CN107213137A - 聚乙二醇化包裹聚多巴胺载药磁性纳米颗粒的制备方法 - Google Patents

聚乙二醇化包裹聚多巴胺载药磁性纳米颗粒的制备方法 Download PDF

Info

Publication number
CN107213137A
CN107213137A CN201710477272.4A CN201710477272A CN107213137A CN 107213137 A CN107213137 A CN 107213137A CN 201710477272 A CN201710477272 A CN 201710477272A CN 107213137 A CN107213137 A CN 107213137A
Authority
CN
China
Prior art keywords
pda
magnetic
pegylation
dopamine
wraps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710477272.4A
Other languages
English (en)
Inventor
薛鹏
孙利红
康跃军
李倩
张蕾
许志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN201710477272.4A priority Critical patent/CN107213137A/zh
Publication of CN107213137A publication Critical patent/CN107213137A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明涉及药物化学的合成领域,更具体地涉及从四氧化三铁,PDA包裹四氧化三铁,PEG化和最终的载药及各步的具体方法。聚乙二醇化包裹聚多巴胺的磁性纳米颗粒制备方法具体包括以下步骤:(1)利用碱性共沉淀法合成四氧化三铁(2)在四氧化三铁存在下多巴胺在碱性条件下的自聚合(3)PDA包裹的磁性纳米颗粒的PEG化(4)利用疏水作用将抗癌药物阿霉素运载到磁性复合纳米颗粒上。所得到的复合纳米药物递送系统具有靶向传递、高的药物上载量、良好的生物相容性等优点。

Description

聚乙二醇化包裹聚多巴胺载药磁性纳米颗粒的制备方法
技术领域
本发明涉及化学药物领域,具体涉及具有靶向作用及协同疗法的聚乙二醇化包裹多巴胺的载药磁性纳米颗粒制备与用途。
背景技术
阿霉素(Doxorubicin, DOX,别称:多柔比星;亚法里亚霉素等,化学结构式:C27H29NO11,CAS号:23214-92-8,相对分子量:543.52)是由波赛链霉菌青灰亚种产生的一种蒽环类抗肿瘤抗生素,是细胞周期非特异性药物(CCNSA),对S及M期较敏感。盐酸盐为橘红色针状结晶。熔点204~205℃。易溶于水、乙醇、甲醇。是从放线菌属培养液中分离出的一种抗肿瘤抗生素。作用机制与柔红霉素相似,其抗瘤谱较广,治疗指数较高。临床应用于急、慢性淋巴细胞白血病及实体性肿瘤白血病、淋巴瘤、乳腺癌、卵巢癌、软组织肉瘤、成骨肉瘤、横纹肌肉瘤、尤文氏肉瘤、肾母细胞瘤、神经母细胞癌、胃癌、胰腺癌、肝癌、前列腺癌、头颈部鳞癌、睾丸癌、肺癌、膀胱癌、甲状腺髓样癌和肉瘤的治疗。
光热治疗是一种纯物理治疗方法。主要利用物理能量对人体进行整体或局部加热,通过产热量使得肿瘤组织区域的温度上升到有效治疗温度,并维持一段时间,从而改变肿瘤细胞所处的微环境,抑制肿瘤血管形成和肿瘤细胞转移,并使其调亡、坏死,最终达到治疗肿瘤的目的。多巴胺(DA)是一种典型的神经递质,在大脑中自然存在,在碱性条件下可以自发聚合成聚多巴胺(PDA),而不需要额外的氧化剂。PDA具有优良的生物相容性和生物可降解性,在实际应用中可防止长期毒性。最重要的是PDA具有显著的光热转换效率,具有出色的光热稳定性,这表明有很大的潜力作为近红外驱动的光热制剂。然而,单一的治疗方法很难彻底的消灭肿瘤细胞,因此,由于协同作用,光热疗法与化疗的结合很有希望获得一种增强的抗肿瘤功效。
为了进一步提高治疗效果和减少不良副作用,针对肿瘤部位的特异性靶向作用也极具吸引性。磁靶向技术是一种已被证实的技术,可以将纳米复合材料传送到由外部磁场引导的肿瘤区域。超顺磁性Fe3O4纳米粒子被广泛应用于各种药物的磁性运输,以到达单个肿瘤细胞。因此,从PDA、Fe3O4和DOX合成的纳米复合材料被认为是一个用于临床应用很有前景的药物递送平台。
发明内容
由于目前用于治疗肿瘤的药物递送载体其作用单一,生物相容性、降解性较差,本发明旨在合成一种具有较好生物相容性和可降解性同时又能在磁靶向的作用下结合传统化疗方法和光热疗法的新型药物递送平台。
本发明的技术方案具体如下:
聚乙二醇化包裹聚多巴胺载药磁性纳米颗粒,制备方法包括以下步骤:
(1)将二价铁盐和三价铁盐溶于去离子水中,加入浓盐酸;
(2)将步骤(1)得到的混合溶液逐滴加到氢氧化钠溶液中搅拌半个小时,用一块强磁铁磁性分离得到的四氧化三铁磁性纳米颗粒,用去离子水洗涤三次;
(3)将步骤(2)所得到的四氧化三铁磁性纳米颗粒分散在三羟甲基氨基甲烷(Tris)缓冲溶液中,加入盐酸多巴胺,在室温下机械搅拌12小时,磁铁分离,用去离子水洗涤,得到多巴胺包裹的磁性纳米颗粒(Fe3O4@PDA);
(4)将步骤(3)得到的Fe3O4@PDA纳米颗粒分散在去离子水中得到Fe3O4@PDA纳米颗粒悬浮液,将硫醇聚乙二醇加入到Fe3O4@PDA纳米颗粒悬浮液中,搅拌5min后加入氨水继续搅拌一个小时,磁铁磁性分离洗涤三次,得到聚乙二醇化包裹多巴胺的磁性纳米颗粒(Fe3O4@PDA/PEG);
(5)将步骤(4)得到的Fe3O4@PDA/PEG磁性纳米颗粒分散在磷酸盐缓冲溶液中,加入盐酸阿霉素,避光下搅拌6h,磁铁磁性分离用去离子水洗涤三次。
进一步的,所述步骤(1)中的二价铁盐为七水合硫酸亚铁、氯化亚铁的一种或几种;所述步骤(1)中的三价铁盐是六水合三氯化铁、硫酸铁的一种或几种;所述步骤(1)中的二价铁盐与三价铁盐的摩尔比是1:1-1:3;所述步骤(1)中的浓盐酸摩尔浓度为12M,并与铁离子摩尔比为1:1-1:2。
进一步的,所述步骤(2)中的氢氧化钠溶液摩尔浓度为1.5M,体积为50mL。
进一步的,所述步骤(3)中的Tris缓冲溶液PH=8.5,摩尔浓度为10mM;所述步骤(3)中的四氧化三铁磁性纳米颗粒浓度为2mg/mL,多巴胺浓度为2-4mg/mL。
进一步的,所述步骤(4)中的Fe3O4@PDA纳米颗粒与硫醇聚乙二醇质量比为1:2-1:3;氨水质量分数为28-30%,在整个体系中体积分数为0.5%。
进一步的,所述步骤(5)中的磷酸盐缓冲溶液摩尔浓度为20mM,PH=8; 所述步骤(5)中的Fe3O4@PDA/PEG磁性纳米颗粒浓度为1mg/mL ; 所述步骤(5)中的Fe3O4@PDA/PEG磁性纳米颗粒与阿霉素质量比为1:2-1:3。
本发明主要优点有:
针对目前纳米药物载体存在的问题,本项目创造性地提出能够实现多种治疗方法协同治疗同时又具有较好生物相容性及靶向性的纳米药物递送平台。本项目中,四氧化三铁具有磁靶向功能,PDA用于光热治疗,PEG能显著提高纳米递送系统的生物相容性,整个纳米药物递送系统能有效提高治疗效果,解决纳米递送系统的靶向性和协同性等问题,推动肿瘤的高效治疗。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图。
图1为本发明实施例1磁性复合纳米颗粒(Fe3O4@PDA/PEG/DOX)的合成示意图。
图2为本发明实施例1中磁性复合纳米颗粒红外图。
图3为本发明实施例1中磁性复合纳米颗粒的TEM图。
图4为本发明实施例1中Fe3O4及Fe3O4@PDA/PEG/DOX磁性复合纳米颗粒298K的磁化曲线图。
图5为本发明实施例1中磁性复合纳米颗粒对HeLa癌细胞24h的体外毒性图。
图6为本发明实施例1中磁性复合纳米颗粒对HeLa癌细胞48h的体外毒性图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1 制备聚乙二醇化包裹聚多巴胺的载药磁性纳米颗粒
(1)Fe3O4@PDA磁性复合材料的制备:将0.556g七水合硫酸亚铁和1.04 g六水合三氯化铁溶于5mL去离子水中,加入0.17mL浓盐酸,将混合溶液逐滴加到50mL 1.5M氢氧化钠溶液中80℃氮气保护下剧烈搅拌半个小时,自然冷却到室温后磁性分离用去离子水洗涤3遍,将Fe3O4纳米颗粒分散在PH=8.5,10mM三羟甲基氨基甲烷缓冲液中,室温下机械搅拌12小时,磁性分离,用去离子水洗涤三遍。
(2)PEG化的Fe3O4@PDA的制备:将100mg硫醇聚乙二醇加入到40mL 1mg/mLFe3O4@PDA纳米颗粒悬浮液中,搅拌5分钟后加入0.2mL氨水(28-30%)继续搅拌一个小时,磁性分离后用去离子水洗涤几遍。
(3)Fe3O4@PDA/PEG/DOX的制备:将20mg盐酸阿霉素加入到20mL 1mg/mL的Fe3O4@PDA/PEG磷酸盐缓冲溶液中(PH=8,20 × 10−3 M),避光条件下搅拌6小时后,磁性分离用去离子水洗涤3遍。其红外光谱见图2,结果显示Fe3O4、PDA、PEG、DOX的特征峰在Fe3O4@PDA/PEG/DOX上均存在,说明Fe3O4@PDA/PEG/DOX已成功的合成。其透射电镜(TEM)见图3, TEM结果显示纳米颗粒直径约为16.2±2.6 nm。图5、图6分别是所得纳米颗粒对HeLa肿瘤细胞24h和48h的体外毒性示意图,显示随着时间的增加(从24小时到48小时),对HeLa肿瘤细胞的毒性一直持续增加。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其做出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (6)

1.聚乙二醇化包裹聚多巴胺载药磁性纳米颗粒的制备方法,其特征在于:包含以下步骤:
(1)将二价铁盐和三价铁盐溶于去离子水中,加入浓盐酸;
(2)将步骤(1)得到的混合溶液逐滴加到氢氧化钠溶液中搅拌半个小时,用一块强磁铁磁性分离得到四氧化三铁磁性纳米颗粒,用去离子水洗涤三次;
(3)将步骤(2)所得到的四氧化三铁磁性纳米颗粒分散在三羟甲基氨基甲烷(Tris)缓冲溶液中,加入盐酸多巴胺,在室温下机械搅拌12小时,磁铁分离,用去离子水洗涤,得到多巴胺包裹的磁性纳米颗粒(Fe3O4@PDA);
(4)将步骤(3)得到的Fe3O4@PDA纳米颗粒分散在去离子水中,将硫醇聚乙二醇加入到所得的Fe3O4@PDA纳米颗粒悬浮液中,搅拌5min后加入氨水继续搅拌一个小时,磁铁磁性分离洗涤三次,得到聚乙二醇化包裹多巴胺的磁性纳米颗粒(Fe3O4@PDA/PEG);
(5)将步骤(4)得到的Fe3O4@PDA/PEG磁性纳米颗粒分散在磷酸盐缓冲溶液中,加入盐酸阿霉素,避光下搅拌6h,磁铁磁性分离用去离子水洗涤三次。
2.根据权利要求1所述的聚乙二醇化包裹聚多巴胺载药磁性纳米颗粒的制备方法,其特征在于:所述步骤(1)中的二价铁盐为七水合硫酸亚铁、氯化亚铁的一种或几种;所述步骤(1)中的三价铁盐是六水合三氯化铁、硫酸铁的一种或几种;所述步骤(1)中的二价铁盐与三价铁盐的摩尔比是1:1-1:3;所述步骤(1)中的浓盐酸摩尔浓度为12M,并与铁离子摩尔比为1:1-1:2。
3.根据权利要求1所述的聚乙二醇化包裹聚多巴胺载药磁性纳米颗粒的制备方法,其特征在于:所述步骤(2)中的氢氧化钠溶液摩尔浓度为1.5M,体积为50mL。
4.根据权利要求1所述的聚乙二醇化包裹聚多巴胺载药磁性纳米颗粒的制备方法,其特征在于:所述步骤(3)中的Tris缓冲溶液PH=8.5,摩尔浓度为10mM;所述步骤(3)中的四氧化三铁磁性纳米颗粒浓度为2mg/mL,多巴胺浓度为2-4mg/mL。
5.根据权利要求1所述的聚乙二醇化包裹聚多巴胺载药磁性纳米颗粒的制备方法,其特征在于:所述步骤(4)中的Fe3O4@PDA纳米颗粒与硫醇聚乙二醇质量比为1:2-1:3;所述步骤(4)中的氨水质量分数为28-30%,在整个体系中体积分数为0.5%。
6.根据权利要求1所述的聚乙二醇化包裹聚多巴胺载药磁性纳米颗粒,其特征在于:所述步骤(5)中的磷酸盐缓冲溶液摩尔浓度为20mM,PH=8;所述步骤(5)中的Fe3O4@PDA/PEG磁性纳米颗粒浓度为1mg/mL ;所述步骤(5)中的Fe3O4@PDA/PEG磁性纳米颗粒与阿霉素质量比为1:2-1:3。
CN201710477272.4A 2017-06-21 2017-06-21 聚乙二醇化包裹聚多巴胺载药磁性纳米颗粒的制备方法 Pending CN107213137A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710477272.4A CN107213137A (zh) 2017-06-21 2017-06-21 聚乙二醇化包裹聚多巴胺载药磁性纳米颗粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710477272.4A CN107213137A (zh) 2017-06-21 2017-06-21 聚乙二醇化包裹聚多巴胺载药磁性纳米颗粒的制备方法

Publications (1)

Publication Number Publication Date
CN107213137A true CN107213137A (zh) 2017-09-29

Family

ID=59950089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710477272.4A Pending CN107213137A (zh) 2017-06-21 2017-06-21 聚乙二醇化包裹聚多巴胺载药磁性纳米颗粒的制备方法

Country Status (1)

Country Link
CN (1) CN107213137A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108219019A (zh) * 2018-02-08 2018-06-29 华中科技大学 一种巯基化羟乙基淀粉及其修饰的纳米材料和制备方法
CN108403641A (zh) * 2018-02-08 2018-08-17 华中科技大学 一种载药纳米材料及其制备方法
CN108553643A (zh) * 2018-07-23 2018-09-21 西南大学 碳酸钙包裹聚多巴胺载药磁性纳米颗粒的制备方法
CN108720001A (zh) * 2018-05-18 2018-11-02 翟琳 一种天然降脂食品添加剂的制备方法
CN108971509A (zh) * 2018-07-31 2018-12-11 上海工程技术大学 一种可控粒径的铁镍合金纳米材料的制备方法
CN109319891A (zh) * 2018-10-22 2019-02-12 苏州大学 一种磁性纳米材料及其制备方法与在放射性元素处理中的应用
CN111374960A (zh) * 2018-12-29 2020-07-07 上海原子科兴药业有限公司 一种egfr受体靶向肿瘤诊治放射性纳米颗粒及其制备方法
CN112755185A (zh) * 2020-12-03 2021-05-07 东华大学 一种聚多巴胺包裹的载药二硫化钼纳米片及其制备和应用
CN114732903A (zh) * 2022-04-21 2022-07-12 西安交通大学医学院第二附属医院 一种氯硝柳胺与比卡鲁胺联合用药磁性缓释纳米递药系统及其制备方法和应用
CN114887062A (zh) * 2022-06-13 2022-08-12 西南大学 增强光热/化疗协同治疗的纳米光热剂载体的制备和应用
CN115414278A (zh) * 2022-08-29 2022-12-02 中国人民解放军空军军医大学 仿生纳米黑色素光热性日光性防护剂的制备方法与应用
CN115970071A (zh) * 2022-12-02 2023-04-18 西南交通大学 一种应用于药物涂层球囊的磁性载药纳米颗粒及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140193489A1 (en) * 2013-01-07 2014-07-10 Bar-Ilan University Dopamine Nanocapsules and Uses Thereof
CN106432594A (zh) * 2016-09-29 2017-02-22 温州生物材料与工程研究所 一种光热磁多响应微凝胶及其制备方法
CN106729773A (zh) * 2017-01-15 2017-05-31 吉林大学 靶向修饰的负载阿霉素的磁性纳米颗粒及制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140193489A1 (en) * 2013-01-07 2014-07-10 Bar-Ilan University Dopamine Nanocapsules and Uses Thereof
CN106432594A (zh) * 2016-09-29 2017-02-22 温州生物材料与工程研究所 一种光热磁多响应微凝胶及其制备方法
CN106729773A (zh) * 2017-01-15 2017-05-31 吉林大学 靶向修饰的负载阿霉素的磁性纳米颗粒及制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
侯晨: "磁性酚类仿生粘附复合材料的制备及固定化脂肪酶研究", 《中国博士学位论文全文数据库 工程科技I辑》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108403641A (zh) * 2018-02-08 2018-08-17 华中科技大学 一种载药纳米材料及其制备方法
CN108403641B (zh) * 2018-02-08 2020-03-20 华中科技大学 一种载药纳米材料及其制备方法
CN108219019B (zh) * 2018-02-08 2020-03-20 华中科技大学 一种巯基化羟乙基淀粉及其修饰的纳米材料和制备方法
CN108219019A (zh) * 2018-02-08 2018-06-29 华中科技大学 一种巯基化羟乙基淀粉及其修饰的纳米材料和制备方法
CN108720001A (zh) * 2018-05-18 2018-11-02 翟琳 一种天然降脂食品添加剂的制备方法
CN108553643A (zh) * 2018-07-23 2018-09-21 西南大学 碳酸钙包裹聚多巴胺载药磁性纳米颗粒的制备方法
CN108553643B (zh) * 2018-07-23 2020-12-04 西南大学 碳酸钙包裹聚多巴胺载药磁性纳米颗粒的制备方法
CN108971509B (zh) * 2018-07-31 2021-10-08 上海工程技术大学 一种可控粒径的铁镍合金纳米材料的制备方法
CN108971509A (zh) * 2018-07-31 2018-12-11 上海工程技术大学 一种可控粒径的铁镍合金纳米材料的制备方法
CN109319891A (zh) * 2018-10-22 2019-02-12 苏州大学 一种磁性纳米材料及其制备方法与在放射性元素处理中的应用
CN111374960A (zh) * 2018-12-29 2020-07-07 上海原子科兴药业有限公司 一种egfr受体靶向肿瘤诊治放射性纳米颗粒及其制备方法
CN112755185A (zh) * 2020-12-03 2021-05-07 东华大学 一种聚多巴胺包裹的载药二硫化钼纳米片及其制备和应用
CN114732903A (zh) * 2022-04-21 2022-07-12 西安交通大学医学院第二附属医院 一种氯硝柳胺与比卡鲁胺联合用药磁性缓释纳米递药系统及其制备方法和应用
CN114887062A (zh) * 2022-06-13 2022-08-12 西南大学 增强光热/化疗协同治疗的纳米光热剂载体的制备和应用
CN115414278A (zh) * 2022-08-29 2022-12-02 中国人民解放军空军军医大学 仿生纳米黑色素光热性日光性防护剂的制备方法与应用
CN115970071A (zh) * 2022-12-02 2023-04-18 西南交通大学 一种应用于药物涂层球囊的磁性载药纳米颗粒及其制备方法

Similar Documents

Publication Publication Date Title
CN107213137A (zh) 聚乙二醇化包裹聚多巴胺载药磁性纳米颗粒的制备方法
Cheng et al. 2D nanomaterials for cancer theranostic applications
Chen et al. Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging
CN108553643A (zh) 碳酸钙包裹聚多巴胺载药磁性纳米颗粒的制备方法
Nam et al. Folate attached, curcumin loaded Fe3O4 nanoparticles: A novel multifunctional drug delivery system for cancer treatment
Montha et al. Synthesis of doxorubicin-PLGA loaded chitosan stabilized (Mn, Zn) Fe2O4 nanoparticles: biological activity and pH-responsive drug release
Xiao et al. Magnetic carbon nanotubes: synthesis by a simple solvothermal process and application in magnetic targeted drug delivery system
Li et al. Progress in magnetic Fe3O4 nanomaterials in magnetic resonance imaging
Huang et al. Gadolinium-doped carbon quantum dots loaded magnetite nanoparticles as a bimodal nanoprobe for both fluorescence and magnetic resonance imaging
Wu et al. Synthesis and in vitro evaluation of pH-sensitive magnetic nanocomposites as methotrexate delivery system for targeted cancer therapy
Duan et al. Fluorescent carbon dots as carriers for intracellular doxorubicin delivery and track
Li et al. Fe3O4-based nanotheranostics for magnetic resonance imaging-synergized multifunctional cancer management
Maboudi et al. Synthesis and characterization of multilayered nanobiohybrid magnetic particles for biomedical applications
Huang et al. Synthesis of multifunctional Fe3O4 core/hydroxyapatite shell nanocomposites by biomineralization
Yew et al. Potential anticancer activity of protocatechuic acid loaded in montmorillonite/Fe3O4 nanocomposites stabilized by seaweed Kappaphycus alvarezii
US20200121610A1 (en) Modified cyclodextrin coated magnetite nanoparticles for targeted delivery of hydrophobic drugs
CN102020258A (zh) 一种磁性荧光羟基磷灰石纳米复合结构的制备方法
Abu-Huwaij et al. Perceptive review on properties of iron oxide nanoparticles and their antimicrobial and anticancer activity
Romdoni et al. Synthesis of multifunctional Fe3O4@ SiO2-Ag nanocomposite for antibacterial and anticancer drug delivery
Neha et al. Synthesis of surface grafted mesoporous magnetic nanoparticles for cancer therapy
Swain et al. Effect of β-cyclodextrin decoration on structural, optical and magnetic properties of luminescent magnetic nanoparticles and its application as a drug carrier
Ningombam et al. Luminescent water dispersible core-shell–(Y/Eu/Li) VO4@ APTES@ Folate and (Y/Eu/Li) VO4@ Fe3O4@ PEG nanocomposites: Biocompatibility and induction heating within the threshold alternating magnetic field
Borhan et al. Flash-cooling assisted sol-gel self-ignited synthesis of magnetic carbon dots-based heterostructure with antitumor properties
CN101475184B (zh) 一种填充中空介孔二氧化硅球的无机磁性材料的制备方法
CN106806898A (zh) 一种叶酸靶向磁功能化二硫化钼药物载体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170929