CN107216143A - 一种制备核‑壳结构的钛酸铜钙基陶瓷的方法 - Google Patents

一种制备核‑壳结构的钛酸铜钙基陶瓷的方法 Download PDF

Info

Publication number
CN107216143A
CN107216143A CN201710439313.0A CN201710439313A CN107216143A CN 107216143 A CN107216143 A CN 107216143A CN 201710439313 A CN201710439313 A CN 201710439313A CN 107216143 A CN107216143 A CN 107216143A
Authority
CN
China
Prior art keywords
ccto
hours
ceramics
cacu
constant temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710439313.0A
Other languages
English (en)
Inventor
郝文涛
孙礼
杨帅
王明文
吴辉
曹恩思
张雍家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201710439313.0A priority Critical patent/CN107216143A/zh
Publication of CN107216143A publication Critical patent/CN107216143A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种电介质陶瓷材料的制备方法,尤其是涉及一种具有核‑壳结构的钛酸铜钙基陶瓷的制备方法。一种制备核‑壳结构的钛酸铜钙基陶瓷的方法,包括如下步骤:(1)以硝酸钙、硝酸铜、钛酸四丁酯为初始原料,添加柠檬酸后利用溶胶‑凝胶法制备了CCTO粉体;(2)按照CCTO/xMgTiO3的化学计量比精确称量CCTO粉体、硝酸镁、钛酸四丁酯,再称量柠檬酸,并将它们置于乙醇中充分搅拌,形成悬浊液,并最终得到CCTO/MgTiO3混合粉体;(3)将粉体经过充分研磨后,在150 MPa的压强下压制成片状,然后在1080°C下烧结10小时得到CCTO/xMgTiO3陶瓷。

Description

一种制备核-壳结构的钛酸铜钙基陶瓷的方法
技术领域
本发明涉及一种电介质陶瓷的制备方法,尤其是涉及一种具有核-壳结构的钛酸铜钙基陶瓷的制备方法。
背景技术
高介电常数材料为实现滤波器、谐振器、存储器和电容器等重要电子器件的尺寸微型化和高性能化提供了可能,受到广泛的关注。钛酸铜钙(CaCu3Ti4O12,CCTO)是几年发现的较为典型、较有代表性的高介电材料,其不论单晶还是陶瓷都具有高达104的介电常数,介电常数在较宽的频率范围(10 Hz ~ 100 kHz)和较广的温度范围(100 ~ 350 K)基本保持不变。但是CCTO陶瓷在具有很高的低频介电常数的同时,其低频介电损耗也很高(>0.1),会导致器件大量发热,限制了其应用。
对于降低CCTO陶瓷的低频介电损耗,目前研究者们主要采取的方法是掺杂改性和微观结构调控。例如,【Appl. Phys. Lett., 87 2005 032902】、【Appl. Phys. Lett., 872005 182911】、【Phys. Stat. Sol. (a), 203 2006 22】、【中国专利200710009111.9】、【J.Appl. Phys. 117 2015 094103】等。但是这些实验不是没有足够程度的降低CCTO陶瓷的低频介电损耗,就是在明显降低CCTO陶瓷的低频介电损耗的同时,也使CCTO陶瓷的低频介电常数大幅度的降低。目前,通过实验确定CCTO陶瓷的电学是不均匀的,其晶粒具有半导性,晶界具有绝缘性。基于此结果,内部阻挡层电容效应(IBLC)似乎是CCTO陶瓷高介电性质来源的最合理解释。根据IBLC效应,增加晶界电阻是一种有效的降低CCTO陶瓷在低频区间介电损耗的方法。因此,构建具有核-壳结构的钛酸铜钙基陶瓷,是增加CCTO陶瓷的晶界电阻、降低其低频介电损耗的十分有意义的尝试。
发明内容
本发明为解决目前在降低CCTO陶瓷的低频介电损耗时,CCTO陶瓷的低频介电常数大幅度的降低的技术问题,提供一种制备核-壳结构的钛酸铜钙基陶瓷的方法。
本发明是采用以下技术方案实现的:一种制备核-壳结构的钛酸铜钙基陶瓷的方法,包括如下步骤:(1)以硝酸钙、硝酸铜和钛酸四丁酯为原料,添加柠檬酸后利用溶胶-凝胶法制备CCTO粉体:首先按照CaCu3Ti4O12的化学计量比精确称量硝酸钙、硝酸铜、钛酸四丁酯,再按照柠檬酸:阳离子=1:1.2的摩尔比称取柠檬酸,然后把上述原料充分溶解于乙醇中混合均匀,并利用硝酸将溶液的pH值调至2 ~ 3;溶液经过磁力搅拌之后,放置于80°C的恒温中,直到溶液形成胶体,然后在100°C的恒温中保温,直到胶体变为干凝胶;将干凝胶在750°C的大气中煅烧2小时,得到CCTO粉体;(2)接下来按照CCTO/xMgTiO3的化学计量比精确称量CCTO粉体、硝酸镁和钛酸四丁酯,同时再按照柠檬酸:阳离子=1:1.2的摩尔比称取柠檬酸,并将它们置于乙醇中充分搅拌,乙醇质量为CCTO粉体、硝酸镁和钛酸四丁酯总质量的五倍,形成悬浊液,其中x=0.5或1或2;悬浊液经过磁力搅拌之后,再次放置于80°C的恒温中保温6小时,使悬浊液形成胶体,然后在100°C的恒温中保温2小时,变为干凝胶,最后在750°C的大气中煅烧2小时,得到CCTO/MgTiO3混合粉体;(3)将粉体经过充分研磨后,在150 MPa的压强下压制成片状,然后在1080°C下烧结10小时得到CCTO/xMgTiO3陶瓷。
进一步的,还包括步骤(4):将CCTO/xMgTiO3陶瓷在950°C的氧气气氛中退火2小时。
通过对CCTO陶瓷进行阻抗谱等测试,确定CCTO陶瓷的电学是不均匀的,其晶粒具有半导性,晶界具有绝缘性。基于此结果,内部阻挡层电容效应(IBLC)似乎是CCTO陶瓷高介电性质来源的最合理解释。根据IBLC效应,增加晶界电阻是一种有效的降低CCTO陶瓷在低频区间介电损耗的方法。本发明设计将具有优异绝缘性的氧化物纳米粉末包覆在CCTO陶瓷微粉的外表面,制备具有“核-壳”结构的CCTO/氧化物复合陶瓷,然后将复合陶瓷在氧气中进行退火处理,以进一步提高氧化物的氧化程度,增加氧化物的绝缘性,提高复合陶瓷的晶界电阻。
采用本发明所述的原料、原料配比以及相应的工艺以及工艺参数(如温度)才能够制备出本申请所述的具有核-壳结构的钛酸铜钙基陶瓷。
本发明的有益效果:本发明制备出了具有核-壳结构的钛酸铜钙基陶瓷。图1给出了CCTO/xMgTiO3(x=0.5)陶瓷的元素分布图。从图中可以看出,Ti元素在整个选择区域的分布都是均匀的,而Mg元素主要分布在小晶粒区域,这说明MgTiO3包覆在了CCTO晶粒周围,得到了具有核壳结构的CCTO/MgTiO3复合陶瓷。
附图说明
图1 CCTO/xTiO2(x=0.5)陶瓷在指定区域内的微观结构和元素分布。
具体实施方式
以分析纯的硝酸钙(Ca(NO3)2•4H2O,99%)、硝酸铜(Cu(NO3)2•3H2O,99%)和钛酸四丁酯([CH3(CH2)3O]4Ti,99%)为初始原料,添加柠檬酸(C6H8O7,99%)后利用溶胶-凝胶法制备了CCTO前驱粉体,首先按照CaCu3Ti4O12的化学计量比精确称量各种原料,然后把它们溶解于乙醇中混合均匀,并利用硝酸将溶液的pH只调至2 ~ 3。溶液经过磁力搅拌之后,放置于80°C的恒温中保温6小时,使溶液形成胶体,然后在100°C的恒温中保温2小时,变为干凝胶。将干凝胶在750°C的大气中煅烧2小时,得到CCTO粉体。接下来按照CCTO/xMgTiO3(x=0、0.5、1和2)的化学计量比精确称量CCTO粉体、硝酸镁(Mg(NO3)2•6H2O,99%)、钛酸四丁酯和柠檬酸,并将它们置于乙醇中充分搅拌,形成悬浊液。液体经过磁力搅拌之后,再次放置于80°C的恒温中保温6小时,使溶液形成胶体,然后在100°C的恒温中保温2小时,变为干凝胶,最后在750°C的大气中煅烧2小时,得到CCTO/MgTiO3混合粉体。将粉体经过充分研磨后,在150 MPa的压强下压制成片状,然后在1080°C下烧结10小时得到CCTO/xMgTiO3陶瓷,最后将陶瓷在950°C的氧气气氛中退火2小时。

Claims (4)

1.一种制备核-壳结构的钛酸铜钙基陶瓷的方法,其特征在于,包括如下步骤:(1)以硝酸钙、硝酸铜和钛酸四丁酯为原料,添加柠檬酸后利用溶胶-凝胶法制备CCTO粉体:首先按照CaCu3Ti4O12的化学计量比精确称量硝酸钙、硝酸铜、钛酸四丁酯,再按照柠檬酸:阳离子=1:1.2的摩尔比称取柠檬酸,然后把上述原料充分溶解于乙醇中混合均匀,并利用硝酸将溶液的pH值调至2 ~ 3;溶液经过磁力搅拌之后,放置于80°C的恒温中,直到溶液形成胶体,然后在100°C的恒温中保温,直到胶体变为干凝胶;将干凝胶在750°C的大气中煅烧2小时,得到CCTO粉体;(2)接下来按照CCTO/xMgTiO3的化学计量比精确称量CCTO粉体、硝酸镁和钛酸四丁酯,同时再按照柠檬酸:阳离子=1:1.2的摩尔比称取柠檬酸,并将它们置于乙醇中充分搅拌,乙醇质量为CCTO粉体、硝酸镁和钛酸四丁酯总质量的五倍,形成悬浊液,其中x=0.5或1或2;悬浊液经过磁力搅拌之后,再次放置于80°C的恒温中保温6小时,使悬浊液形成胶体,然后在100°C的恒温中保温2小时,变为干凝胶,最后在750°C的大气中煅烧2小时,得到CCTO/MgTiO3混合粉体;(3)将粉体经过充分研磨后,在150 MPa的压强下压制成片状,然后在1080°C下烧结10小时得到CCTO/xMgTiO3陶瓷。
2.如权利要求1所述的一种制备核-壳结构的钛酸铜钙基陶瓷的方法,其特征在于,还包括步骤(4):将CCTO/xMgTiO3陶瓷在950°C的氧气气氛中退火2小时。
3.如权利要求1或2所述的一种制备核-壳结构的钛酸铜钙基陶瓷的方法,其特征在于,步骤(1)中,溶液放置于80°C的恒温中保温6小时,使溶液形成胶体,然后在100°C的恒温中保温2小时,变为干凝胶;步骤(2)中,悬浊液放置于80°C的恒温中保温6小时,使悬浊液形成胶体,然后在100°C的恒温中保温2小时,变为干凝胶。
4.如权利要求1或2所述的一种制备核-壳结构的钛酸铜钙基陶瓷的方法,其特征在于,步骤(1)中硝酸钙、硝酸铜、钛酸四丁酯和柠檬酸均采用分析纯,纯度均为99%;步骤(2)中硝酸镁纯度为99%。
CN201710439313.0A 2017-06-12 2017-06-12 一种制备核‑壳结构的钛酸铜钙基陶瓷的方法 Pending CN107216143A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710439313.0A CN107216143A (zh) 2017-06-12 2017-06-12 一种制备核‑壳结构的钛酸铜钙基陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710439313.0A CN107216143A (zh) 2017-06-12 2017-06-12 一种制备核‑壳结构的钛酸铜钙基陶瓷的方法

Publications (1)

Publication Number Publication Date
CN107216143A true CN107216143A (zh) 2017-09-29

Family

ID=59947615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710439313.0A Pending CN107216143A (zh) 2017-06-12 2017-06-12 一种制备核‑壳结构的钛酸铜钙基陶瓷的方法

Country Status (1)

Country Link
CN (1) CN107216143A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107759216A (zh) * 2017-11-03 2018-03-06 太原理工大学 一种溶胶‑凝胶法制备锰酸锶镧/钛酸铜钙复合磁电陶瓷材料的方法
CN107954712A (zh) * 2017-12-01 2018-04-24 电子科技大学 一种低损耗、巨介电ccto陶瓷材料及其制备方法
CN112390644A (zh) * 2020-11-23 2021-02-23 中国振华集团云科电子有限公司 一种改善mct陶瓷一次球磨混料质量的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040127345A1 (en) * 2000-05-04 2004-07-01 Dong Li Tunable devices incorporating cacu3ti4o12
CN101792308A (zh) * 2010-02-11 2010-08-04 哈尔滨工业大学 一种壳-芯结构CaCu3Ti4O12陶瓷材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040127345A1 (en) * 2000-05-04 2004-07-01 Dong Li Tunable devices incorporating cacu3ti4o12
CN101792308A (zh) * 2010-02-11 2010-08-04 哈尔滨工业大学 一种壳-芯结构CaCu3Ti4O12陶瓷材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. BOONLAKHORN ETAL: "Effect of Annealing in O2 and Mechanisms Contributing to the Overall Loss Tangent of CaCu3Ti4O12 Ceramics", 《JOURNAL OF ELECTRONIC MATERIALS》 *
J. YUAN ETAL: "Dielectric and Varistor Behavior of CaCu3Ti4O12–MgTiO3 Composite Ceramics", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
张璐琭等: "CCTO@(SrTiO3&ZBSO)复合粉体及其陶瓷的制备与表征", 《材料保护》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107759216A (zh) * 2017-11-03 2018-03-06 太原理工大学 一种溶胶‑凝胶法制备锰酸锶镧/钛酸铜钙复合磁电陶瓷材料的方法
CN107954712A (zh) * 2017-12-01 2018-04-24 电子科技大学 一种低损耗、巨介电ccto陶瓷材料及其制备方法
CN107954712B (zh) * 2017-12-01 2020-12-29 电子科技大学 一种低损耗、巨介电ccto陶瓷材料及其制备方法
CN112390644A (zh) * 2020-11-23 2021-02-23 中国振华集团云科电子有限公司 一种改善mct陶瓷一次球磨混料质量的方法

Similar Documents

Publication Publication Date Title
CN107216143A (zh) 一种制备核‑壳结构的钛酸铜钙基陶瓷的方法
JP4661726B2 (ja) 微粒ニッケル粉末及びその製造方法
KR102590441B1 (ko) 나노 티탄산바륨 파우더 및 그 제조 방법, 세라믹 유전층 및 그 제조 방법
CN113716870B (zh) 一种适用于高频的ltcc基板材料及其制备方法
JP5574154B2 (ja) ニッケル粉末およびその製造方法
CN107384398A (zh) 一种yag荧光粉及其制备方法和由其制备的yag荧光陶瓷
Pfaff Sol–gel synthesis of barium titanate powders of various compositions
CN106007703B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN102584233B (zh) 一种中高介电常数低温共烧陶瓷材料及其制备方法
CN114394827B (zh) 一种低介电常数硅酸盐微波介质陶瓷及其制备方法
CN112467198A (zh) 一种锂离子电池用氧化物固态电解质及其制备方法
CN111470864B (zh) 一种硅基温度稳定型微波介质陶瓷材料及其制备方法
Shen et al. Sol–gel synthesis and spark plasma sintering of Ba0. 5Sr0. 5TiO3
JP3737773B2 (ja) 誘電体セラミック組成物
CN107176837A (zh) 一种超高介电常数钽铌酸钾陶瓷的制备方法
CN106747421B (zh) 一种水热法合成晶界层陶瓷电容器用粉体的方法
CN107216144A (zh) 一种制备核‑壳结构的高介低损钛酸铜钙基陶瓷的方法
CN103467084B (zh) 一种高介电常数锂铌钛系低温烧结陶瓷及其制备方法
CN104909747A (zh) 一种高介电常数、低介电损耗CaCu3Ti4-xZrxO12陶瓷的制备方法
CN107500756A (zh) 一种高介电常数低损耗SrTiO3基介质材料及其制备方法
CN105272184B (zh) 一种低介电常数陶瓷粉体及其制备方法
CN104445231B (zh) 一种具有较低烧结温度的硅酸盐纳米粉体及其制备方法
Wang et al. Enhanced properties of Li0. 42Zn0. 27Ti0. 11Mn0. 1Fe2. 1O4 ferrites co-fired with Bi2O3–B2O3 additive at low sintering temperatures
Wang et al. A new strategy to realize phase structure and morphology of BaTiO3 nanowires controlled in ZnO-B2O3-SiO2 glass
CN114085080A (zh) 一种稀土掺杂钽钛酸盐粉体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170929

RJ01 Rejection of invention patent application after publication