 三星电子株式会社 用于对扬声器系统的非线性失真补偿的方法和装置
WO2011077408A1 (en) * 2009-12-23 2011-06-30 Alma Mater Studiorum - Universita' Di Bologna Method for artificially reproducing an output signal of a non-linear time invariant system
CN102447993A (zh) * 2010-09-30 2012-05-09 Nxp股份有限公司 声音场景操纵
CN102404673A (zh) * 2011-11-24 2012-04-04 苏州上声电子有限公司 数字化扬声器系统通道均衡与声场控制方法和装置

Also Published As

Publication number Publication date
US20170280241A1 (en) 2017-09-28
EP3223536A1 (en) 2017-09-27
EP3223536B1 (en) 2020-04-29
CN107231590A (zh) 2017-10-03
US9848262B2 (en) 2017-12-19

Similar Documents

Publication Publication Date Title
CN107231590B (zh) 用于调谐扬声器的失真响应的技术
US10015593B2 (en) Digital signal processor for audio extensions and correction of nonlinear distortions in loudspeakers
US10123116B2 (en) Linear and non-linear speaker excursion modeling
JP7188082B2 (ja) 音響処理装置および方法、並びにプログラム
JP6436934B2 (ja) 動的閾値を用いた周波数帯域圧縮
WO2015085924A1 (zh) 一种扬声器自动均衡方法
US9014397B2 (en) Signal processing device and signal processing method
JP4949854B2 (ja) オーディオ信号エンハンスメント
KR20190087424A (ko) 코히어런스 기반 동적 안정성 제어 시스템
JPWO2013183102A1 (ja) 信号処理装置
JP2017531971A (ja) ビームフォーミングフィルタのためのfirフィルタ係数の算出
JP2008507934A (ja) 音声強調
US20100189283A1 (en) Tone emphasizing device, tone emphasizing method, tone emphasizing program, and recording medium
WO2016140121A1 (ja) フィルタ生成装置、フィルタ生成方法およびフィルタ生成プログラム
EP3603106B1 (en) Dynamically extending loudspeaker capabilities
JP6399864B2 (ja) 制御器設計装置、制御器設計方法及びプログラム
WO2017183405A1 (ja) 音響処理装置および音響処理方法
JP5611029B2 (ja) 音響装置及び出力音制御方法
JPWO2009008068A1 (ja) 自動音場補正装置
JP6304643B2 (ja) スピーカーの非線形歪低減装置、方法、及びプログラム
EP3471267B1 (en) Method and apparatus for repairing distortion of an audio signal
JP7348951B2 (ja) 音声信号処理方法及びデバイス
JP2019203912A (ja) 模倣音信号生成装置、電子楽器、非線形システム同定方法
US20160345094A1 (en) Compensation of air path distortions using backpropagation
US9264811B1 (en) EQ correction for source device impedance and output device impedance interactions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant