CN107209123B - 多孔傅立叶重叠关联和荧光成像 - Google Patents

多孔傅立叶重叠关联和荧光成像 Download PDF

Info

Publication number
CN107209123B
CN107209123B CN201680006738.6A CN201680006738A CN107209123B CN 107209123 B CN107209123 B CN 107209123B CN 201680006738 A CN201680006738 A CN 201680006738A CN 107209123 B CN107209123 B CN 107209123B
Authority
CN
China
Prior art keywords
image
imaging
light
illumination
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680006738.6A
Other languages
English (en)
Other versions
CN107209123A (zh
Inventor
金镇护
杨昌辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
California Institute of Technology CalTech
Original Assignee
California Institute of Technology CalTech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by California Institute of Technology CalTech filed Critical California Institute of Technology CalTech
Publication of CN107209123A publication Critical patent/CN107209123A/zh
Application granted granted Critical
Publication of CN107209123B publication Critical patent/CN107209123B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0095Relay lenses or rod lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6478Special lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/04Batch operation; multisample devices
    • G01N2201/0446Multicell plate, sequential
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/957Light-field or plenoptic cameras or camera modules

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)
  • Optical Measuring Cells (AREA)

Abstract

用于明视场傅立叶重叠关联成像和荧光成像的成像设备包括:第一荧光照明源,其被配置为向透明孔提供第一波长范围的激发光;光学系统,其具有相对地定位的一对物镜;以及图像传感器,其被配置成接收从透明孔通过光学系统传播的光。图像传感器被配置成基于来自可变照明源的在不同照明角度处的顺序照明,获取穿过孔中的样品的光的一系列唯一地照亮的强度测量结果,并且图像传感器还被配置成基于由样品响应于第一波长范围的激发光而发射的光,获取样品的第一荧光图像。

Description

多孔傅立叶重叠关联和荧光成像
相关申请的交叉引用
这是要求享有于2015年1月26日提交的并且标题为“Real-time Cell CultureMonitoring via Fourier Ptychographic Microscopy”的第62/107,631号美国临时专利申请的、以及于2015年1月26日提交的并且标题为“Development of 96-well PlateFluorescence Imaging System”的第62/107,628号美国临时专利申请的优先权和权益的申请,在此以其整体并且针对全部目的通过引用的方式并入。本申请还涉及与本申请同日提交的Kim等人的标题为“ARRAY LEVEL PTYCHOGRAPHIC IMAGING”、序列号为15/007,196的美国专利申请(代理人案卷号为CIT1P033/CIT 7093),在此以其整体并且针对全部目的通过引用的方式并入。
联邦资助的研究或开发
本发明是根据国立卫生研究院颁发的批准号OD007307,在政府支持下完成的。政府具有本发明中的某些权利。
领域
某些方面一般来说涉及数字成像,更具体地说,是涉及用于傅立叶重叠关联(Fourier ptychographic)和荧光成像的成像系统、设备和方法。
背景
活细胞成像和其他细胞培养监测被广泛用于生物科学实验,以更好地了解动态细胞行为,例如迁移、分裂、分化、与环境的相互作用以及细胞器级事件。细胞培养监测还可以提供在早期检测意外的细胞死亡和污染的机会,以便及时拯救将要失败的细胞培养。
对于追踪研究,生物科学家传统上借助于在常规显微镜上建立专门的培养和成像室,并在显微镜载物台上直接对所培养的细胞进行成像,如在http://www.zeiss.com/ microscopy/en_us/products/microscope-components/incubation.html中所讨论的。然而,这种方法不仅昂贵,而且占用了实验室中的大量的房产。此外,视场和图像分辨率与常规显微镜中的物镜的物理特性结合。因此,当使用这种常规的显微镜平台时,必须对视场和图像分辨率进行权衡。细胞培养监测的另一种常规方法是将成像系统纳入培养箱内,如在http://www.essenbioscience.com/essen-products/incucyte/中所讨论的。不幸的是,这些常规系统也采用标准显微镜。此外,使用机械扫描。因此,难以在这些常规系统中同时获得宽视场和高分辨率成像。此外,这些系统建造和维护价格昂贵,并且其吞吐量受限于常规显微镜本身。也就是说,通过常规显微镜可达到的由空间-带宽乘积(SBP)表征的可分辨像素的数量通常限于10兆像素。该SBP限制约束了由常规系统实现的图像采集率或吞吐量。
为了克服常规显微镜的SBP极限,最近开发了片上显微镜。已经证明了这些片上显微镜成功地具有来自培养箱的细胞培养物的高分辨率和大视场(FOV)成像。在G.Zheng、S.A.Lee、Y.Antebi、M.B.Elowitz和C.Yang于2011年在Proc.Natl.Acad.Sci.U.S.A.108(41),16889-16894上发表的“The ePetri dish,an on-chip cell imaging platformbased on subpixel perspective sweeping microscopy(SPSM),”中、在J.H.Jung、C.Han、S.A.Lee、J.Kim和C.Yang于2014年在Lab Chip 14(19),3781-3789发表的“Microfluidic-integrated laser-controlled microactuators with on-chip microscopy imagingfunctionality,”中以及在C.Han、S.Pang、D.V.Bower、P.Yiu和C.Yang于2013年在Anal.Chem.85(4),2356-2360发表的“Wide field-of-view on-chip Talbotfluorescence microscopy for longitudinal cell culture monitoring from withinthe incubator,”中可以找到这些片上显微镜的示例。然而,这些片上显微镜具有固有的限制,即细胞需要在图像传感器的顶部生长。这个限制是与常规细胞培养工作流程的显著偏差。如果在传感器芯片的顶部对培养细胞或生物样品进行成像,传感器芯片的表面采用硅基材料(通常为氮化硅)制成,因此细胞培养环境改变了。即使可以将特殊的层涂覆到图像传感器上,表面的底层也不同于在常规细胞培养工作流程中使用的塑料或玻璃。此外,成像传感器表面是活性层,并且在操作期间发热。因此,除非针对冷却对系统进行设计,否则细胞培养环境可以受到与该热量相关的温度改变的影响。其他的无透镜成像方法(诸如,数字同轴全息摄影术)可以在没有这种限制的情况下工作,并且可以在明视场模式下提供高成像SBP,但缺少光学聚焦元件就妨碍了这些无透镜成像方法具有有效的荧光成像能力。需要聚焦元件以用于有效的荧光成像能力,因为荧光发射是不相干的并且具有低强度,在没有任何聚焦元件的情况下,降低了荧光图像的分辨率。在W.Bishara、T.W.Su、A.F.Coskun和A.Ozcan于2010年在Opt.Express 18(11),11181-11191发表的“Lensfree on-chipmicroscopy over a wide field-of-view using pixel super-resolution,”e、在W.Bishara、U.Sikora、O.Mudanyali、T.W.Su、O.Yaglidere、S.Luckhart和A.Ozcan于2011年在Lab Chip 11(7),1276-1279发表的“Holographic pixel super-resolution inportable lensless on-chip microscopy using a fiber-optic array,”o以及在A.Greenbaum、U.Sikora和A.Ozcan于2012年在Lab Chi p12(7),1242-1245发表的表Field-portable wide-field microscopy of dense samples using multi-height pixelsuper-resolution based lensfree imaging,”可以找到数字同轴全息摄影术的示例。
概述
某些方面涉及傅立叶重叠关联和荧光成像的基于多孔的(multi-well,MWB)系统、设备和方法。在一些方面中,可以在培养箱内实现多个MWB系统。在一些方面中,MWB系统具有在单一主体内的多个成像设备,以对多孔板中的样品并行地进行成像。
某些方面涉及用于明视场傅立叶重叠关联成像和荧光成像的成像设备。成像设备包括第一荧光照明源,第一荧光照明源被配置成向透明孔提供第一波长范围的激发光。成像设备还包括光学系统,光学系统具有相对地定位的一对物镜。成像设备还包括图像传感器,图像传感器被配置成接收来自透明孔的通过光学系统传播的光。图像传感器还被配置成基于来自可变照明源的在不同照明角度处的顺序照明,获取穿过孔中的样品的光的一系列唯一地照亮的强度测量结果。图像传感器还被配置成基于由样品响应于第一波长范围的激发光而发射的光,获取样品的第一荧光图像。在某些实施方式中,成像传感器接收来自(例如,控制器的)处理器的、具有用于获取图像的控制指令的信号。
某些方面涉及用于傅立叶重叠关联成像和荧光成像的系统。该系统包括:主体,主体被配置成接收多孔板;以及成像设备,成像设备被布置成与所述多孔板中的孔一一对应。每个成像设备包括:第一荧光照明源,第一荧光照明源被配置成将第一波长范围的激发光提供给对应的孔;以及光学系统,光学系统具有相对地定位的一对物镜。每个成像设备还包括图像传感器,图像传感器用于基于从对应的孔接收的光来捕获强度测量结果。该系统被配置成基于在通过可变照明源在不同照明角度处的顺序照明期间获取的一系列唯一的照明强度测量结果,使用傅立叶重叠关联重建来生成样品的分辨率经提高的明视场图像。该系统还被配置成基于由样品响应于接收到第一波长范围的激发光发射的光而生成第一荧光图像。
某些方面涉及一种成像方法,该方法包括采用在多个照明角度处的平面波照明依次地照亮多孔板。对于在孔板中的每个孔,成像方法基于在多个照明角度处的顺序照明,从穿过在对应孔中的样品的光获取一系列唯一地照亮的强度测量结果。此外,对于在孔板中的每个孔,基于一系列唯一地照亮的强度测量结果,采用傅立叶重叠关联重建过程重建样品的分辨率经提高的明视场图像。在某些实施方式中,成像方法还包括将可变照明源的光源的位置校准到接收来自多孔板中的孔的光的图像传感器的位置。
这些和其它特征在下面参照有关的附图更详细地进行描述。
附图简述
图1是根据实施例的、具有用于傅立叶重叠关联明视场成像和/或荧光成像的多个MWB系统的培养箱系统的部件的示意图。
图2A是根据实施例的、在图1中所示的MWB系统之一的部件的示意图。
图2B是在图2A中显示的MWB系统的一些部件的分解视图的示意图。
图2C是在图2A和图2B中显示的MWB系统的成像设备的部件的侧视示意图。
图2D是根据实施例的、在图2A、图2B和图2C中显示的MWB系统的部件的侧视的,以及还有处理器、计算机可读介质(CRM)和可选的显示器的示意图。
图3A是根据实施例的、被配置用于单频带荧光成像的MWB系统的部件的平面视图的示意图。
图3B是根据实施例的、被配置用于双频带荧光成像的MWB系统的部件的平面视图的示意图。
图4A是根据实施例的、被配置用于双频带荧光成像的MWB系统的示意图。
图4B是根据实施例的、在图4A中所示的MWB系统的一些部件的示意图。
图5是根据实施例的MWB系统的照片。
图6是根据实施例的、用于相对于图像传感器校准可变照明源的离散光元件(LED)的位置的校准过程的流程图。
图7A是根据实施例的、在通过LED矩阵的中心LED照明期间捕获的单色晕映图像。
图7B是图7A的图像的转换成的黑白图像。
图7C是根据另一实施例的、在LED矩阵的中心LED照明期间捕获的图像。
图7D是根据实施例的、与图像的中心相对于图像传感器的中心的x-偏移和y-偏移相关联的LED位移的查找图。
图8是根据实施例的、描述由MWB系统的一个或更多个成像设备中的每一个成像设备实施的成像方法的操作的流程图。
图9是根据实施例的FP重建过程的流程图。
图10是根据实施例的FP重建过程的流程图。
图11A是采用具有4X/NA 0.1物镜以及平面照明的常规显微镜获得的USAF靶的图像。
图11B是根据实施例的、通过具有1:1成像配置的MWB系统获得的USAF靶的原始强度图像。
图11C包括根据实施例的、通过由MWB系统实施的FP成像过程生成的USAF靶的高分辨率明视场图像。
图12A是根据实施例的、使用MWB系统获取的低分辨率明视场图像与荧光图像的重叠图像。
图12B是根据实施例的、使用由MWB系统实施的成像方法的FP重建过程生成的重建的高分辨率明视场图像。
图12C是根据实施例的、使用由MWB系统实施的成像方法的FP重建过程生成的重建的相位图。
图12D是根据实施例的、通过在图12C中表示的线的、在重建的相位图上的珠粒的厚度的绘图。
图13A是在z=+100μm处的USAF靶的散焦图像。
图13B是根据实施例的在图13A显示的图像的数字地重聚焦的图像,其在由MWB系统实施的成像方法的FP重建过程期间被数字地重聚焦。
图14A是在z=-100μm处的USAF靶的散焦图像。
图14B是根据实施例的在图14A显示的图像的数字地重聚焦的图像,其在由MWB系统实施的成像方法的FP重建过程期间被数字地重聚焦。
图15是根据实施例的、在图13B和图14B中显示的最小分辨特征的线迹线的绘图。
图16A是散焦的神经元培养样品图像。
图16B是根据实施例的、使用由MWB系统实施的成像方法的FPM重建的数字地重聚焦的相位图。
图17显示了根据实施例的由MWB系统生成的大视场图像。
图18是根据实施例的、通过由MWB系统实施的成像方法的FP过程生成的延时的一系列相位图。
图19是根据实施例的、基于由MWB系统生成的图像的被跟踪的靶细胞的位置轨迹的绘图。
图20是根据实施例的、通过由MWB系统实施的成像方法的FP过程生成的延时的一系列图像。
图21是根据实施例的、在某些MWB系统中可存在的一个或更多个子系统的框图。
详细描述
下面参照附图描述不同的方面。在附图中所示出的特征可以不是按比例绘制的。
I.介绍
某些方面涉及用于高分辨率傅立叶重叠关联明视场成像和中分辨率荧光成像的基于多孔的(MWB)系统、设备和方法。在多个方面中,MWB系统包括主体,该主体被设计成接收多孔板(例如,6孔板或12孔板),并且该主体包括用于对多孔板中的对应的孔进行成像的多个成像设备。在这些方面中,每个成像设备具有一个或更多个大功率荧光照明源,用于向对应的孔提供荧光照明,每个成像设备还包括具有在成像柱(imaging column)中相对地定位的一对物镜(例如,低NA物镜)的光学系统、以及图像传感器。图像传感器接收在由光学系统传播时从对应的孔收集和聚焦的光。LED矩阵或其他可变照明源从不同的照明角度依次照亮孔板中的孔,以提供傅立叶重叠关联照明。在一些方面中,发射滤光片位于这对物镜之间,以阻挡来自一个或更多个荧光照明源的激发光。在一个方面中,来自可变照明源的照明的波长落入发射滤光片的通频带内,使得图像传感器可以在不移除发射滤光片的情况下,获取一系列基于傅立叶重叠关联照明的唯一地照亮的明视场图像以及基于荧光照明的荧光图像。FP重建过程可以用于根据由图像传感器捕获的样品的唯一地照亮的明视场图像,来生成在每个孔中的样品的分辨率经提高的明视场图像。因此,某些MWB系统可以并行地生成在多个孔中的样品的高分辨率明视场图像和中分辨率荧光图像。由于某些MWB系统的成像设备可以是紧凑的并且以平行柱进行布置,因此,成像设备可以具有与多孔板大致相同的占地面积,并且多个系统可以置于单一培养箱内。
傅立叶重叠关联(FP)技术可用于克服常规成像系统的SBP极限。在G.Zheng、R.Horstmeyer和C.Yang于2013年在Nat.Photonics 7(9),739-745发表的“Wide-field,high-resolution Fourier ptychographic microscopy,”中、在X.Ou、R.Horstmeyer、C.Yang和G.Zheng于2013年在Opt.Lett.38(22),4845-4848发表的“Quantitative phaseimaging via Fourier ptychographic microscopy,”中、在R.Horstmeyer和C.Yang于2014年在Opt.Express 22(1),338-358发表的“A phase space model of Fourierptychographic microscopy,”中、在X.Ou、G.Zheng和C.Yang于2014年在Opt.Express 22(5),4960-4972发表的“Embedded pupil function recovery for Fourierptychographic microscopy,”中、在X.Ou、R.Horstmeyer、G.Zheng和C.Yang于2015年在Opt.Express 23(3),3472-3491发表的“High numerical aperture Fourierptychography:principle,implementation and characterization,”中、在J.Chung、X.Ou、R.P.Kulkarni和C.Yang于2015年在PLoS One 10(7),e0133489发表的“CountingWhite Blood Cells from a Blood Smear Using Fourier Ptychographic Microscopy,”中、在A.Williams、J.Chung、X.Ou、G.Zheng、S.Rawal、Z.Ao、R.Datar、C.Yang和R.Cote于2014年在J.Biomed.Opt.19(6),066007发表的“Fourier ptychographic microscopy forfiltration-based circulating tumor cell enumeration and analysis,”中、以及在R.Horstmeyer、X.Ou、G.Zheng、P.Willems和C.Yang于2015年在Comput.Med.ImagingGraphics 42,38-43发表的“Digital pathology with Fourier ptychography,”中讨论了使用FP成像技术的常规显微镜系统的一些示例,这些文献在此通过引用并入,以用于讨论。
某些方面涉及这样的成像设备:该成像设备可以实施用于明视场高分辨率成像的FP技术,并且该成像设备还可以获取中分辨率荧光图像。为了实施FP技术,具有一系列离散光源的可变照明源(例如,LED矩阵)在一系列照明方向处向样品依次提供了平面波照明。在样品在不同的照明方向处被依次照明的同时,图像传感器从在不同曝光时间穿过样品的光中捕获一系列强度分布测量结果(原始强度图像)。可以使用傅立叶重叠关联重建过程在空间频域中将强度图像组合,以呈现高分辨率图像。通过将低放大倍率(具有低数值孔径(NA))物镜用作收集元件,成像设备可以提高分辨率,而同时保持宽视场。
在某些方面中,MWB系统的成像设备被配置以用于高吞吐量细胞培养成像。在这些情况下,成像设备的部件被设计和布置成在单一主体内,以获得能够对多个样品并行地进行成像的简单且紧凑的MWB系统。由于MWB系统紧凑,因此可以将多个MWB系统嵌入到培养箱系统内,以用于并行监测很多细胞培养物。由于该MWB系统的成像设备不需要将样品置于图像传感器的顶部,因此可以在多孔板中生长和成像细胞培养物。
在某些方面中,MWB系统的成像设备使用容忍实验误差(诸如,未对准和/或散焦)的高分辨率成像技术,这有益于进行长时间监测(例如,追踪研究)而无中断。在某些情况下,MWB系统的成像设备实施具有校准过程的成像方法,该校准过程可以作为FP重建过程的部分而校正多孔板的未对准和/或对高分辨率图像进行数字重聚焦。FP重建过程可用的数字重聚焦能力可用于孔板的小漂移和机械不稳定性。这对系统的用户显著地有益的,因为用户可以保留和重聚焦可能已经被常规成像技术拒绝的图像。此外,这样就省去了对于机械自动对焦解决方案的需要,并且简化了成像设备。在G.Zheng、R.Horstmeyer和C.Yang于2013年在Nat.Photonics 7(9),739-745发表的“Wide-field,high-resolution Fourierptychographic microscopy,”中描述了FP技术的数字重聚焦能力的一些细节,该文献在此通过引用以其整体并入。由于部件及其布置可以是简单的,因此这些成像设备可以是紧凑的并且是具有成本效益的。可以将具有多个成像设备单元的系统制造得具有成本效益并且紧凑,以提供例如同时成像的能力。执行并行成像的能力可以以等于并行单元数量的因子提升有效的系统SBP。
在某些方面中,MWB系统的成像设备被设计成具有足够大到监测样品的代表性部分的宽视场,其对于在生物研究中进行最有效的细胞培养监测来说是有用的。在一些情况下,成像设备具有范围是0.01mm2至100cm2的视场。在某些方面中,成像设备被设计成以高到足够区分有关的细胞变化的分辨率来产生图像。在一些情况下,成像设备具有2μm至10μm的空间分辨率。
II.用于傅立叶重叠关联明视场成像和荧光成像的系统
某些方面涉及一种培养箱系统,该培养箱系统包括具有可以装载一个或更多个MWB系统的内部容积的培养箱。在某些情况下,MWB系统具有多个成像设备(也称为成像单元),该多个成像设备具有在单一主体内平行地布置的竖直成像柱。按照设计,MWB系统可同时(并行地)对在主体顶部装载的多孔板的多个孔中的样品进行成像。这个MWB系统的每个成像设备被配置用于对多孔板的对应的孔中的样品进行傅立叶重叠关联明视场高分辨率成像和中分辨率荧光成像。培养箱的示例是内部容积为200升的生物培养箱。
在一些情况下,培养箱系统具有在内部容积中水平间隔开的多个水平搁板。设置水平搁板的尺寸,并使水平搁板间隔开,以装下各种仪器,诸如,平皿、烧瓶和/或一个或更多个MWB系统。在一个方面中,培养箱系统具有这样的水平搁板:该水平搁板的尺寸被设置成并且间隔成使得一个或更多个MWB系统可以被装载到水平搁板上。在一个示例中,在相邻水平搁板之间的间距至少相距250mm。培养箱系统还包括在每个MWB系统中的成像设备到(多个)处理器(例如,微处理器)和/或(多个)电源之间的电连接器。
在一个方面中,培养箱系统包括可变照明源(例如,LED矩阵),该可变照明源位于可以装载一个或更多个MWB系统的水平搁板上方的表面或其他结构上。在一个示例中,将要进行装载的水平搁板是培养箱的下部搁板。在这种情况下,LED矩阵或其他可变照明源朝向下方,并且位于该下部搁板上方的水平搁板的底面上。在另一种情况下,正在进行装载的水平搁板是培养箱的顶部搁板。在这种情况下,LED矩阵或其他可变照明源朝向下方,并且位于培养箱的内部容积的上部水平壁的内表面上。虽然在本文中描述了这样的培养箱系统的某些示例:其中的培养箱包括两个水平搁板,并且每个搁板上具有六个MWB系统;但是应当理解,本公开不是这样限制的,并且培养箱系统的其他示例可以具有配置有更多或更少的搁板的培养箱和/或可以在水平搁板上装载更多或更少的MWB系统。
图1是根据实施例的、具有用于傅立叶重叠关联明视场成像和/或荧光成像的多个MWB系统100的培养箱系统10的部件的示意图。培养箱系统10包括培养箱12,其具有内部容积14(例如,200升)、在内部容积14中的两个水平搁板16、以及靠近培养箱12的下表面的接水盘30。水平搁板16是间隔开的(例如,相隔至少250毫米)。示出了用于傅立叶重叠关联明视场成像和/或荧光成像的十二(12)个MWB系统100被装载在培养箱12的内部容积14中的两个水平搁板16上(六个装载在一个搁板上)。培养箱系统包括以彩色LED矩阵形式的两个可变照明源110。第一可变照明源110被配置成向装载在培养箱12的顶部水平搁板16上的六个MWB系统100提供FP顺序照明。第一可变照明源110附接于培养箱12的内部容积14的上部水平壁的底面。第二可变照明源110附接于上部水平搁板16的底面,上部水平搁板16在装载有MWB系统100的下部水平搁板的上方。培养箱系统10还包括(在图2D中显示的)在MWB系统100和(多个)处理器和/或(多个)电源之间的电连接。
在所示的示例中,在每个水平搁板16上的六(6)个MWB系统100共享一个可变照明源110。可变照明源110向MWB系统100的孔板中的样品提供了不同照明角度的顺序照明。在其他示例中,每个MWB系统100具有其自身的可变照明源110,或者与更多或更少的MWB系统100系统共享。
某些方面涉及具有多个平行成像设备的MWB系统。每个成像设备具有竖直对齐的部件,使得多个平行成像设备可以布置在单一主体中,以能够同时对装载在主体的顶部上的多孔板中的多个孔中的样品进行成像。每个成像设备被配置用于对多孔板(例如,六(6)孔板或十二(12)孔板)的单孔中的样品进行傅立叶重叠关联明视场高分辨率成像和中分辨率荧光成像。该MWB系统的主体被设计成接受并且装下多孔板。例如,主体可以包括为多孔板的外周界形状的唇缘,用于安置多孔板。
如在本文中所用,多孔板是指具有多个孔的透明材料的平板,每个孔用于接收并且容纳样品。通常,孔是圆形的或正方形的,具有用于接收样品的敞开的顶端和封闭的底部。在一个示例中,多孔板的每个孔是圆形的,其中,直径为三十六(36)mm。在一个示例中,多孔板的每个孔是圆形的,其中,直径为三十四(34)mm。在一个示例中,多孔板的每个孔是圆形的,其中,直径为二十三(23)mm。在孔中进行成像的样品可以包括一个或更多个对象和/或对象的一个或更多个部分。每个物体可以是例如生物实体、无机实体等。可以成像的生物实体的一些示例包括全细胞、细胞组分、微生物(诸如,细菌或病毒)、以及细胞组分(诸如,蛋白质)。可以成像的无机实体的示例是半导体晶圆。可以在培养基(诸如,液体)中提供样品。
在某些方面中,MWB系统的成像设备接收来自可变照明源的顺序照明(或与其他成像设备共享可变照明源),并且MWB系统的成像设备包括至少一个大功率荧光照明源和成像部分,该至少一个大功率荧光照明源被配置成提供激发光,该成像部分具有以竖直柱的方式布置的成像光学系统。在某些情况下,成像设备或MWB系统包括可变照明源。在某些实施方式中,成像光学系统是1:1系统。可以使用其他比例。在一些情况下,成像光学系统被设计成使物镜的分辨率与图像传感器的像素尺寸的一半相匹配。
虽然在本文中将MWB系统的某些示例描述为具有用于对6孔板中的六个孔中的样品进行独立成像的六(6)个成像设备,但是应当理解,本公开不是如此限制,并且MWB系统可以具有更少的或更多的成像设备(单元)。例如,MWB系统可以具有用于对12孔板的12个孔中的样品进行成像的12个成像设备。
如在本文中所用的,可变照明源是指可以被配置成以n个不同的照明角度依次向一个或多个MWB系统的样品提供平面波照明的设备。每个照明角度对应于傅立叶域中对应区域的位置。可变照明源包括在不同位置处的多个离散光元件的布置,例如,以二维网格、线阵列、同心圆等方式。在一些情况下,每个离散光元件包括多个光源,例如红色光源、蓝色光源和绿色光源。例如,在图1中,可变照明源110是三色LED(二维)矩阵,其中,每个LED包括红色光源、蓝色光源和绿色光源。通过依次点亮在不同位置处的n个不同的离散元件(或其组合),可变照明源在n个不同的照明角度提供了平面波照明。在一个方面,可变照明源为二维矩阵(例如,32×32矩阵、100×100矩阵、32×64矩阵、64×64矩阵和128×128矩阵)的形式。
为了提供顺序照明,可变照明源在FP图像获取过程期间点亮在不同位置处的不同的离散元件(或其组合)。在照明指令中提供了激活可变照明源的离散元件的顺序和定时。在一个示例中,照明的顺序是从中心位置开始/到中心位置结束的环形模式。在另一个示例中,照明的顺序遵循从顶部一排到底部一排的迂回曲折的模式。
虽然通常可变照明源的光源是相干光源,但是在一个方面中,可以使用发射非相干光的具有尺寸有限的有源区域的源。在尺寸有限的源处的不相干的这种光在传播到采样平面时将形成部分相干的场,并且可以在傅立叶重建过程中应用计算校正以考虑入射照明的部分相干的性质。
在一些方面中,可变照明源提供可见光。提供可见光的可变照明源的示例是发光二极管(LED)矩阵。在该示例中,每个LED是光元件。提供可见光的可变照明源的另一示例是液晶显示器(LCD)。
MWB系统的每个成像设备包括荧光照明部分,其具有用于提供荧光照明的一个或更多个大功率荧光照明源,荧光照明是用于激活样品中的荧光团的激发光。每个大功率荧光照明源被设计成生成一定波长范围的激发光。在多色荧光成像示例中,对于正被成像的每个频带,每个成像设备具有单独的大功率荧光照明源。
每个大功率荧光照明源包括一个或更多个大功率光源(例如,大功率LED)和激发滤光片,激发滤光片用于使一定的波长范围的激发光通过并阻挡其他波长。在一个示例中,大功率荧光照明源包括六(6)个大功率LED。在一个示例中,大功率荧光照明源包括一(1)个大功率LED。在一个示例中,大功率荧光照明源包括多个大功率LED。对于单色(频带)荧光成像,每个成像设备具有至少一个大功率荧光照明源和激发滤光片,该至少一个大功率荧光照明源具有(多个)大功率光源(例如,LED),该激发滤光片用于使一定波长范围的激发光通过并且阻挡其他波长。对于多色(多通道)荧光成像,将大功率光源与滤光片的集合的数量增加荧光通道的数量。对于多频带荧光成像,针对每个荧光通道使用不同的大功率荧光照明源。每个大功率荧光照明源是在不同的图像获取时间点亮的,从而为每个通道分别获取单色荧光图像。处理器可以实施将单色荧光图像转换成彩色荧光图像的指令。在多色实施例中,处理器可以通过叠加来自多个彩色荧光的图像数据来生成多色荧光图像。例如,处理器可以通过叠加来自蓝色荧光图像和绿色荧光图像的图像数据来生成蓝绿色荧光图像。
根据某些方面,为了在保持系统紧凑的同时提供荧光照明,成像设备的一个或更多个大功率荧光照明源可以位于被正在被照亮的孔的侧面。在这一侧面位置,一个或更多个大功率荧光照明源可以直接从孔的侧面向样品照射激发光,而不会阻挡来自可变照明源的光路。在一个方面中,将每个成像设备的多个大功率荧光照明源中的一个大功率荧光照明源安装在多孔板内或者安装在多孔板的侧面上。通常,一个或更多个大功率荧光照明源((多个)大功率光源和激发滤光片两者)朝着孔中心倾斜,使得直接激发光的路径到达每个孔的中心(即,每个孔的相关区域)。在一些情况下,一个或更多个大功率荧光照明源定位成与在孔的底部内表面处的平面成一角度。将该角度选择为超出第一物镜的数值孔径(NA),以防止接受强的未散射激发光。在一个方面中,该角度是6度。在另一个方面中,该角度是4.6度。
在一个方面中,由多个成像设备和/或多个MWB系统共享LED矩阵或其他可变照明源。在这个方面中,单一照明光元件(例如,LED)可以同时向多个成像设备和/或MWB系统提供平面波照明。例如,参考图1描述的培养箱系统10在每个水平搁板20上具有六(6)个MWB系统100,所有六个MWB系统100共享在水平搁板20上方的表面上的可变照明源110。通过共享配置,减少了每个成像设备的有效占地面积,这使得在培养箱内部有限的内部容积中进行更多的并行实验成为可能。这种共享配置还释放了在多孔板和可变照明源之间的空间,这提供了容易接入多孔板的空间,并且消除了来自额外的表面的不必要的反射的可能性。根据某些方面,MWB系统在单个主体中包括平行的多组竖直对齐的成像设备。每个成像设备的成像部分包括例如CMOS传感器摄像头的光学系统和图像传感器。光学系统具有以成像柱形式相对地定位的一对物镜,以及在物镜之间的发射滤光片。物镜包括收集从样品发出的光的第一收集物镜,以及将光聚焦到图像传感器的第二聚焦物镜。在某些实施方式中,光学系统是允许将样品1比1成像到图像传感器上的1:1系统。1:1成像系统通过使用低放大倍率(低NA)的第一收集物镜,提供了对孔中样品的宽视场成像。在一些情况下,针对在直径为大约36mm或更大的孔的区域上进行成像的视场而设计光学系统。
在一个示例中,第一收集物镜具有约0.1的NA。在另一示例中,第一收集物镜具有约0.2的NA。在另一示例中,第一收集物镜具有约0.4的NA。在另一示例中,第一收集物镜具有小于0.05的NA。在另一示例中,第一收集物镜具有小于0.01的NA。
通过使用两个相同的物镜,可以通过保持相同的占地面积使成像设备变得更紧凑并且不降低物镜的分辨率。此外,通过在两个物镜之间产生无限平面,可以在不改变每个孔的放大倍率的情况下,对成像设备进行微调以独立地聚焦每个孔。在一个示例中,每个物镜是奥林巴斯4X/NA 0.1(Olympus 4X/NA 0.1)物镜。
在一些情况下,光学系统还具有在第一物镜和第二物镜之间的样品的傅立叶平面处的发射滤光片。发射滤光片阻挡来自设备的一个或更多个大功率荧光照明源的激发光。在一个方面中,发射滤光片是干涉滤光片。在用于单通道荧光成像的成像设备的示例中,发射滤光片是带通或长通滤光片。在用于多通道荧光成像的成像设备的示例中,发射滤光片是多频带滤光片。
在一个方面中,来自可变照明源的明视场照明的波长范围落入发射滤光片的通频带内,使得发射滤光片使来自可变照明源的光通过,来自可变照明源的光穿过孔中的样品。在这种情况下,在将发射滤光片放置在适当位置时,图像传感器可以同时获取一系列唯一地照亮的明视场图像和荧光图像。在另一方面中,来自可变照明源的明视场照明的波长范围没有落入发射滤光片的通频带内,并且在FP图像获取过程期间移除了发射滤光片。
根据某些方面,MWB系统的每个成像设备包括图像传感器(例如,CMOS传感器),该图像传感器可以在FP图像获取过程期间获取n个唯一地照亮的强度图像,并且可以在每个荧光图像获取过程期间获取荧光图像。图像传感器通过测量在曝光时间内入射到图像传感器的感测区域的光的强度分布来获取每个图像。在许多示例中,图像传感器是USB摄像头的一部分。图像传感器是单色检测器。
在一个方面中,图像传感器的尺寸与物镜的视场数匹配和/或每个传感器元素(像素)的尺寸与物镜可提供的分辨率的一半相匹配。这种尺寸设置(sizing)允许成像设备充分利用物镜视场。为了充分利用光学系统的SBP,传感器的像素尺寸应等于或小于物镜分辨率的一半,并且传感器表面的尺寸应等于或大于物镜的视场。当上述两个条件相等时,系统设计合理,效果最好。
在每个荧光图像获取过程期间,图像传感器获取单色荧光图像,而大功率荧光照明源提供一定波长范围的荧光照明(激发光)。由处理器将单色图像转换成彩色荧光图像。如果MWB系统具有多个大功率荧光照明源,则图像传感器可以获得多个单色荧光图像,在大功率荧光照明源之一提供荧光照明时获得每个荧光图像。
图像获取(采样)时间是指在图像传感器的曝光时间期间的时间,在此期间,图像传感器测量强度分布以捕获单一强度图像。在FP图像获取过程期间,图像传感器捕获n个唯一地照亮的强度图像(例如,n=1、2、5、10、20、30、50、100、1000、10000等)。在一些情况下,图像传感器在图像获取过程期间以统一的采样率对图像进行采样。在一种情况下,采样率可以在每秒0.1至1000帧的范围中。
如以上提到的,图像传感器在FP图像获取过程期间捕获n个唯一地照亮的强度图像。由图像传感器捕获的数量为n的多个唯一地照亮的强度图像中的每个唯一地照亮的强度图像与在傅立叶空间中的区域相关联。在傅立叶空间中,相邻区域共享它们在其上采样相同的傅立叶域数据的重叠区。在一个示例中,傅立叶空间中的相邻区域与其中一个区域的面积重叠大约2%至大约99.5%。在另一个示例中,傅立叶空间中的相邻区域与其中一个区域的面积重叠大约65%至大约75%。在另一个示例中,傅立叶空间中的相邻区域与其中一个区域的面积重叠大约65%。在另一个示例中,傅立叶空间中的相邻区域与其中一个区域的面积重叠大约70%。在另一个示例中,傅立叶空间中的相邻区域与其中一个区域的面积重叠大约75%。
图2A是根据实施例的在图1中所示的MWB系统100之一的部件的示意图。所示的MWB系统100被设计成与6孔板20兼容。MWB系统100包括在单一主体102内平行地布置的六(6)个成像设备200。如所设计的,六个成像设备200可以对6孔板20的六个孔22中的样品进行成像。在图2A中,6孔板20被装载进MWB系统100的主体102的顶部。图2B是在图2A中显示的MWB系统100的一些部件的分解视图的示意图。
在某些方面中,MWB系统的每个成像设备包括FP照明部分、荧光照明部分和成像部分。在图2A和图2B中,FP照明部分采用与其他MWB系统100共享的可变照明源110的形式。可变照明源110向在水平搁板16上的MWB系统100的6孔板20内的样品提供FP照明(即,在不同照明角度处的顺序照明)。
在图2A和图2B中,每个成像设备200还包括采用大功率荧光照明源220形式的荧光照明部分。大功率荧光照明源220被配置成从孔板20的侧面向孔22提供激发光(荧光照明)。在一个方面中,大功率荧光照明源220安装在孔板20的侧面内或侧面上。
在图2A和图2B中,每个成像设备200还包括成像部分240。成像部件240包括光学系统和图像传感器270。在图2A、图2B和图2C中,每个图像传感器都是以5MP CMOS摄像头(例如,成像源(DMK 23UP031)具有2.2μm的像素尺寸)的形式。光学系统具有一对相同的物镜(例如,奥林巴斯4X,NA0.1(Olympus 4X,NA0.1)或其它低放大倍率物镜),包括相对地定位的并且形成竖直成像柱的第一物镜250和第二物镜260。该1:1成像系统允许将样品1比1成像于图像传感器270上。为了具有较大的成像视场,物镜250和260具有低放大倍率。在一个示例中,物镜250、260中的每一个物镜具有大约0.10的NA。在一个示例中,物镜250、260中的每一个物镜具有大约0.08的NA。在一个示例中,物镜250、260中的每一个物镜具有大约0.13的NA。物镜250和260的一些示例可以低成本商购的。
1:1光学系统还包括位于第一物镜250和第二物镜260之间的发射滤光片255。发射滤光片255阻挡来自大功率荧光照明源220的激发光。在所示的示例中,来自可变照明源110的明视场照明的波长范围落入发射滤光片255的通频带内,使得图像传感器270可以在不移除发射滤光片255的情况下获取一系列唯一地照亮的明视场图像和荧光图像。
在图2A和图2B中显示的每个成像设备200可以在可变照明源从不同照明角度提供顺序照明时使用图像传感器270捕获一系列原始的明视场图像。在一个方面中,在不同的LED轮流点亮的同时,图像传感器270依次捕获原始图像。因为物镜250和260具有低放大倍率,所以每个原始的明视场图像通常具有差的分辨率。由于第一物镜250的低放大倍率,因此可以对样品的大视场进行成像。成像设备200可以使用傅立叶重叠关联(FP)技术,采用由图像传感器获取的一系列低分辨率强度图像来生成样品的高分辨率明视场图像。通过使用FP技术,在FP重建过程中使用相位复原操作来在傅立叶域中将唯一地照亮的原始强度图像拼接在一起,这产生了高分辨率明视场图像。G.Zheng、R.Horstmeyer和C.Yang于2013年在Nature Photonics发表的“Wide-field,high-resolution Fourier ptychographicmicroscopy”中可以找到FP重建过程的细节,该文献在此通过引用以其整体并入。在章节III中可以找到FP重建过程的一些细节。
在图2A和图2B中的每个成像设备200可以既使用分辨率高并且视场宽的成像,又使用中分辨率的荧光成像来监测位于每个孔22中的样品(例如,细胞培养物),并且系统占地面积近似于6孔板。通过使用具有在竖直成像柱中的相同的物镜250和260的光学系统,减小了成像设备200的尺寸,以允许MWB系统100中的间距(例如,中心距为30mm)小于6孔板的间距。这种配置允许将具有高分辨率FP成像和中分辨率荧光成像(单频带或多频带)的成像设备200分配给6孔板20的每个孔22。通过这种配置,MWB系统100可以同时对多孔板中的多个孔进行成像,而无需使用任何在用于对多孔板进行成像的常规系统中通常需要的机械运动。
图2C是根据实施例的、在图2A和图2B中显示的MWB系统100的成像设备200的部件的侧视示意图。成像设备200包括用于提供FP顺序照明112的可变照明源110。如在本文中所使用的,FP顺序照明是指在FP原始图像获取周期期间在n个不同照明角度依次提供的平面波照明。在一个方面中,通过依次地点亮在可变照明源110的不同位置处的不同的离散光元件(例如,LED),来实现FP顺序照明。在图2C中,显示可变照明源110通过一个接着一个地依次点亮不同的光元件来提供在三个图像获取时间的在三个不同的照明角度处的照明。图2C是在获取时间ti时描绘的,其中i=1至n。在这个获取时间ti,可变照明源正以照明角θi提供通过实线箭头描绘的平面波照明。虚线箭头描绘了由可变照明源110在其他获取时间提供的平面波照明。
成像设备200还包括用于提供激发光223的大功率荧光照明源220。安装大功率荧光照明源220,以从孔22的侧面提供激发光223。大功率荧光照明源220包括大功率LED 221(例如,六个大功率LED)和激发滤光片222。激发滤光片222使激发光223通过,并阻挡其它波长。大功率荧光照明源220被定位成以与孔22的底部内表面23成小角度α地引导激发光223,以防止大量的激发光223被第一物镜250收集。在所示的示例中描绘的获取时间ti,大功率荧光照明源220当前没有提供如通过虚线箭头所描绘的激发光223。在另一图像获取时间提供了激发光223。
成像设备200还包括成像部分240,其具有(例如,USB连接的摄像头的)光学系统244和图像传感器270。光学系统244包括形成了成像柱的第一物镜250和第二物镜260。物镜250和260相同并且相对地定位,以形成成像柱,该成像柱允许将样品1比1地成像到USB连接的摄像头的图像传感器270上。对于大视场成像,物镜250和260具有低放大倍率。1:1光学系统244还包括位于在第一物镜250和第二物镜260之间的样品的傅立叶平面处的发射滤光片255。发射滤光片255阻挡来自大功率荧光照明源220的激发光。
图2D是根据实施例的、在图2A、图2B和图2C中显示的MWB系统100的部件的侧视示意图,并且还包括处理器180、计算机可读介质(CRM)182和(通过虚线表示的)可选的显示器182。在该视图中,显示了MWB系统100的两个成像设备200共享用于向(在图2A和2B中显示的)6孔板20的孔22提供FP顺序照明112的可变照明源110。在图2D中,显示可变照明源110通过依次点亮每一对光元件地点亮不同的多对光元件来在三个图像获取时间以三个不同的照明角度向每个孔22提供照明。在所示的示例中描绘的获取时间,由可变照明源110从该可变照明源110的一对光元件提供平面波照明。虚线箭头描绘了在其他获取时间的平面波照明。
每个成像设备200包括大功率荧光照明源220,其用于从每个成像设备200的孔22的侧面提供激发光223。每个大功率荧光照明源220包括大功率LED 221和激发滤光片222,激发滤光片222用于使激发光223通过,并且阻挡其它波长。大功率荧光照明源220被定位成以与(在图2C中显示的)孔22的底部内表面23处的平面成小角度地引导激发光223。在所示的示例中描绘的获取时间ti大功率荧光照明源220没有提供如通过虚线箭头所描绘的激发光223。也就是说,在这个示出的示例中显示的时间,可变照明源110被打开且从一对光元件向孔22提供平面波照明112,并且大功率荧光照明源220没有被打开。
每个成像设备200还包括成像部分240,其具有(例如,USB连接的摄像头的)光学系统244和图像传感器270。光学系统244包括形成了成像柱的第一物镜250和第二物镜260。物镜250和260相同并且相对地定位以形成成像柱,该成像柱允许将样品1比1成像到USB连接的摄像头的图像传感器270上。对于大视场成像,物镜250和260具有低放大倍率。光学系统244还包括位于在第一物镜250和第二物镜260之间的样品的傅立叶平面处的发射滤光片255。发射滤光片255阻挡来自大功率荧光照明源220的激发光。在图2C中,发射滤光片255位于在相同物镜150和160之间的样品的傅立叶平面处。
图2D还显示了由图1中显示的培养箱系统10的一个或更多个MWB系统100共享的处理器180、计算机可读介质(CRM)184和可选显示器182。CRM 184与处理器180进行通信。可选的显示器182与处理器180进行通信。处理器180还与每个图像传感器270进行通信。可选地,如点划线所示,处理器180还与可变照明源110和/或大功率荧光照明源220进行通信。在一个方面,处理器180、显示器182和CRM 184是计算设备(例如,智能电话、膝上型计算机、台式机、平板电脑等)的部件。
在图2A-2D中显示的MWB系统100的示例性操作期间,每个图像传感器270捕获在n个照明角度处的FP顺序照明期间的一系列的n个唯一地照亮的强度图像。例如,来自从打开在二维的13×13LED矩阵中的每个LED开始在一百六十九(169)个照明角度处的顺序照明的一系列的一百六十九(169)个图像。处理器180使用FP重建过程来在空间频域中把一系列的n个唯一地照亮的强度图像的数据拼接在一起,以呈现出与图像传感器270相关联的孔22中的样品的更高分辨率的明视场图像。MWB系统100通过针对正在被激活的每个荧光团和正在被捕获的相关荧光图像采用不同的大功率荧光照明源来照亮样品,而进行荧光成像。在一种情况下,可变照明源的明视场照明波长落入发射滤光片255的通频带范围,并且图像传感器270可以同时收集明视场图像和荧光图像,同时发射滤光片255保持处于物镜250和260之间。在另一种情况下,在荧光成像周期之前将发射滤光片255插入物镜250和260之间,和/或在FP图像获取过程之前移除发射滤光片255。
在单频带实施例中,MWB系统的成像设备仅需要包括单一的大功率荧光照明源。例如,图2A中显示的成像设备100具有单一大功率荧光照明源,其包括六个大功率LED和使第一波长范围通过的第一激发滤光片。在这个方面中,成像设备还包括在第一物镜和第二物镜之间的、一比一光学系统的傅立叶平面处的单频带发射滤光片。单频带发射滤光片阻挡第一波长范围的激发光。
在双频带实施例中,成像设备具有至少两个大功率荧光照明源:第一大功率荧光照明源和第二大功率荧光照明源。第一大功率荧光照明源具有大功率光源和第一激发滤光片,第一激发滤光片使得第一波长范围的激发光通过。在一种情况下,第一波长范围是在320nm和380nm之间的范围。在另一种情况下,第一波长范围是在410nm与460nm之间的范围。在另一种情况下,第一波长范围是在470nm与500nm之间的范围。第二大功率荧光照明源具有大功率光源和第二激发滤光片,第二激发滤光片使得第二波长范围的激发光通过。在一种情况下,第二波长范围是在470nm与500nm之间的范围。在另一种情况下,第二波长范围是在570nm与600nm之间的范围。在另一种情况下,第二波长范围是在450nm与500nm之间的范围。在双频带实施例中,成像设备还包括在第一物镜和第二物镜之间的、一比一光学系统的傅立叶平面处的双频带发射滤光片。双频带发射滤光片阻挡第一波长范围的激发光并且阻挡第一波长范围的激发光。
在双频带实施例中,成像设备可以基于第一波长范围生成第一单色荧光图像,并且基于第二波长范围生成第二单色荧光图像。在一个方面中,处理器实施将单色荧光图像中的一个或两个单色荧光图像转换为彩色荧光图像的指令。处理器可以实施将彩色荧光图像组合成双色荧光图像的指令。这种双色荧光图像在生物测试中是有用的,以区分以不同颜色显示的样品的不同特征。
图3A是根据单频带实施例的、被配置用于单频带荧光成像的MWB系统300的部件的平面视图的示意图。MWB系统300的部件类似于参考图2A、图2B、图2C和图2D所描述的部件。在该示例中,MWB系统300的成像设备具有在物镜之间的单频带发射滤光片(未示出)。所示的MWB系统300包括布置在主体301内的六(6)个相同的成像设备,以能够对装载在主体301顶部的6孔板302中的所有六个孔303中的样品进行成像。每个成像设备包括用于提供第一波长范围的激发光的大功率荧光照明源320。将大功率荧光照明源320安装成从靠近孔303的、6孔板302的侧面向正在被成像的样品提供激发光。大功率荧光照明源320被引导至孔303的中心。每个大功率荧光照明源320包括大功率光源(例如,LED)321和激发滤光片322。激发滤光片322使得第一波长范围的激发光通过,并阻挡其它波长。在荧光成像方法期间,MWB系统300的大功率光源(例如,LED)321被打开,MWB系统300可以获取在六个孔303中的每个样品的荧光图像。第一荧光图像基于从通过第一波长范围激发的样品中的荧光团收集的发射。
图3B是根据双频带实施例的、MWB系统400的部件的平面视图的示意图。所示的MWB系统400包括布置在主体401内的六(6)个相同的成像设备,以能够对装载在主体401顶部的6孔板402中的所有六个孔403中的样品进行成像。每个成像设备包括用于提供第一波长范围的激发光的第一大功率荧光照明源420和用于提供第二波长范围的激发光的第二大功率荧光照明源430。将大功率荧光照明源420和大功率荧光照明源430安装成从靠近孔403的6孔板402的侧面向正被成像的样品提供激发光。大功率荧光照明源420和大功率荧光照明源430被定向成将激发光引导至孔403的中心。每个第一大功率荧光照明源420包括大功率光源(例如,LED)421和第一激发滤光片422。每个第二大功率荧光照明源430包括大功率光源(例如,LED)431和第二激发滤光片432。第一激发滤光片422使得第一波长范围的激发光通过,并阻挡其它波长。第二激发滤光片432使得第二波长范围的激发光通过,并阻挡其它波长。在该示例中,MWB系统400的成像设备具有在物镜之间的双频带发射滤光片(未示出)。在物镜之间的(未示出的)双频带发射滤光片阻挡第一波长范围的激发光和第二波长范围的激发光。在荧光成像方法期间,MWB系统400的大功率光源(例如,LED)421被打开,且每个成像设备的图像传感器获取在对应的孔中的样品的第一单色荧光图像。第一荧光图像基于来自通过第一波长范围激发的样品中的荧光团的发射。在荧光成像过程期间的另一个时间,MWB系统400的大功率光源(例如,LED)431打开,且每个成像设备的图像传感器获取在对应的孔中的样品的第二单色荧光图像。第二荧光图像基于来自通过第二波长范围激发的样品中的荧光团的发射。MWB系统400使用处理器将第一单色荧光图像和第二单色荧光图像转换成第一彩色荧光图像和第二彩色荧光图像,并使得来自第一荧光图像和第二荧光图像的数据重叠,以生成双色荧光图像。
图4A是根据双频带实施例的MWB系统500的示意图。MWB系统500的一些部件类似于参考图3B所描述的部件。所示的MWB系统500包括布置在单一主体502内的六(6)个相同的成像设备501,以能够对在6孔板中的所有六个孔中的样品进行成像。图4B是根据实施例的在图4A中所示的MWB系统500的一些部件的示意图。在该图中,将一些部件被示出为透明的,以观察内部部件。MWB系统500包括在可变照明源和处理器之间的带状电缆形式的电连接505。
每个成像设备501包括用于提供第一波长范围的激发光的第一大功率荧光照明源520和用于提供第二波长范围的激发光的第二大功率荧光照明源530。将大功率荧光照明源520和大功率荧光照明源530安装成从孔的侧面向正被成像的样品提供激发光。大功率荧光照明源520和530定位成与孔的底部内表面处的平面呈一角度。该角度超出第一物镜的数值孔径(NA),以防止接受强的未散射激发光。大功率荧光照明源520和大功率荧光照明源530被定向成将激发光总体上引导至孔的中心。每个大功率荧光照明源520包括一个或更多个大功率光源(例如,LED)、以及第一激发滤光片。每个大功率荧光照明源530包括一个或更多个大功率光源(例如,LED)以及激发滤光片。第一激发滤光片使得第一波长范围的激发光通过,并阻挡其它波长。第二激发滤光片使得第二波长范围的激发光通过,并阻挡其它波长。在该示例中,MWB系统500的成像设备具有在每个成像设备的物镜之间的双频带发射滤光片(未示出)。在物镜之间的(未示出的)双频带发射滤光片阻挡第一波长范围的激发光和第二波长范围的激发光。在荧光成像方法中,第一大功率荧光照明源520的大功率光源(例如,LED)被打开,且图像传感器可以获取在六个孔中的每个样品的第一荧光图像。第一荧光图像基于来自通过第一波长范围激发的样品中的荧光团的发射。在荧光成像方法中的另一时刻,第二大功率荧光照明源530的大功率光源(例如,LED)被打开,且图像传感器可以获取在六个孔中的每个样品的第二荧光图像。第二荧光图像基于来自通过第二波长范围激发的样品中的荧光团的发射。MWB系统500可以使用处理器将第一单色荧光图像和第二单色荧光图像转换成第一彩色荧光图像和第二彩色荧光图像,并使得来自第一彩色荧光图像和第二彩色荧光图像的数据重叠,以生成双色荧光图像。
MWB系统500还包括具有控制器504的电路板或其它电介质基板503。可变照明源可以电气和物理耦合到电路板503上或电路板503内。可变照明源的导电引线可以经由印刷在或以其他方式沉积在电路板503的第一表面或上表面上的导电迹线而与控制器504电耦合,而可变照明源的发光部分可以被定向成使得光离开电路板503的第二表面或下表面朝向光学系统照射。在所示的实施方式中,控制器504安装在与可变照明源相同的电路板503上。在一些其他实施方式中,控制器504可以安装在与电路板503电耦合的单独的电路板上。
图5是根据实施例的MWB系统550的照片。显示MWB系统550位于培养箱(诸如,图1中显示的培养箱12)中。MWB系统600具有主体和位于6孔板上方一段距离处的LED矩阵形式的可变照明源。MWB系统550包括在大功率LED模块与处理器和/或电源之间的电连接器。包括6孔板和大功率LED模块的MWB系统550的尺寸为125mm(宽)×133mm(长)×170mm(高)。在所示的示例中,主体是使用Makerbot 3D打印机进行3-D打印的。
MWB系统的某些部件与其他部件和/或与一个或更多个处理器进行电子通信。在这些各种部件之间的电子通信可以是有线和/或无线形式的。例如,图4A显示了到达MWB系统500的可变照明源110的带状电缆形式的电连接505。
根据某些方面,培养箱系统或MWB系统包括一个或更多个处理器和一个或更多个计算机可读介质(CRM)。在某些情况下,还包括显示器。例如,图2D显示了具有处理器180、计算机可读介质(CRM)184和可选的(通过点划线表示的)显示器182的MWB系统100。(多个)处理器与(多个)CRM进行电子通信,并且可选地与可变照明源和/或(多个)大功率荧光照明源进行电子通信,以发送控制信号。例如,可以将控制信号发送到可变照明源和图像传感器以使顺序照明与图像传感器的曝光(采样)时间同步。
(多个)CRM与处理器进行电子通信以存储和检索数据。可选的显示器与处理器进行电子通信,接收用于显示图像和其他数据的显示数据。在一个方面中,处理器、可选的显示器和CRM是计算设备(例如,智能电话、膝上型计算机、台式机、平板电脑等)的部件。虽然参考所示的示例描述了单一处理器和单一CRM,但是可以使用多个处理器和/或多个CRM。
(多个)处理器(例如,微处理器)接收在CRM上存储的指令,并执行那些指令以执行一个或更多个MWB系统和/或培养箱系统的一个或更多个功能。示例处理器包括例如通用处理器(CPU)、专用集成电路(ASIC)、诸如现场可编程门阵列(FPGA)的可编程逻辑设备(PLD)、或者片上系统(SoC)中的一个或更多个,该片上系统(SoC)包括CPU、ASIC、PLD以及存储器中的一个或更多个和各种接口。处理器被配置成接收来自图像传感器的图像数据。在一个示例中,处理器执行指令以执行FP重建过程的操作和/或FP成像方法的其他操作。在另一示例中,处理器执行在CRM上存储的指令以将控制信号发送到可变照明源来依次点亮用于顺序照明的离散光元件,和/或处理器执行在CRM上存储的指令以向图像传感器发送控制信号来测量在曝光时间期间的强度,从而获取原始强度测量结果(图像)。在另一示例中,处理器执行在CRM上存储的指令以执行系统的一个或更多个其他功能,诸如,例如,1)解释来自所获取的一系列强度图像的图像数据,2)从来自所获取的一系列强度图像的数据重建更高分辨率的图像,3)生成荧光图像,4)通过使与第一波长范围相关联的第一荧光图像和与第二波长范围相关联的第二荧光重叠,生成双频带荧光图像,和/或5)在显示器上显示一个或更多个图像或其他输出。
在一个方面中,(多个)处理器是这样的控制器的部分:该控制器将具有控制指令的信号发送到一个或更多个MWB系统的(多个)部件,以执行(多个)系统的一个或更多个功能。在一种情况下,控制器还可以控制一个或更多个MWB系统的(多个)功率部件。在一个示例中,控制器控制可变照明源的、荧光照明源的和/或图像传感器的操作。在一种情况下,控制器控制在可变照明光源中的光源的顺序照明,例如,通过选择性地通电或以其他方式仅仅允许光源中的特定光源或光源子集在各种图像获取期间的特定时间和特定持续时间形成各种照明模式。控制器还与至少一个内部存储设备进行通信。内部存储设备可以包括用于存储处理器可执行的代码(或“控制器)的非易失性存储器阵列,处理器可执行的代码由处理器检索以执行本文所述的用于对图像数据实施各种操作的各种功能或操作或MWB系统的其他功能。内部存储设备还可以存储原始的和/或经处理的图像数据(包括FP重建图像和原始强度图像)。在一些实施方式中,内部存储设备或单独的存储设备可以附加地或可选地包括用于临时存储待执行的指令以及待处理、存储或显示的图像数据的易失性存储器阵列。在一些实施方式中,控制器本身可以包括易失性存储器,并且在一些情况下也可以包括非易失性存储器。
MWB系统通常实现被配置成接收来自(多个)图像传感器的图像数据的一个或更多个处理器。在一些实施方式中,处理器执行在CRM上存储的指令,以执行一个或更多个处理操作(诸如,FP成像处理),以生成高分辨率的图像、重聚焦图像和/或用于像差校正。在一些实施方式中,一个或更多个处理器被配置成或者可由用户配置成通过通信接口(例如,在图4A和图4B中的带状电缆505)将原始图像数据或经处理的图像输出到外部计算设备或系统118。实际上,在一些实施方式中,MWB系统的一个或更多个操作可以由这样的外部计算设备执行。在一些实施方式中,(多个)处理器还可以被配置成或者可以由用户配置成通过通信接口输出原始图像数据以及经处理的图像数据,以存储在外部存储设备或系统中。网络通信接口还可用于接收信息(诸如,软件或固件更新或其他数据)以供下载。在一些实施方式中,MWB系统还包括一个或更多个其他接口,诸如,例如,各种通用串行总线(USB)接口或其他通信接口。可以将这种附加接口用于例如连接各种外围设备和输入/输出(I/O)设备(诸如,有线键盘或鼠标),或者用于连接加密狗,以用于在无线连接各种无线地启用的外围设备中使用。这样的附加接口还可以包括串行接口,诸如,例如,连接到带状电缆的接口。还应当理解,MWB系统的一个或更多个部件可以电耦合,以通过各种合适的接口和电缆中的一种或更多种(例如,USB接口和电缆、带状电缆、以太网电缆、以及其他合适的接口和电缆)而与控制器进行通信。
在一些实施方式中,由图像传感器输出的数据信号可以在被传送到(多个)处理器之前由图像传感器的多路复用器、串行器或其他电气部件进行多路复用、串行化或以其他方式组合。在这样的实施方式中,(多个)处理器还可以包括用于将来自每个图像传感器的图像数据分离的信号分离器、解串器或其他设备或部件,使得每个样品孔的图像帧(强度分布测量结果)可以被并行地处理。
(多个)CRM(例如,存储器)可以存储用于执行一个或更多个MWB系统和/或培养箱系统的某些功能的指令。这些指令可由处理器执行。CRM还可以存储一系列(较低分辨率)强度测量结果、荧光图像和与成像方法相关联的其他数据。
可选的显示器与处理器进行电子通信,以接收用于在显示器上向例如培养箱系统的操作者显示的显示数据。通常,显示器是彩色显示器。
虽然在许多示例中将MWB系统描述为是在培养箱中实现的,但是MWB系统也可以是在其他环境中实现的。在一个方面中,MWB系统可以在洁净室中实现。在另一方面中,MWB系统可以在制造环境中实现。
III.傅立叶重叠关联(FP)明视场成像和荧光成像的成像方法
MWB系统实现了一种成像方法,其可以既使用FP技术生成在多孔板中的每个样品的分辨率经提高的明视场图像(FP成像过程),又生成每个样品的荧光图像(荧光成像过程)。
FP成像过程通常包括原始图像获取(数据收集)过程和FP重建过程。在FP图像获取过程期间,图像传感器获取n个唯一地照亮的强度明视场图像,而可变照明源从n个不同的照明角度提供平面波照明。在每个图像获取(采样)时间,图像传感器获取与单一照明角度相关联的唯一地照亮的强度图像。在FP图像获取过程期间,在照明序列中的每个光元件(例如,一个或更多个LED)将打开,并且图像传感器将记录来自穿过样品的光的强度分布,以获取并保存与n个不同的照明角度相关联的一系列强度图像(即唯一地照亮的强度图像)。使用FP重建过程组合低分辨率图像,以生成样品的高分辨率复合图像。在G.Zheng、R.Horstmeyer和C.Yang于2013年在Nature Photonics发表的“Wide-field,high-resolution Fourier ptychographic microscopy,”中描述了FP重建过程的示例的细节,该文献在此通过引用以其整体并入。
在图像获取过程期间,使用可变照明源以一系列的n个照明角度照亮样品。在图像获取过程期间,光学系统对从可变照明源穿过样品的光进行滤光,并获取n个唯一地照亮的强度图像。在FP重建过程中,n个强度图像在傅立叶域中迭代地组合,以生成更高分辨率的图像数据。在每次迭代中,对于特定的平面波入射角,在傅立叶域中应用滤光片,应用傅立叶逆变换以生成较低分辨率的图像,用强度测量结果代替较低分辨率图像的强度,应用傅立叶变换,并且更新傅立叶空间中的相应区域。
重建过程包括使用角度分集来恢复复合样品图像的相位复原技术。该恢复过程交替执行在空间域中获取已知的图像数据和在傅立叶域中的固定约束。可以使用例如交替的投影过程、问题的凸再形成或者在二者之间的任何非凸的变型来实现这一相位复原恢复。重建过程不需要通过机械手段横向地平移样品,而是使得傅立叶域中的频谱约束变化,从而将傅立叶通频带扩展到超过单一被捕获的图像的通频带,以恢复更高分辨率的样品图像。
在一个方面中,FP成像过程包括像差校正过程,诸如,重聚焦(传播)过程。当样品被放置在z=z0处的采样平面处(其中光学元件的对焦平面位于z=0的位置)时,重聚焦过程可能是有用的。换句话说,捕获的样品的图像不是在采样平面处的图像,而是从光学元件的对焦平面传播了-z0距离的样品轮廓。在这些情况下,FP成像过程通过将图像数据传播z0距离返回到采样平面来重聚焦样品,而无需在z方向上机械地移动样品。(多个)重聚焦(传播)步骤可通过乘以在傅立叶空间中的相位因子来执行。
在一个多路复用实施例中,在捕获每个原始图像(在曝光持续时间期间的强度分布的测量结果)期间,可以以独特的模式同时打开多个光元件(LED)。使用多路复用过程,与每个照明角度相关联的强度数据可以与所捕获的原始图像分离。在2015年12月4日提交的并且标题为“MULTIPLEXED FOURIER PTYCHOGRAPHY IMAGING SYSTEMS AND METHODS”的、第14/960,252号美国专利申请中可以找到多路复用过程的一个示例,该文献在此通过引用以其整体并入。
荧光成像过程包括对在唯一的波长范围处的每个荧光照明生成荧光图像。在荧光成像过程期间,大功率荧光照明源打开,并且通过图像传感器获取单色荧光图像。处理器可以使用来自单色荧光图像的图像数据生成彩色荧光图像。在多频带多通道实施例中,针对每个荧光照明,分别打开每个大功率荧光照明源,并且获取单独的单色荧光图像。在这种情况下,荧光成像过程还包括实施使多个彩色荧光图像重叠以生成单个多色荧光图像的指令。
傅立叶重叠关联重建过程需要与可变照明源的FP顺序照明相关联的准确的照明方向信息,以便将原始强度图像一起拼接到在空间频域中的正确位置。因为MWB系统的主体与可变照明源是分离的,所以需要相对于图像传感器校准光元件位置的校准过程,以进行准确的FP重建。当MWB系统相对于图像传感器定位或重新定位时,例如当MWB系统安装在具有在MWB系统上方的水平搁板中安装的LED矩阵的培养箱中时,需要该校准过程。
图6是根据实施例的、描绘了用于相对于每个图像传感器校准可变照明源的离散光元件(LED)的位置的校准过程的操作的流程图600。当MWB系统相对于可变照明源定位或重新定位时,使用该校准过程。
在操作621处,可变照明源的中心光元件(例如LED)被点亮。例如,如果在多个MWB系统之间共享可变照明源,则可变照明源区域内的光元件向特定的MWB系统提供FP照明。在这种情况下,用于提供FP照明的区域的中心光元件被点亮。如果单一可变照明源用于为MWB系统提供FP照明,则可变照明光源的中心光元件被点亮。中心光元件是最靠近物镜中心定位的LED。在这种情况下,根据图像传感器,点亮产生最亮的图像的一个LED。产生最亮的图像的LED位置只有一个。该LED对于图像传感器来说是中心光元件。针对每个图像传感器执行操作。
在一个实施例中,校准过程通过依次打开光元件并捕获每个光元件照明的图像来确定中心光元件。从所捕获的多个图像中确定最高强度图像。基于在多个光元件的照明期间捕获的最高强度图像来确定中心光元件。
在操作622处,图像传感器在中心光元件(例如,LED)照明期间捕获晕映单色图像。将图像转换为黑白。如果光元件和图像传感器之间存在未对准,则图像的中心从图像传感器的中心偏移。在操作623处,确定图像的中心。在操作624处,测量图像的中心在x方向上的偏移(x-偏移)和在y方向上的偏移(y-偏移)。在操作625处,基于图像的x-偏移和y-偏移,使用查找表/绘图来确定中心光元件的位移。查找表/绘图提供了与不同x-偏移的和y-偏移的值相关联的中心光元件的不同位移。一旦根据查找表/绘图确定了中心光元件的位移,就可以基于可变照明源的几何形状来确定与可变照明源中的光元件相关联的照明角度。在操作626处,使用中心光元件的位移来确定与FP照明相关联的n个照明角度。
图7A是根据实施例的、在通过LED矩阵的中心LED的照明期间捕获的单色晕映图像。图7B是图7A的图像的转换成的黑白版本。在该示例中,黑白图像的中心722位于与图像传感器的中心723相同的位置,并且LED位置与CMOS摄像头的成像传感器很好地对准。图7C是根据另一实施例的、在LED矩阵的中心LED照明期间捕获的图像。在这种情况下,在中心LED和图像传感器之间存在未对准。如图所示,在图像的中心732与图像传感器的中心723之间存在偏移。在这种情况下,存在x方向上的偏移(像素偏移X)和y方向上的偏移(像素偏移Y)。图7D是根据实施例的、与图像的中心732相对于图像传感器的中心723的x-偏移和y-偏移相关联的LED位移的查找图。在该示例中,通过将LED矩阵相对于图像传感器移动了已知的量,并且确定与LED位移相关联的图像的中心的不同的偏移,来产生查找表。
图8是根据实施例的、描述由MWB系统的一个或更多个成像设备中的每一个成像设备实施的成像方法的操作的流程图800。MWB系统的多个成像设备可以并行地执行成像方法。在一个方面中,成像方法以(通过点划线表示的)可选的操作开始其首次成像运行,其中可选的操作是校准可变照明源的位置与MWB系统的图像传感器的位置。参考图6中的流程图600描述了校准过程的示例。成像方法执行荧光成像过程和/或FP高分辨率明视场成像过程。例如,周期性地重复成像方法。在一个方面中,成像方法的每次运行包括荧光成像过程和FP高分辨率明视场成像过程。
如果执行荧光成像过程,则成像方法继续进行到操作830。在操作830处,第一大功率荧光照明源提供第一波长范围的激发光。第一大功率荧光照明源包括大功率光源(例如,大功率LED)和激发滤光片,激发滤光片用于使第一波长范围的激发光通过并阻挡其他波长。第一波长范围的激发光被引导至样品的中心。样品中的荧光团由激发光激发,并发出另一波长范围的光(另一波长范围的发射)(例如,蓝光、绿光或红光)。由于该激发光比该另一波长范围的发射强,因此第一大功率荧光照明源直接面向MWB系统的光学系统的第一收集物镜。
在操作835处,第一收集物镜接收从样品发出的光。在第一收集物镜和第二聚焦物镜之间的发射滤光片阻挡第一波长范围的任何激发光,并将发射传递到第二收集物镜。第二收集物镜接收该发射,并将其聚焦到MWB系统的图像传感器。在操作840处,图像传感器接收在第一大功率荧光照明源进行荧光照明期间来自第二收集物镜的发射,并获取单色荧光强度图像。单色荧光图像的图像数据可以被转换为彩色荧光图像。
对于多频带多通道的实施例,针对每个频带,重复操作830、835和840。对于双频带实施例,例如,第二大功率荧光照明源提供第二波长范围的激发光(操作830)。第二大功率荧光照明源包括大功率光源(例如,大功率LED)和激发滤光片,激发滤光片用于使第二波长范围的激发光通过并阻挡其他波长。第一收集物镜接收从样品发出的光(操作835)。在双频带实施例中,发射滤光片是阻挡第一波长范围的和第二波长范围的激发光的双频带滤光片。在这种情况下,双频带发射滤光片阻挡第二波长范围的激发光,并将发射传递到第二收集物镜。第二收集物镜接收该发射,并将其聚焦到MWB系统的图像传感器。图像传感器接收在第二大功率荧光照明源进行荧光照明期间来自第二收集物镜的发射,并获取第二单色荧光强度图像(操作840)。
针对多频带多通道的实施例,该成像方法执行可选的(用点划线表示的)操作845。在多频带多通道的实施例中,可以使多个彩色荧光图像重叠,以生成多色荧光图像。在一个方面中,在操作845之后,成像方法还可以包括在重复之前将具有来自处理器的显示数据的信号发送到显示器,以在显示器上显示彩色荧光图像或其他数据。在操作845之后,成像方法重复执行荧光成像过程或FP高分辨率明视场成像过程。
如果执行FP成像过程,则成像方法继续进行到操作860。FP成像过程通常包括图像获取过程(操作660、670和680)和FP重建过程(步骤690)。
在操作860处,可变照明源依次采用在n个照明角度处的平面波照明来照亮样品。在一个方面中,可变照明源基于照明指令来提供顺序照明,该照明指令定义了照明光元件(LED)的顺序。
在操作870处,光学系统收集从样品发出的光,并将其传播到图像传感器。光学系统的第一物镜收集从可变照明源穿过样品的光。在一些情况下,来自可变照明源的照明具有这样的范围的波长:在第一物镜和第二物镜之间的滤光片将会使这样的范围的波长通过。在这些情况下,在FP成像过程期间,不需要移除发射滤光片。第二物镜接收来自发射滤光片的光,并将其聚焦到图像传感器。光学系统的第一物镜接收在FP照明期间从可变照明源穿过样品的光。第一物镜采用其数值孔径接受(过滤)在一定角度范围处的光。在傅立叶空间中,通过半径为NA x k0的圆形光瞳来表示第一物镜的滤光函数,其中,k0=2π/λ是真空中的波数。FP成像过程更新了根据第一物镜的滤光函数和n个照明角度限定的在傅立叶空间中的圆形区域。
在操作880处,图像传感器接收通过光学系统传播的光。在通过n个照明角度进行FP顺序照明期间,图像传感器获取与不同的照明角度相关联的n个唯一地照亮的强度测量结果(图像)。图像传感器测量在曝光时间期间的强度分布,以获取强度测量结果(图像)。MWB系统的过程接收具有来自n个唯一地照亮的强度测量结果(图像)的数据的(多个)信号。
在操作890处,MWB系统的处理器使用该成像方法,以通过用n个唯一地照亮的强度测量结果(图像)迭代地更新傅立叶空间中的区域来重建分辨率经提高的图像。处理器使用FP重建过程来重建分辨率经提高的图像。参考图9和图10详细讨论了FP重建过程的两个示例。在一个方面中,在操作890之后,成像方法还可以包括在重复之前将来自处理器的图像数据发送到显示器,以在显示器上显示高分辨率明视场图像或其他数据。在操作890之后,成像方法重复执行荧光成像过程或FP高分辨率明视场成像过程。
在一个方面中,处理器通过使通过荧光成像过程生成的荧光图像和通过FP成像过程生成的高分辨率明视场图像重叠,来生成样品的组合的荧光和高分辨率明视场图像。在另一方面中,处理器通过使通过荧光成像过程生成的荧光图像和在FP成像过程的获取过程期间捕获的低分辨率明视场图像重叠,来生成样品的组合的荧光和低分辨率明视场图像。在另一方面中,处理器基于在FP成像过程中的相位数据来生成样品的高分辨率相位图。
在一个方面中,MWB系统可以实施用于延时成像(time-lapse imaging)或其他长期成像的成像方法。例如,成像方法可以以每个间隔(诸如,例如,一小时的间隔、两小时的间隔、一天的间隔等)来重复一次运行。成像方法可以以规定的时间周期(例如一周,两周,一个月,两个月等)为间隔来继续重复每次成像运行,或者可以一直运行,直到操作者停止成像方法为止。在这个长期成像继续的时候,MWB系统可以位于培养箱内。
-FP重建过程
在Zheng,Guoan、Horstmeyer,Roarke和Yang,Changhuei于2013年在NaturePhotonics第7卷第739-745页发表的“Wide-field,high-resolution Fourierptychographic microscopy,”中、以及在2013年10月28日提交的并且标题为“FourierPtychographic Imaging Systems,Devices,and Methods”的第14/065,280号美国专利申请中可以找到FP重建过程的某些细节。在FP重建过程期间,采用分辨率较低的强度图像数据迭代地更新傅立叶域中的重叠区域,以生成分辨率经提高的图像。
图9是根据实施例的FP重建过程的流程图。使用该FP重建过程,根据n个低分辨率强度分布测量结果(Ilm(ki x,ky i))(根据其照明波矢量(kx i,ky i)来编索引,其中,i=1,2...n)来重建样品的分辨率经提高的图像,n个低分辨率强度分布测量结果诸如,在图8中的操作860、870和880期间获取的n个原始强度图像。
在901处,高分辨率图像:
Figure BDA0001356862500000351
在空间域中被初始化,并且傅立叶变换被应用于初始值,以使用MWB系统的处理器获得初始化的傅立叶变换图像
Figure BDA0001356862500000352
初始化的高分辨率的解可以是初始猜测。该初始猜测可以是基于样品位于离焦平面(out-of-focus plane)z=z0的假设而确定的。在一些情况下,初始猜测可以被确定为(对于强度和相位二者的)随机复矩阵。在其它情况下,可将初始猜测确定为具有随机相位的低分辨率强度测量结果的插值。初始猜测的示例是
Figure BDA00013568625000003514
以及从样品区域的任何低分辨率图像内插的Ih。初始猜测的另一个示例是恒定值。初始猜测的傅立叶变换可以是在傅立叶域中的广谱。
在910、920、930、940、950、960和970的迭代操作中,通过使用MWB系统的处理器将傅立叶空间中的低分辨率强度测量结果迭代地组合,来重建样品的高分辨率图像。如果样品离焦z0的量,则可选的操作920和操作940可以被执行。
在910处,处理器对在傅立叶域中的高分辨率图像
Figure BDA0001356862500000353
执行低通滤波,以针对具有波矢量(kx i,ky i)的特定平面波入射角度(θx iy i)生成低分辨率图像
Figure BDA0001356862500000354
高分辨率图像的傅立叶变换是
Figure BDA0001356862500000355
且针对特定的平面波入射角度的低分辨率图像的傅立叶变换是
Figure BDA0001356862500000356
在傅立叶域中,重建过程从高分辨率图像
Figure BDA0001356862500000357
的频谱
Figure BDA0001356862500000358
中对低通区域进行滤波。低通区域是半径为NA*k0的圆形孔径,其中k0等于2π/λ(真空中的波数),由MWB系统的第一物镜的相干传递函数给出。在傅立叶空间中,该区域的位置对应于在当前迭代期间的照明角度。对于具有波矢量(kx i,ky i)的倾斜平面波入射,该区域以
Figure BDA0001356862500000359
的傅立叶域中的位置(-kx i,-ky i)为中心。
在可选的操作920处,使用处理器在傅立叶域中将低分辨率图像
Figure BDA00013568625000003510
传播到在z=0的聚焦平面,以确定在聚焦位置处的低分辨率图像:
Figure BDA00013568625000003511
在一个实施例中,通过对低分辨率图像
Figure BDA00013568625000003512
进行傅立叶变换,乘以在傅立叶域中的相位因子、以及傅立叶逆变换以获得
Figure BDA00013568625000003513
来执行操作920。在另一个实施例中,通过用对于散焦的点扩散函数来卷积低分辨率图像
Figure BDA0001356862500000361
的在数学上等效的操作,来执行操作920。在另一个实施例中,可以通过在执行傅立叶逆变换来产生
Figure BDA00013568625000003613
之前把在傅立叶域中的相位因子乘以
Figure BDA0001356862500000362
来将操作920作为操作910的可选的子操作来执行。如果样品位于聚焦平面(z=0)处的话,则不需要包括可选的操作920。
在操作930处,使用处理器将在聚焦平面处的低分辨率图像
Figure BDA0001356862500000363
的计算出的振幅分量
Figure BDA0001356862500000364
替换为由MWB系统的光检测器测得的低分辨率强度测量结果的平方根
Figure BDA0001356862500000365
这就形成了更新后的低分辨率目标:
Figure BDA0001356862500000366
在可选的操作940处,可以使用处理器将更新后的低分辨率图像
Figure BDA0001356862500000367
反向传递到采样平面(z=z0),以确定
Figure BDA0001356862500000368
如果样品位于聚焦平面(也就是说,其中,z0=0)处的话,则不需要包括可选的操作940。在一个实施例中,通过对更新后的低分辨率图像
Figure BDA0001356862500000369
采取傅立叶变换并且在傅立叶空间中乘以相位因子,并且随后对相乘的结果进行傅立叶逆变换,来执行操作940。在另一个实施例中,通过用对于散焦的点扩散函数来卷积更新的低分辨率图像
Figure BDA00013568625000003610
来执行操作940。在另一个实施例中,在对更新后的目标图像执行傅立叶变化后通过乘以相位因子,将操作940作为操作950的子操作来执行。
在操作950处,使用处理器将傅立叶变换应用于传播到采样平面的更新的目标图像
Figure BDA00013568625000003611
并且该数据在对应于入射波矢量(kx i,ky i)的傅立叶空间中的高分辨率解
Figure BDA00013568625000003612
的对应的区域中更新。
在操作960处,处理器确定是否已经针对所有n个唯一地照亮的低分辨率强度图像完成了操作1510至操作1560。如果尚未针对所有的图像完成操作1510至操作1560,则针对下一个图像重复操作1510至操作1560。
在操作970处,处理器确定高分辨率解是否已收敛。在一个示例中,处理器确定高分辨率解是否收敛到自相一致的解。在一种情况下,处理器将前一次迭代的前一次高分辨率解或初始猜测与当前高分辨率解进行比较,且如果差值小于某一值,则确定解已经收敛到自相一致的解。如果处理器在操作970处确定解还未收敛,则重复操作910到操作960。在一个实施例中,操作910至操作960被重复一次。在其它实施例中,操作910至操作960被重复两次或更多次。如果该解已经收敛,则处理器将在傅立叶空间中的收敛的解变换至空间域,以恢复分辨率经提高的图像
Figure BDA0001356862500000376
并且FP重建过程结束。
图10是根据实施例的FP重建过程的流程图。使用该FP重建过程,从n个低分辨率强度分布测量结果(Ilm(ki x,ky i))(根据其照明波矢量kx i,ky i来编索引,其中,i=1,2,...,n)重建样品的分辨率经提高的图像,n个低分辨率强度分布测量结果诸如,在图8中的操作860、870和880期间获取的n个原始强度图像。
在该示例中,FP重建过程包括数字波前校正。FP重建过程在两个乘法操作1005和1045中将数字波前补偿并入。具体地,操作1005通过乘以光瞳函数:
Figure BDA0001356862500000371
由处理器模拟实际样品轮廓和捕获的强度数据(其中包括像差)之间的关系。操作1045反转这种关系,以实现无像差重建图像。样品散焦实质上等同于引入散焦相位因子(即,散焦像差)到光瞳平面:
Figure BDA0001356862500000372
其中,kx和ky是在光瞳平面处的波数,z0是散焦距离,且NA是第一物镜的数值孔径。
在1001处,高分辨率图像
Figure BDA0001356862500000373
在空间域中被初始化,并且傅立叶变换被应用于初始值,以获得初始化的傅立叶变换图像
Figure BDA0001356862500000374
初始化的高分辨率的解可以是初始猜测。在一些方面中,该初始猜测是基于样品位于离焦平面z=z0的假设而确定的。在一些情况下,初始猜测被确定为(对于强度和相位二者的)随机复矩阵。在其它情况下,将初始猜测确定为具有随机相位的低分辨率强度测量结果的插值。初始猜测的示例是
Figure BDA0001356862500000375
以及从样品区域的任何低分辨率图像内插的Ih。初始猜测的另一个示例是恒定值。初始猜测的傅立叶变换可以是在傅立叶域中的广谱。
在1005、1010、1030、1045、1050、1060和1070的迭代操作中,通过使用MWB系统的处理器将傅立叶空间中的低分辨率强度测量结果迭代地组合,来在计算上重建样品的高分辨率图像。
在操作1005处,处理器乘以在傅立叶域中的相位因子
Figure BDA0001356862500000381
在操作1010处,处理器对在傅立叶域中的高分辨率图像
Figure BDA0001356862500000382
执行低通滤波,以针对具有波矢量(kx i,ky i)的特定平面波入射角度(θx iy i)生成低分辨率图像
Figure BDA0001356862500000383
高分辨率图像的傅立叶变换是
Figure BDA0001356862500000384
且针对特定的平面波入射角度的低分辨率图像的傅立叶变换是
Figure BDA0001356862500000385
在傅立叶域中,该过程从高分辨率图像
Figure BDA0001356862500000386
的频谱
Figure BDA0001356862500000387
中对低通区域进行滤波。该区域是半径为NA*k0的圆形孔径,其中,k0等于2π/λ(真空中的波数),由第一物镜的相干传递函数给出。在傅立叶空间中,该区域的位置对应于入射角度。对于具有波矢量(kx i,ky i)的倾斜平面波入射,该区域以
Figure BDA0001356862500000388
的傅立叶域中的位置(-kx i,-ky i)为中心。
在操作1030处,使用处理器将在聚焦平面处的低分辨率图像
Figure BDA0001356862500000389
的计算出的振幅分量
Figure BDA00013568625000003810
替换为由MWB系统的光检测器测得的低分辨率强度测量结果的平方根
Figure BDA00013568625000003811
这就形成了更新后的低分辨率目标:
Figure BDA00013568625000003815
在操作1045处,处理器乘以在傅立叶域中的逆相位因子
Figure BDA00013568625000003812
在操作1050处,使用处理器将傅立叶变换应用于传播到采样平面的更新的目标图像:
Figure BDA00013568625000003813
并且该数据在对应于入射波矢量(kx i,ky i)的傅立叶空间中的高分辨率解
Figure BDA00013568625000003814
的对应的区域中更新。
在操作1060处,处理器确定是否已经针对所有n个唯一地照亮的低分辨率强度图像完成了操作1005至操作1050。如果尚未针对所有n个唯一地照亮的低分辨率强度图像完成操作1005至操作1050,则针对下一个图像重复操作1005至操作1050。
在操作1070处,处理器确定高分辨率解是否已收敛。在一个示例中,处理器确定高分辨率解是否已经收敛到自相一致的解。在一种情况下,处理器将前一次迭代的前一次高分辨率解或初始猜测与当前高分辨率解进行比较,且如果差值小于某一值,则解已经收敛到自相一致的解。如果处理器确定解还未收敛,则重复操作1005至操作1070。在一个实施例中,操作1005至操作1070被重复一次。在其它实施例中,操作1005至操作1070被重复两次或更多次。如果该解已经收敛,则处理器将在傅立叶空间中的收敛的解变换至空间域,以恢复高分辨率图像
Figure BDA0001356862500000391
并且FP重建过程结束。
在某些方面中,在傅立叶空间中的、对于每个图像进行迭代地更新的相邻区域彼此重叠。在更新的重叠区域之间的重叠区中,MWB系统在相同的傅立叶空间中进行多次采样。在一个方面中,相邻区域之间的重叠区具有在相邻区域中的一个区域的面积的2%至99.5%之间的面积。在另一个方面中,相邻区域之间的重叠区具有在相邻区域中的一个区域的面积的65%至75%之间的面积。在另一个方面中,相邻区域之间的重叠区具有在相邻区域中的一个区域的面积的大约65%之间的面积。
IV.MWB系统演示
图11A是采用具有4X/NA 0.1物镜以及平面照明的常规显微镜获得的USAF靶的图像。图11B是根据实施例的通过具有1:1成像配置的MWB系统获得的USAF靶的原始强度图像。该原始强度图像是基于中心LED照明(即,位于USAF靶的中心之上的LED)。在这两种情况下,最小的可分辨的特征是组7,元素5(线宽为2.46μm)。这表明MWB系统具有由1:1成像配置中的第一物镜的数值孔径提供的全视场。
图11C包括根据实施例的、通过由MWB系统实施的FP成像过程生成的USAF靶的高分辨率明视场图像1102。通过在FP构建过程的图像获取期间获取的169个原始图像(n=169)的数据组合,生成高分辨率图像。通过依次点亮LED矩阵的169个不同的LED来获取169个原始图像。使用具有169个原始图像的FP构造过程,MWB系统的合成NA为0.42,MWB系统的分辨率提高了4倍,解出组9,元素5(线宽为0.62μm)的特征。图11C还包括分辨率经提高的明视场图像1102的矩形中的区域的放大图像1104。
在图12A、图12B、图12C中,向样品添加4.5μm的绿色荧光珠和非荧光珠的混合物。图12A是根据实施例的、使用MWB系统获取的低分辨率明视场图像与荧光图像的重叠图像。样品的原始明视场图像是在由MWB系统实施的成像方法的FP图像获取过程期间获取的。荧光图像是在成像方法的荧光成像过程期间生成的。在图12A中,箭头指向绿色荧光珠。
图12B是根据实施例的、使用由MWB系统实施的成像方法的FP成像过程生成的高分辨率明视场图像。图12C是根据实施例的、使用由MWB系统实施的成像方法的FP重建过程生成的重建的相位图。如图所示,通过荧光信号,荧光珠与非荧光珠被清楚地区分开。从图12B和图12C中的重建的强度图像和相位图像解出彼此附接的两个珠粒,并且图12A中的荧光图像给出了其中的哪个珠粒是荧光的信息。在一个方面中,MWB系统可用于生成荧光图像以识别由特定荧光团标记的靶或者表示特定荧光团的靶,以及生成FP重建的分辨率经提高的图像,以补偿靶的衍射受限的荧光图像。
通过如在X.Ou、R.Horstmeyer、C.Yang和G.Chang于2013年在Opt.Lett.38(22),4845-4848发表的“Quantitative phase imaging via Fourier ptychographicmicroscopy,”中讨论的迭代FP重建过程可以提供包含样品的强度和相位信息的复合场,该文献在此通过引用并入,以用于这个讨论。为了验证相位信息的定量准确性,可以使用方程式2将重建的相位信息转换成珠粒的厚度:
Figure BDA0001356862500000401
其中,T是珠粒的厚度,λ是光的波长,
Figure BDA0001356862500000402
是相对于背景相的相位,并且Δn是样品与背景之间的折射率差。在图12A、图12B和图12C中,将聚苯乙烯珠粒(n=1.58)浸入油(n=1.515)中,并使用绿色LED(530nm)进行照明。图12C中所示的转换后的线轮廓显示在图12D中。图12D是通过在图12C中表示的线的、在重建的相位图上的珠粒的厚度的绘图。通过由MWB系统实施的成像方法的FP重建过程生成重建的相位图像。测得的曲线与理想球体的预期轮廓紧密匹配,这表明MWB系统的FPM重建相位信息是定量准确的。
在一个方面中,MWB系统可以将FP重建过程用于数字重聚焦。数字重聚焦在活细胞成像中特别有用,在活细胞成像中,多日试验或多周实验可以受到由系统漂移和多孔板未对准导致的图像散焦的破坏。通过将二次方散焦相位项引入到空间频域中的支持约束中,可以在FPM重建期间将散焦的原始图像数字地再次重聚焦,如在G.Zheng、R.Horstmeyer和C.Yang于2013年在Nat.Photonics 7(9),739-745发表的“Wide-field,high-resolutionFourier ptychographic microscopy,”中所讨论的。
为了表征MWB系统的重聚焦性能,在FP重建过程中使得USAF靶故意散焦,然后数字地重聚焦。图13A是在z=+100μm处的USAF靶的散焦图像。图13B是根据实施例的在图13A显示的图像的数字地重聚焦的图像,其在由MWB系统实施的成像方法的FP重建过程期间被数字地重聚焦。图14A是在z=-100μm处的USAF靶的散焦图像。图14B是根据实施例的在图14A显示的图像的数字地重聚焦的图像,其在由MWB系统实施的成像方法的FP重建过程期间被数字地重聚焦。如通过图13B和图14B中的图像所示的,在±100μm的散焦范围内,MWB系统成功地对样品进行数字地重聚焦。
图15是根据实施例的、在图13B和图14B中显示的最小分辨特征的线迹线的绘图。在图15中,显示了在聚焦样品的和z=±100μm的散焦样品的情况下对于最小分辨特征的线迹线。在所有情况下,三条暗线与线迹线清楚区分,这表明MWB系统的景深(DOF)约为200μm。
图16A是散焦的神经元培养样品图像。图16B是根据实施例的、使用由MWB系统实施的成像方法的FPM重建的数字地重聚焦的相位图。图16A和图16B的示例中使用的样品是用多聚甲醛(PFA)固定的,并浸于磷酸盐缓冲盐水(PBS)中,以用于成像。
图17显示了根据实施例的由MWB系统生成的大视场图像。图像1722和1728是与荧光图像重叠的原始图像。图像1724和1730是对应于图像1722和1728的重建的相位图。图像1722和1728是与荧光图像重叠的原始图像。图像1726和1732是对应于图像1722和1728的两个通道相位梯度图。
MWB系统的一个成像设备的全FOV为5.7mm×4.3mm,如图17中的图像1720所示。被成像的样品最初用被设计来表达eGFP的多巴胺能(DA)神经元播种。通过图17中的图像1720显示的FOV内观察到的eGFP信号识别出15个DA神经元。图像1722、1724、1726、1728、1730和1732具有两个代表性的DA神经元。来自DA神经元的eGFP荧光信号强度足够强,以用于识别靶细胞,如图17的图像1722和1728中显示的。图17的图像1724和1730分别显示了在距FOV中心2.3mm和1.9mm距离处的FPM重建相位图。图17的图像1726和1732显示了从重建的相位图1724和1730生成的2个通道相位梯度图像。可以通过将相位图转换成相位梯度图像来消除在重建的相位图像中的相位缠绕引起的假象(用图像1730中的箭头表示)。
为了使用MWB系统进行活细胞培养成像的示例,从GENSAT酪氨酸羟化酶(TH)-eGFP株(从TH启动子驱动eGFP的BAC转基因小鼠系)培养腹侧中脑样品。每个神经元-神经胶质腹侧中脑培养物由神经胶质细胞单层、产生TH-eGFP的DA神经元、以及其他中脑神经元组成。腹侧中脑培养物获得自从妊娠期小鼠中提取的胚龄14天的小鼠胚胎。使神经胶质细胞和中脑神经元在6孔板中生长,并且在3周的成像周期中以三天的间隔更换培养基。MWB系统用于在3周时期中对6孔板中的培养物进行成像和监测。MWB系统在FP图像获取过程期间以一小时的间隔从每个孔捕获一系列n个低分辨率明视场强度图像。每个孔每天进行一次荧光成像过程。图18是根据实施例的、通过由MWB系统实施的成像方法的FP过程生成的延时的一系列相位图像1810、1820、1830和1840。相位图像1810、1820、1830和1840具有以上讨论的小鼠神经元培养物。相位图像1810、1820、1830和1840分别是在第4天、第7天、第10天和第16天获得的。使用eGFP荧光信号成功识别被跟踪的DA神经元,并用黄色圆圈对其进行标记。通过比较每个后续图像,将与前一时间帧的靶细胞具有最小位置和尺寸改变的细胞选为当前时间帧的靶细胞。在周期为一小时的延时成像中,这种跟踪方法对于大多数细胞运行良好。在培养实验期间跟踪靶细胞。图19是根据实施例的、基于由MWB系统生成的图像的被跟踪的靶细胞的位置轨迹的绘图。
图20是根据实施例的、通过由MWB系统实施的成像方法的FP过程生成的延时的一系列图像2010、2020、2030和2040。为了对分裂的细胞进行延时成像,将小鼠腹侧中脑培养物混合为原代培养物。在21天的培养实验中,从延时图像2010、2020、2030和2040中发现了主动分裂的细胞。如通过箭头表示的两个推定的母细胞分成子细胞。这些细胞在培养的大约第14天开始分化。在6孔板的6个孔中的每个孔中观察到这种细胞分裂。
V.子系统
图21是根据实施例的、在某些MWB系统中可存在的一个或更多个子系统的框图。处理器可以是图像传感器的部件,或者可以是单独的部件。
先前在图中所描述的各种部件可以使用子系统中的一个或多个来操作,以促进本文中所描述的功能。任何在图中的部件可以使用任何合适数量的子系统,以促进本文中所描述的功能。在图21中显示了这种子系统和/或部件的示例。在图21中显示的子系统经由系统总线2425互连。诸如打印机2430、键盘2432、固定磁盘2434(或其它存储器,其包括计算机可读介质)、被耦合至显示器适配器2438的显示器56和其它设备之类的附加的子系统被示出。耦合至I/O控制器2440的外围设备和输入/输出(I/O)设备可以通过现有技术中已知的任何装置(诸如串行端口2442)来连接。例如,串行端口2442或外部接口2444可用于将计算设备的部件连接到广域网(诸如,互联网)、鼠标输入设备或扫描仪。经由系统总线2425的互连允许处理器与每个子系统进行通信,并且控制来自系统存储器2446或固定磁盘2434的指令的执行,以及在子系统之间的信息交换。在一些情况下,系统存储器2446和/或固定磁盘2434可以体现CRM 182。这些元件的任何元件可以存在于先前所描述的特征中。
在一些实施例中,输出设备(诸如,傅立叶摄像头系统的打印机2430或显示器182)可以输出各种形式的数据。例如,MWB系统可输出2D彩色/单色图像(强度和/或相位)、与这些图像相关联的数据、或与由MWB系统执行的分析相关联的其它数据。
可以对上述实施例中的任何实施例做出修改、添加或省略,而不脱离本公开的范围。上述任何实施例中的任何实施例可以包括更多、更少或其它功能,而不脱离本公开的范围。此外,所描述的特征的步骤可以以任何合适的顺序来执行,而不脱离本公开的范围。
但是应当理解的是,如上所述的本发明可以被以使用以模块化或集成的方式的计算机软件的控制逻辑的形式来实现。基于本文所提供的公开和教导,本领域的普通技术人员将知道并且理解使用硬件以及硬件和软件的组合来实现本发明的其它方式和/或方法。
任何在本申请中所描述的软件组件或功能可以被实现为要由处理器使用任何合适的计算机语言,诸如,例如,使用,例如,常规的或面向对象的技术的Java,C++或Perl,来执行的软件代码。软件代码可以被存储为一系列指令,或在CRM上的命令,CRM诸如随机存取存储器(RAM)、只读存储器(ROM)、诸如硬盘驱动器或软盘等磁性介质或者诸如CD-ROM等光学介质。任何这样的CRM可以驻留在单个计算装置之上或之内,并且可以存在于在系统或网络内的不同计算装置之上或之内。
尽管前述所公开的实施例已经被相当详细地进行了描述以便于理解,所描述的实施例应当被认为是说明性的而不是限制性的。对于本领域普通技术人员将明显的是,某些变化和修改可以被在所附权利要求的范围内实践。
来自任何实施例的一个或更多个特征可以被与任何其它实施例的一个或更多个特征进行组合,而不脱离本公开的范围。此外,可以对任何实施例做出修改、添加或省略,而不脱离本公开的范围。任何实施例的部件可以根据特定需要进行集成或分离,而不脱离本公开的范围。

Claims (33)

1.一种用于明视场傅立叶重叠关联成像和荧光成像的成像设备,所述成像设备包括:
第一荧光照明源,所述第一荧光照明源被配置成向透明孔提供第一波长范围的激发光;
光学系统,所述光学系统具有相对地定位的一对物镜;以及
图像传感器,所述图像传感器被配置成接收来自所述透明孔的通过所述光学系统传播的光,所述图像传感器还被配置成基于来自可变照明源的在不同照明角度处的顺序照明,获取穿过所述透明孔中的样品的光的一系列唯一地照亮的强度测量结果,所述图像传感器还被配置成基于由所述样品响应于所述第一波长范围的激发光而发射的光,获取所述样品的第一荧光图像;
其中,所述成像设备还校准所述可变照明源的光源的位置,包括:
将所述可变照明源的光源的位置校准到接收来自多孔板中的透明孔的光的图像传感器的位置;
点亮提供所述顺序照明的所述可变照明源的中心光元件;
从穿过在所述多孔板的透明孔中的样品的光获取强度图像;
确定所述强度图像的中心;
测量在所述强度图像中的偏移;
使用查找数据来找到所述中心光元件的位移;以及
基于中心光位移来确定多个照明角度。
2.根据权利要求1所述的成像设备,还包括处理器,所述处理器被配置成迭代地确定与所述一系列唯一地照亮的强度测量结果自相一致的、所述样品的分辨率经提高的明视场图像。
3.根据权利要求2所述的成像设备,其中,所述样品的所述分辨率经提高的明视场图像和所述第一荧光图像被定期地确定,以用于延时成像。
4.根据权利要求1所述的成像设备,其中,所述第一波长范围的激发光和顺序地在不同照明角度处的照明是在不同的图像获取时间提供的。
5.根据权利要求1所述的成像设备,其中,所述光学系统具有在所述物镜之间的发射滤光片,并且所述发射滤光片被配置成阻挡所述第一波长范围的激发光。
6.根据权利要求5所述的成像设备,其中,来自所述可变照明源的照明具有在所述发射滤光片的通频带内的波长范围。
7.根据权利要求2所述的成像设备,还包括第二荧光照明源,所述第二荧光照明源被配置成向所述透明孔提供第二波长范围的激发光;
其中,所述图像传感器还被配置成基于由所述样品响应于所述第二波长范围的激发光而发射的光,获取所述样品的第二荧光图像;
其中,所述处理器还被配置成将所述第一荧光图像和所述第二荧光图像组合,以生成所述样品的多色荧光图像。
8.根据权利要求7所述的成像设备,其中,所述光学系统具有在所述物镜之间的双频带发射滤光片,并且其中,所述双频带发射滤光片被配置成阻挡所述第一波长范围的激发光并且阻挡所述第二波长范围的激发光。
9.根据权利要求8所述的成像设备,其中,来自所述可变照明源的照明具有在所述双频带发射滤光片的通频带内的波长范围。
10.根据权利要求1所述的成像设备,其中,所述一对物镜包括第一物镜和第二物镜,其中,所述第一物镜被配置成收集来自所述透明孔的光,并且所述第二物镜被配置成将光聚焦到所述图像传感器,并且其中,所述第一物镜和所述第二物镜具有相同的数值孔径。
11.根据权利要求1所述的成像设备,其中,每个物镜具有小于0.55的数值孔径。
12.根据权利要求1所述的成像设备,其中,所述第一荧光照明源以与所述透明孔的底表面处的平面成小角度地引导所述第一波长范围的激发光并且引导至所述透明孔的中心。
13.根据权利要求1所述的成像设备,其中,所述透明孔在多孔板中。
14.根据权利要求1所述的成像设备,其中,所述透明孔在6孔板或12孔板中。
15.根据权利要求1所述的成像设备,其中,所述透明孔宽度为至少20mm。
16.一种用于傅立叶重叠关联成像和荧光成像的系统,所述系统包括:
主体,所述主体被配置成接收多孔板;以及
成像设备,所述成像设备被布置成与所述多孔板中的透明孔一一对应,每个成像设备包括:
第一荧光照明源,所述第一荧光照明源被配置成向对应的透明孔提供第一波长范围的激发光;
光学系统,所述光学系统具有相对地定位的一对物镜;以及
图像传感器,所述图像传感器用于基于从所述对应的透明孔接收的光来捕获强度测量结果,
其中,所述系统基于在通过可变照明源在不同照明角度处的顺序照明期间获取的一系列唯一的照明强度测量结果,使用傅立叶重叠关联重建来生成样品的分辨率经提高的明视场图像;并且
其中,所述系统基于由所述样品响应于接收到所述第一波长范围的激发光而发射的光,生成第一荧光图像;
其中,所述系统还校准所述可变照明源的光源的位置,包括:
将所述可变照明源的光源的位置校准到接收来自多孔板中的透明孔的光的图像传感器的位置;
点亮提供所述顺序照明的所述可变照明源的中心光元件;
从穿过在所述多孔板的透明孔中的样品的光获取强度图像;
确定所述强度图像的中心;
测量在所述强度图像中的偏移;
使用查找数据来找到所述中心光元件的位移;以及
基于中心光位移来确定多个照明角度。
17.根据权利要求16所述的系统,还包括处理器,所述处理器被配置成迭代地确定与所述一系列唯一地照亮的强度测量结果自相一致的所述分辨率经提高的明视场图像。
18.根据权利要求16所述的系统,其中,所述样品的所述分辨率经提高的明视场图像和所述第一荧光图像被定期地确定,以用于延时成像。
19.根据权利要求16所述的系统,其中,所述第一波长范围的激发光和顺序地在不同照明角度处的照明是在不同的图像获取时间提供的。
20.根据权利要求16所述的系统,其中,所述光学系统具有在所述物镜之间的发射滤光片,并且所述发射滤光片被配置成阻挡所述第一波长范围的激发光。
21.根据权利要求20所述的系统,其中,来自所述可变照明源的照明具有在所述发射滤光片的通频带内的波长范围。
22.根据权利要求17所述的系统,还包括第二荧光照明源,所述第二荧光照明源被配置成向透明孔提供第二波长范围的激发光;
其中,所述图像传感器还被配置成基于由所述样品响应于接收到所述第二波长范围的激发光而发射的光,获取所述样品的第二荧光图像;并且
其中,所述处理器还被配置成使所述第一荧光图像和所述第二荧光图像重叠,以生成所述样品的多色荧光图像。
23.根据权利要求22所述的系统,其中,所述光学系统具有在所述物镜之间的双频带发射滤光片,并且其中,所述双频带发射滤光片被配置成阻挡所述第一波长范围的激发光并且阻挡所述第二波长范围的激发光。
24.根据权利要求23所述的系统,其中,来自所述可变照明源的照明具有在所述双频带发射滤光片的通频带内的波长范围。
25.根据权利要求16所述的系统,其中,所述一对物镜包括第一物镜和第二物镜,其中,所述第一物镜被配置成收集来自所述透明孔的光,并且所述第二物镜被配置成将光聚焦到所述图像传感器,并且其中,所述第一物镜和所述第二物镜具有相同的数值孔径。
26.根据权利要求16所述的系统,其中,每个物镜具有小于0.55的数值孔径。
27.根据权利要求16所述的系统,其中,所述第一荧光照明源以与所述透明孔的底表面处的平面成小角度地引导所述第一波长范围的激发光并且引导至所述透明孔的中心。
28.根据权利要求27所述的系统,其中,所述透明孔在多孔板中。
29.根据权利要求16所述的系统,其中,所述透明孔在6孔板或12孔板中。
30.根据权利要求16所述的系统,其中,所述透明孔直径为至少20mm。
31.一种成像方法,包括:
使用利用可变照明源在多个照明角度处的平面波照明顺序地照亮多孔板;
对于在所述多孔板中的每个透明孔,基于在所述多个照明角度处的顺序照明,从穿过在对应的透明孔中的样品的光获取一系列唯一地照亮的强度测量结果;以及
对于在所述多孔板中的每个透明孔,基于所述一系列唯一地照亮的强度测量结果,采用傅立叶重叠关联重建过程重建所述样品的分辨率经提高的明视场图像;
其中,所述成像方法还校准所述可变照明源的光源的位置,包括:
将所述可变照明源的光源的位置校准到接收来自多孔板中的透明孔的光的图像传感器的位置;
点亮提供所述顺序照明的所述可变照明源的中心光元件;
从穿过在所述多孔板的透明孔中的样品的光获取强度图像;
确定所述强度图像的中心;
测量在所述强度图像中的偏移;
使用查找数据来找到所述中心光元件的位移;以及
基于中心光位移来确定所述多个照明角度。
32.根据权利要求31所述的方法,还包括:
将可变照明源的光源的位置校准到接收来自多孔板中的透明孔的光的图像传感器的位置;
采用第一波长范围的激发光照亮所述多孔板;以及
对于在所述多孔板中的每个透明孔,获取在所述透明孔中的样品的第一荧光图像。
33.根据权利要求32所述的方法,还包括:
采用第二波长范围的激发光照亮所述多孔板;
对于在所述多孔板中的每个透明孔,获取在所述透明孔中的样品的第二荧光图像;以及
使得所述第一荧光图像和所述第二荧光图像重叠,以生成多色荧光图像。
CN201680006738.6A 2015-01-26 2016-01-26 多孔傅立叶重叠关联和荧光成像 Active CN107209123B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562107631P 2015-01-26 2015-01-26
US201562107628P 2015-01-26 2015-01-26
US62/107,628 2015-01-26
US62/107,631 2015-01-26
PCT/US2016/015002 WO2016123157A1 (en) 2015-01-26 2016-01-26 Multi-well fourier ptychographic and fluorescence imaging

Publications (2)

Publication Number Publication Date
CN107209123A CN107209123A (zh) 2017-09-26
CN107209123B true CN107209123B (zh) 2020-08-11

Family

ID=56432550

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201680006738.6A Active CN107209123B (zh) 2015-01-26 2016-01-26 多孔傅立叶重叠关联和荧光成像
CN201680003937.1A Active CN107003245B (zh) 2015-01-26 2016-01-26 阵列级傅立叶重叠关联成像
CN201811184731.0A Active CN109507155B (zh) 2015-01-26 2016-01-26 阵列级傅立叶重叠关联成像

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201680003937.1A Active CN107003245B (zh) 2015-01-26 2016-01-26 阵列级傅立叶重叠关联成像
CN201811184731.0A Active CN109507155B (zh) 2015-01-26 2016-01-26 阵列级傅立叶重叠关联成像

Country Status (7)

Country Link
US (5) US9829695B2 (zh)
EP (2) EP3250908A4 (zh)
JP (2) JP2018511815A (zh)
CN (3) CN107209123B (zh)
AU (2) AU2016211634A1 (zh)
CA (2) CA2970053A1 (zh)
WO (2) WO2016123157A1 (zh)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2915180B1 (en) 2012-10-30 2018-12-05 California Institute of Technology Fourier ptychographic imaging systems, devices, and methods
US9864184B2 (en) 2012-10-30 2018-01-09 California Institute Of Technology Embedded pupil function recovery for fourier ptychographic imaging devices
US10652444B2 (en) 2012-10-30 2020-05-12 California Institute Of Technology Multiplexed Fourier ptychography imaging systems and methods
CN105659143B (zh) 2013-07-31 2019-03-22 加州理工学院 孔径扫描傅立叶重叠关联成像
JP2016530567A (ja) 2013-08-22 2016-09-29 カリフォルニア インスティチュート オブ テクノロジー 可変照明フーリエタイコグラフィー撮像装置、システム、及び方法
US11468557B2 (en) 2014-03-13 2022-10-11 California Institute Of Technology Free orientation fourier camera
US10162161B2 (en) 2014-05-13 2018-12-25 California Institute Of Technology Ptychography imaging systems and methods with convex relaxation
DE102014112242A1 (de) * 2014-08-26 2016-03-03 Carl Zeiss Ag Phasenkontrast-Bildgebung
AU2015369663A1 (en) 2014-12-22 2017-05-11 California Institute Of Technology Epi-illumination fourier ptychographic imaging for thick samples
CN107209362B (zh) 2015-01-21 2020-11-06 加州理工学院 傅立叶重叠关联断层摄影
CN107209123B (zh) 2015-01-26 2020-08-11 加州理工学院 多孔傅立叶重叠关联和荧光成像
JP2018509622A (ja) 2015-03-13 2018-04-05 カリフォルニア インスティチュート オブ テクノロジー フーリエタイコグラフィ手法を用いるインコヒーレント撮像システムにおける収差補正
US9993149B2 (en) 2015-03-25 2018-06-12 California Institute Of Technology Fourier ptychographic retinal imaging methods and systems
WO2016187591A1 (en) 2015-05-21 2016-11-24 California Institute Of Technology Laser-based fourier ptychographic imaging systems and methods
US10466649B1 (en) * 2015-08-06 2019-11-05 Centauri, Llc Systems and methods for simultaneous multi-channel off-axis holography
US9772282B2 (en) * 2015-11-12 2017-09-26 Massachusetts Institute Of Technology System for wide field-of-view, highly oblique illumination microscopy for scatter-based discrimination of cells
DE102016110407A1 (de) * 2016-06-06 2017-12-07 Carl Zeiss Microscopy Gmbh Digitales Mikroskop mit einem Objektiv und mit einem Bildsensor
US11092795B2 (en) 2016-06-10 2021-08-17 California Institute Of Technology Systems and methods for coded-aperture-based correction of aberration obtained from Fourier ptychography
US10568507B2 (en) 2016-06-10 2020-02-25 California Institute Of Technology Pupil ptychography methods and systems
DE102016008854A1 (de) * 2016-07-25 2018-01-25 Universität Duisburg-Essen System zur gleichzeitigen videografischen oder fotografischen Erfassung von mehreren Bilder
US9730649B1 (en) 2016-09-13 2017-08-15 Open Water Internet Inc. Optical imaging of diffuse medium
WO2018102346A1 (en) 2016-11-29 2018-06-07 The Regents Of The University Of California Antimicrobial susceptibility testing device and method for use with portable electronic devices
EP3330697A1 (de) * 2016-11-30 2018-06-06 Bayer Aktiengesellschaft Vorrichtung zur ermittlung der wirkung von wirkstoffen an nematoden und anderen organismen in wässrigen tests
US10983325B2 (en) * 2016-12-12 2021-04-20 Molecular Devices, Llc Trans-illumination imaging with an array of light sources
US10823945B2 (en) * 2017-01-10 2020-11-03 Tsinghua University Method for multi-color fluorescence imaging under single exposure, imaging method and imaging system
CN106842535B (zh) * 2017-01-13 2019-10-29 清华大学 基于光流的相位显微成像系统及其方法
WO2018136474A1 (en) * 2017-01-17 2018-07-26 The Regents Of The University Of California Mobile phone based fluorescent multi-well plate reader
US11016028B2 (en) * 2017-01-19 2021-05-25 Indevr, Inc. Parallel imaging system
CN106842540B (zh) * 2017-03-24 2018-12-25 南京理工大学 基于光强传输方程的环形光照明高分辨率定量相位显微成像方法
DE102017111718A1 (de) 2017-05-30 2018-12-06 Carl Zeiss Microscopy Gmbh Verfahren zur Erzeugung und Analyse eines Übersichtskontrastbildes
JP7014794B2 (ja) * 2017-07-11 2022-02-01 浜松ホトニクス株式会社 試料観察装置及び試料観察方法
WO2019090149A1 (en) * 2017-11-03 2019-05-09 California Institute Of Technology Parallel digital imaging acquisition and restoration methods and systems
CN109754365B (zh) * 2017-11-07 2023-12-05 印象认知(北京)科技有限公司 一种图像处理方法及装置
CN108169173B (zh) * 2017-12-29 2020-08-11 南京理工大学 一种大视场高分辨三维衍射层析显微成像方法
CN112105968B (zh) 2018-01-14 2024-08-27 光场实验室公司 全息衍射光学编码系统
US10778912B2 (en) 2018-03-31 2020-09-15 Open Water Internet Inc. System and device for optical transformation
US10778911B2 (en) * 2018-03-31 2020-09-15 Open Water Internet Inc. Optical transformation device for imaging
US10506181B2 (en) 2018-03-31 2019-12-10 Open Water Internet Inc. Device for optical imaging
CN112470004A (zh) * 2018-05-25 2021-03-09 戊瑞治疗有限公司 用于组织表征和筛查的增强型细胞计量术
CN113939728A (zh) 2018-12-18 2022-01-14 帕斯维尔公司 用于病理样本自动化成像和分析的基于计算显微镜的系统和方法
CN113302541B (zh) * 2019-03-22 2024-08-06 巴里大学 用于捕获任意平面之间的全光图像的过程和装置
US11523046B2 (en) * 2019-06-03 2022-12-06 Molecular Devices, Llc System and method to correct for variation of in-focus plane across a field of view of a microscope objective
US11320370B2 (en) 2019-06-26 2022-05-03 Open Water Internet Inc. Apparatus for directing optical and acoustic signals
CN110360924B (zh) * 2019-07-22 2021-01-26 中国科学院大学 一种双波长叠层显微成像方法及系统
JP2021034875A (ja) * 2019-08-23 2021-03-01 株式会社東海理化電機製作所 撮像制御システム、制御装置、およびコンピュータプログラム
CN111158130A (zh) * 2019-12-31 2020-05-15 北京理工大学 一种采用激光阵列光源的傅里叶叠层显微成像系统
US11408032B2 (en) 2020-01-17 2022-08-09 Element Biosciences, Inc. Tube lens design for improved depth-of-field
WO2021173894A1 (en) * 2020-02-28 2021-09-02 Thrive Bioscience, Inc. Pre-scan focus and scan focus methods
JPWO2021186803A1 (zh) * 2020-03-19 2021-09-23
WO2021189453A1 (zh) * 2020-03-27 2021-09-30 肯维捷斯(武汉)科技有限公司 一种微型荧光显微成像模块
US11320380B2 (en) * 2020-04-21 2022-05-03 Sartorius Bioanalytical Instruments, Inc. Optical module with three or more color fluorescent light sources and methods for use thereof
US11819318B2 (en) 2020-04-27 2023-11-21 Open Water Internet Inc. Optical imaging from light coherence
KR102432435B1 (ko) * 2020-05-04 2022-08-17 주식회사 스몰머신즈 발광소자 어레이를 이용한 영상 획득 방법 및 장치
EP3910286B1 (en) 2020-05-12 2022-10-26 Hexagon Technology Center GmbH Improving structured light projection through the minimization of visual artifacts by way of deliberately introduced optical aberrations
US11559208B2 (en) 2020-05-19 2023-01-24 Open Water Internet Inc. Imaging with scattering layer
US11259706B2 (en) 2020-05-19 2022-03-01 Open Water Internet Inc. Dual wavelength imaging and out of sample optical imaging
DE102020126522A1 (de) * 2020-10-09 2022-04-14 Carl Zeiss Microscopy Gmbh Mikroskopiesystem und verfahren zur übersichtsbildauswertung
DE102020126737A1 (de) 2020-10-12 2022-04-14 Carl Zeiss Microscopy Gmbh Verfahren und Mikroskop zum Erzeugen eines Übersichtsbildes einer Probe
DE102020132312A1 (de) 2020-12-04 2022-06-09 Ludwig-Maximilians-Universität München (Körperschaft des öffentlichen Rechts) Vorrichtung zur Aufnahme von Mikroskopie-Bildern
WO2023118438A1 (en) * 2021-12-23 2023-06-29 Radiometer Medical Aps Biological fluid analyser with adaptive light source assembly
CN114660060A (zh) * 2022-03-07 2022-06-24 南京理工大学 一种基于矩阵扫描的宏观傅里叶叠层超分辨成像方法
WO2023196324A1 (en) * 2022-04-08 2023-10-12 University Of Florida Research Foundation, Incorporated Instrument and methods involving high-throughput screening and directed evolution of molecular functions
DE102022112789A1 (de) * 2022-05-20 2023-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Ptychographisches Bildgebungsverfahren und -system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6905838B1 (en) * 1999-10-11 2005-06-14 Innovatis Ag Method and device for characterizing a culture liquid

Family Cites Families (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475527A (en) 1994-09-26 1995-12-12 The Regents Of The University Of California Fourier plane image amplifier
KR19980075050A (ko) 1997-03-28 1998-11-05 윤종용 주사 전자 현미경의 가변어퍼쳐
US6144365A (en) 1998-04-15 2000-11-07 S3 Incorporated System and method for performing blending using an over sampling buffer
US6154196A (en) 1998-06-08 2000-11-28 Wacom Co., Ltd. Coordinate input device convertible between right-handed and left-handed modes
US6320648B1 (en) 1998-10-12 2001-11-20 Steven R. J. Brueck Method and apparatus for improving pattern fidelity in diffraction-limited imaging
US6320174B1 (en) * 1999-11-16 2001-11-20 Ikonisys Inc. Composing microscope
US20010055062A1 (en) 2000-04-20 2001-12-27 Keiji Shioda Operation microscope
US6856457B2 (en) 2001-03-27 2005-02-15 Prairie Technologies, Inc. Single and multi-aperture, translationally-coupled confocal microscope
DE10128476C2 (de) 2001-06-12 2003-06-12 Siemens Dematic Ag Optische Sensorvorrichtung zur visuellen Erfassung von Substraten
GB0115714D0 (en) 2001-06-27 2001-08-22 Imperial College Structure determination of macromolecules
US6747781B2 (en) 2001-06-25 2004-06-08 Silicon Light Machines, Inc. Method, apparatus, and diffuser for reducing laser speckle
US6741730B2 (en) 2001-08-10 2004-05-25 Visiongate, Inc. Method and apparatus for three-dimensional imaging in the fourier domain
US6870165B2 (en) 2001-10-19 2005-03-22 Biocal Technology, Inc. Multi-color multiplexed analysis in a bio-separation system
EP2275775B1 (en) 2002-01-16 2015-09-23 Faro Technologies, Inc. Laser-based coordinate measuring device and laser-based method for measuring coordinates
US6759949B2 (en) 2002-05-23 2004-07-06 Visteon Global Technologies, Inc. Image enhancement in far infrared camera
US7130115B2 (en) * 2002-09-23 2006-10-31 Dhetrix, Inc. Multi-mode scanning imaging system
JP4360817B2 (ja) 2002-10-18 2009-11-11 株式会社日立メディコ 放射線断層撮影装置
US7260251B2 (en) 2003-03-31 2007-08-21 Cdm Optics, Inc. Systems and methods for minimizing aberrating effects in imaging systems
JP4377171B2 (ja) 2003-07-15 2009-12-02 Tdk株式会社 空間光変調器
US7738095B2 (en) 2003-07-18 2010-06-15 Chemimage Corporation Method and apparatus for compact spectrometer for detecting hazardous agents
US7823783B2 (en) 2003-10-24 2010-11-02 Cognex Technology And Investment Corporation Light pipe illumination system and method
US8271251B2 (en) 2004-02-09 2012-09-18 Wisconsin Alumni Research Foundation Automated imaging system for single molecules
US7173256B2 (en) * 2004-03-26 2007-02-06 Fox John S Fluorescent image calibration step wedge, and use thereof in illumination for fluorescent imaging and automatic exposure
DE102004017232A1 (de) 2004-04-05 2005-10-20 Bosch Gmbh Robert Interferometrische Messvorrichtung
EP1769743A4 (en) 2004-06-16 2010-09-29 Hitachi Medical Corp RADIOTOMOGRAPHE
US7436503B1 (en) 2004-08-03 2008-10-14 Kla-Tencor Technologies Corp. Dark field inspection apparatus and methods
CA2576528A1 (en) 2004-08-09 2006-02-16 Classifeye Ltd. Non-contact optical means and method for 3d fingerprint recognition
US7545571B2 (en) 2004-09-08 2009-06-09 Concurrent Technologies Corporation Wearable display system
US20060173313A1 (en) 2005-01-27 2006-08-03 Siemens Medical Solutions Usa, Inc. Coherence factor adaptive ultrasound imaging
US7653232B2 (en) 2005-01-28 2010-01-26 University Of Massachusetts Phase based digital imaging
US8654201B2 (en) 2005-02-23 2014-02-18 Hewlett-Packard Development Company, L.P. Method for deblurring an image
EP1866616B1 (en) 2005-04-05 2013-01-16 The Board Of Trustees Of The Leland Stanford Junior University Optical image processing using minimum phase functions
CN101203790A (zh) 2005-06-03 2008-06-18 博奥生物有限公司 一种微阵列芯片激光扫描仪光学系统
JP2007071803A (ja) * 2005-09-09 2007-03-22 Hitachi High-Technologies Corp 欠陥観察方法及びその装置
JP4696890B2 (ja) 2005-12-12 2011-06-08 富士ゼロックス株式会社 ホログラム記録方法及びホログラム記録装置
JP4727517B2 (ja) 2006-01-11 2011-07-20 富士フイルム株式会社 光源装置および光断層画像化装置
US20070171430A1 (en) 2006-01-20 2007-07-26 The General Hospital Corporation Systems and methods for providing mirror tunnel micropscopy
US8271521B2 (en) 2006-03-20 2012-09-18 Blue Nile, Inc. Computerized search technique, such as an internet-based gemstone search technique
JP4822925B2 (ja) 2006-04-28 2011-11-24 日本電子株式会社 透過型電子顕微鏡
US7460248B2 (en) 2006-05-15 2008-12-02 Carestream Health, Inc. Tissue imaging system
US8980179B2 (en) 2006-05-17 2015-03-17 University Of Maryland, Baltimore County Angular-dependent metal-enhanced fluorescence
CN101467090A (zh) 2006-06-16 2009-06-24 卡尔蔡司Smt股份公司 微平版印刷投影曝光装置的投影物镜
US7838302B2 (en) 2006-08-07 2010-11-23 President And Fellows Of Harvard College Sub-diffraction limit image resolution and other imaging techniques
CN100385275C (zh) 2006-09-29 2008-04-30 李志扬 主动光学位相共轭方法及装置
JP4690379B2 (ja) 2006-12-05 2011-06-01 韓國電子通信研究院 偏光板と高速フーリエ変換を用いたナノ線感知用光学顕微鏡システム
US20090040763A1 (en) 2007-03-20 2009-02-12 Chroma Technology Corporation Light Source
US8313031B2 (en) 2007-03-30 2012-11-20 Symbol Technologies, Inc. Adaptive aperture for an imaging scanner
US8279329B2 (en) 2007-04-10 2012-10-02 University Of Rochester Structured illumination for imaging of stationary and non-stationary, fluorescent and non-fluorescent, objects
US8624968B1 (en) 2007-04-25 2014-01-07 Stc.Unm Lens-less digital microscope
CN101743519B (zh) 2007-05-16 2013-04-24 视瑞尔技术公司 全息显示装置
KR101467010B1 (ko) 2007-06-13 2014-12-01 가부시키가이샤 니콘 검사 장치, 검사 방법 및 프로그램
WO2009009081A2 (en) 2007-07-10 2009-01-15 Massachusetts Institute Of Technology Tomographic phase microscopy
US7929142B2 (en) 2007-09-25 2011-04-19 Microsoft Corporation Photodiode-based bi-directional reflectance distribution function (BRDF) measurement
WO2009066253A2 (en) 2007-11-23 2009-05-28 Koninklijke Philips Electronics N.V. Multi-modal spot generator and multi-modal multi-spot scanning microscope
US9239455B2 (en) 2007-12-31 2016-01-19 Stc.Unm Structural illumination and evanescent coupling for the extension of imaging interferometric microscopy
US8115992B2 (en) 2007-12-31 2012-02-14 Stc.Unm Structural illumination and evanescent coupling for the extension of imaging interferometric microscopy
CN101408623B (zh) 2008-01-23 2011-01-19 北京航空航天大学 宽带综合孔径上变频成像系统
JP2010012222A (ja) 2008-06-06 2010-01-21 Olympus Medical Systems Corp 医療装置
US8184279B2 (en) 2008-06-16 2012-05-22 The Regents Of The University Of Colorado, A Body Corporate Fourier domain sensing
US7787588B1 (en) 2008-07-21 2010-08-31 Xradia, Inc. System and method for quantitative reconstruction of Zernike phase-contrast images
CN102323191B (zh) * 2008-09-26 2013-11-06 株式会社堀场制作所 颗粒物性测量装置
US8019136B2 (en) 2008-12-03 2011-09-13 Academia Sinica Optical sectioning microscopy
GB0822149D0 (en) 2008-12-04 2009-01-14 Univ Sheffield Provision of image data
JP2012513608A (ja) 2008-12-22 2012-06-14 スリーエム イノベイティブ プロパティズ カンパニー 空間的に選択的な複屈折性の低減を使用する内部パターン化多層光学フィルム
WO2010088418A1 (en) 2009-01-29 2010-08-05 The Regents Of The University Of California High resolution structured illumination microscopy
CN101872033B (zh) 2009-04-24 2014-04-30 鸿富锦精密工业(深圳)有限公司 遮光片阵列、遮光片阵列制造方法及镜头模组阵列
US20160156880A1 (en) 2009-06-03 2016-06-02 Flir Systems, Inc. Durable compact multisensor observation devices
US8559014B2 (en) 2009-09-25 2013-10-15 Hwan J. Jeong High-resolution, common-path interferometric imaging systems and methods
EP3136079B1 (en) 2009-10-20 2020-02-12 The Regents of The University of California Incoherent lensfree cell holography and microscopy on a chip
US20140152801A1 (en) 2009-10-28 2014-06-05 Alentic Microscience Inc. Detecting and Using Light Representative of a Sample
WO2011066275A2 (en) 2009-11-25 2011-06-03 Massachusetts Institute Of Technology Actively addressable aperture light field camera
DE102009047361B4 (de) 2009-12-01 2013-02-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur optischen Abbildung
CN101726366B (zh) * 2009-12-02 2011-11-23 山东师范大学 一种基于多针孔板的波前测量方法和装置
US8994811B2 (en) 2010-01-27 2015-03-31 National University Corporation Hokkaido University Diffraction microscopy
WO2011100434A2 (en) 2010-02-10 2011-08-18 Chistopher Su-Yan Own Aberration-correcting dark-field electron microscopy
JP5538936B2 (ja) 2010-02-10 2014-07-02 キヤノン株式会社 解析方法、プログラム、記憶媒体、x線位相イメージング装置
WO2011161558A1 (en) 2010-06-21 2011-12-29 Koninklijke Philips Electronics N.V. Method and system for performing low- dose ct imaging
US9129371B2 (en) 2010-06-25 2015-09-08 Cireca Theranostics, Llc Method for analyzing biological specimens by spectral imaging
GB2481589B (en) 2010-06-28 2014-06-11 Phase Focus Ltd Calibration of a probe in ptychography
EP2614773B1 (en) 2010-07-13 2018-01-03 Takara Telesystems Corp. X-ray tomogram imaging device
US8599367B2 (en) 2010-08-04 2013-12-03 Alliant Techsystems Inc. Apparatus and methods for obtaining multi-dimensional spatial and spectral data with LIDAR detection
US20130170024A1 (en) 2010-09-14 2013-07-04 Applied Precision, Inc. Oblique-illumination systems and methods
US9185357B2 (en) 2010-09-17 2015-11-10 Lltech Management Optical tissue sectioning using full field optical coherence tomography
CN101957183B (zh) 2010-09-26 2012-03-21 深圳大学 一种结构光投影的高速三维测量系统
JP2013542468A (ja) 2010-10-26 2013-11-21 カリフォルニア インスティチュート オブ テクノロジー 走査型投影レンズレス顕微鏡システム
US9569664B2 (en) * 2010-10-26 2017-02-14 California Institute Of Technology Methods for rapid distinction between debris and growing cells
GB201020516D0 (en) 2010-12-03 2011-01-19 Univ Sheffield Improvements in providing image data
US20120157160A1 (en) 2010-12-21 2012-06-21 The Regents Of The University Of California Compact wide-field fluorescent imaging on a mobile device
US9411144B2 (en) 2011-01-12 2016-08-09 Ge Healthcare Bio-Sciences Corp. Systems for fluorescence illumination using superimposed polarization states
WO2012102887A2 (en) 2011-01-24 2012-08-02 The Board Of Trustees Of The University Of Illinois Computational adaptive optics for interferometric synthetic aperture microscopy and other interferometric imaging
US8866063B2 (en) 2011-03-31 2014-10-21 The Regents Of The University Of California Lens-free wide-field super-resolution imaging device
US8841591B2 (en) 2011-04-04 2014-09-23 The Board Of Trustees Of The Leland Stanford Junior University Grating-enhanced optical imaging
GB201107053D0 (en) 2011-04-27 2011-06-08 Univ Sheffield Improvements in providing image data
US8761533B2 (en) 2011-05-05 2014-06-24 Mitsubishi Electric Research Laboratories, Inc. Method for performing image processing applications using quadratic programming
WO2013018024A1 (en) 2011-07-29 2013-02-07 Ecole Polytechnique Federale De Lausanne (Epfl) Apparatus and method for quantitative phase tomography through linear scanning with coherent and non-coherent detection
WO2013019640A1 (en) 2011-07-29 2013-02-07 The Regents Of The University Of California Lensfree holographic microscopy using wetting films
JP2014528060A (ja) 2011-09-06 2014-10-23 コーニンクレッカ フィリップス エヌ ヴェ 複数のセンサ領域を持つ光学バイオセンサ
US20190097524A1 (en) 2011-09-13 2019-03-28 Fsp Technology Inc. Circuit having snubber circuit in power supply device
EP2761273B1 (en) * 2011-09-30 2018-01-31 General Electric Company Systems and methods for self-referenced detection and imaging of sample arrays
US20130093871A1 (en) 2011-10-18 2013-04-18 Andreas G. Nowatzyk Omnidirectional super-resolution microscopy
US9599805B2 (en) 2011-10-19 2017-03-21 National Synchrotron Radiation Research Center Optical imaging system using structured illumination
US9324133B2 (en) 2012-01-04 2016-04-26 Sharp Laboratories Of America, Inc. Image content enhancement using a dictionary technique
GB201201140D0 (en) 2012-01-24 2012-03-07 Phase Focus Ltd Method and apparatus for determining object characteristics
WO2013116316A1 (en) 2012-01-30 2013-08-08 Scanadu Incorporated Hyperspectral imaging systems, units, and methods
CN102608597B (zh) 2012-03-19 2014-07-23 西安电子科技大学 基于非完全数据解卷积的实孔径前视成像方法
CN103377746B (zh) 2012-04-14 2015-12-02 中国科学技术大学 实现显微镜系统超分辨成像的方法
EP2690648B1 (en) * 2012-07-26 2014-10-15 Fei Company Method of preparing and imaging a lamella in a particle-optical apparatus
US9091862B2 (en) 2012-07-24 2015-07-28 Trustees Of Boston University Partitioned aperture wavefront imaging method and system
US9552658B2 (en) 2012-07-26 2017-01-24 William Marsh Rice University Methods and systems for video compressive sensing for dynamic imaging
US20140085629A1 (en) 2012-09-27 2014-03-27 Bodkin Design & Engineering, Llc Active Hyperspectral Imaging Systems
DE102012020240A1 (de) * 2012-10-12 2014-04-17 Carl Zeiss Microscopy Gmbh Mikroskop und Verfahren zur SPIM Mikroskopie
US9864184B2 (en) 2012-10-30 2018-01-09 California Institute Of Technology Embedded pupil function recovery for fourier ptychographic imaging devices
EP2915180B1 (en) 2012-10-30 2018-12-05 California Institute of Technology Fourier ptychographic imaging systems, devices, and methods
US10652444B2 (en) 2012-10-30 2020-05-12 California Institute Of Technology Multiplexed Fourier ptychography imaging systems and methods
AU2012258412A1 (en) 2012-11-30 2014-06-19 Canon Kabushiki Kaisha Combining differential images by inverse Riesz transformation
US9400169B2 (en) 2012-12-06 2016-07-26 Lehigh University Apparatus and method for space-division multiplexing optical coherence tomography
CN105659143B (zh) 2013-07-31 2019-03-22 加州理工学院 孔径扫描傅立叶重叠关联成像
JP2016530567A (ja) 2013-08-22 2016-09-29 カリフォルニア インスティチュート オブ テクノロジー 可変照明フーリエタイコグラフィー撮像装置、システム、及び方法
US11468557B2 (en) 2014-03-13 2022-10-11 California Institute Of Technology Free orientation fourier camera
US10162161B2 (en) 2014-05-13 2018-12-25 California Institute Of Technology Ptychography imaging systems and methods with convex relaxation
EP3146501B1 (en) 2014-05-19 2020-09-09 The Regents of the University of California Fourier ptychographic microscopy with multiplexed illumination
JP6394367B2 (ja) 2014-05-30 2018-09-26 ソニー株式会社 流体分析装置、流体分析方法、プログラム及び流体分析システム
CN104200449B (zh) 2014-08-25 2016-05-25 清华大学深圳研究生院 一种基于压缩感知的fpm方法
CN104181686B (zh) 2014-08-25 2016-08-17 清华大学深圳研究生院 基于fpm的光场显微方法
CA2999959C (en) 2014-10-07 2023-04-04 International Biophysics Corporation Self-contained portable positionable oscillating motor array
EP3207499A4 (en) 2014-10-17 2018-09-19 Cireca Theranostics, LLC Methods and systems for classifying biological samples, including optimization of analyses and use of correlation
WO2016090331A1 (en) 2014-12-04 2016-06-09 California Institute Of Technology Multiplexed fourier ptychography imaging systems and methods
AU2015369663A1 (en) 2014-12-22 2017-05-11 California Institute Of Technology Epi-illumination fourier ptychographic imaging for thick samples
AU2014280894A1 (en) 2014-12-23 2016-07-07 Canon Kabushiki Kaisha Illumination systems and devices for Fourier Ptychographic imaging
AU2014280898A1 (en) 2014-12-23 2016-07-07 Canon Kabushiki Kaisha Reconstruction algorithm for Fourier Ptychographic imaging
US20160202460A1 (en) * 2015-01-13 2016-07-14 University Of Connecticut 3D Microscopy With Illumination Engineering
CN107209362B (zh) 2015-01-21 2020-11-06 加州理工学院 傅立叶重叠关联断层摄影
CN107209123B (zh) 2015-01-26 2020-08-11 加州理工学院 多孔傅立叶重叠关联和荧光成像
WO2016123508A1 (en) * 2015-01-29 2016-08-04 The Regents Of The University Of California Patterned-illumination systems adopting a computational illumination
JP2018509622A (ja) 2015-03-13 2018-04-05 カリフォルニア インスティチュート オブ テクノロジー フーリエタイコグラフィ手法を用いるインコヒーレント撮像システムにおける収差補正
US9993149B2 (en) 2015-03-25 2018-06-12 California Institute Of Technology Fourier ptychographic retinal imaging methods and systems
WO2016187591A1 (en) 2015-05-21 2016-11-24 California Institute Of Technology Laser-based fourier ptychographic imaging systems and methods
WO2017066198A1 (en) 2015-10-12 2017-04-20 The Regents Of The University Of California Spectroscopy imaging and analysis of live cells
WO2017081541A1 (en) 2015-11-11 2017-05-18 Scopio Lab Ltd. Microscope having a refractive index matching material
WO2017081540A1 (en) 2015-11-11 2017-05-18 Scopio Lab Ltd. Scanning microscope with real time response
WO2017081542A2 (en) 2015-11-11 2017-05-18 Scopio Lab Ltd. Computational microscopes and methods for generating an image under different illumination conditions
US10176567B2 (en) 2015-12-21 2019-01-08 Canon Kabushiki Kaisha Physical registration of images acquired by Fourier Ptychography
US11092795B2 (en) 2016-06-10 2021-08-17 California Institute Of Technology Systems and methods for coded-aperture-based correction of aberration obtained from Fourier ptychography
US10568507B2 (en) 2016-06-10 2020-02-25 California Institute Of Technology Pupil ptychography methods and systems
US20180078447A1 (en) 2016-07-01 2018-03-22 Victor Viner Heated Rolling Massager
US10228283B2 (en) 2016-08-12 2019-03-12 Spectral Insights Private Limited Spectral imaging system
US10558029B2 (en) 2016-10-27 2020-02-11 Scopio Labs Ltd. System for image reconstruction using a known pattern
CN106896489B (zh) * 2017-02-13 2019-11-22 清华大学 基于波长复用的频域拼贴显微系统及其方法
DE102017120823A1 (de) 2017-09-08 2019-03-14 Vemag Maschinenbau Gmbh Verfahren und Vorrichtung zum gruppierten Anordnen und Ausrichten und Verpacken von individuellen Lebensmittel-Produkten, insbesondere Patty-Stapel
DE102017217132B3 (de) 2017-09-26 2019-01-31 Bender Gmbh & Co. Kg Schaltnetzteil mit elektrischer Schaltungsanordnung zur Eingangsschutzbeschaltung
WO2019090149A1 (en) 2017-11-03 2019-05-09 California Institute Of Technology Parallel digital imaging acquisition and restoration methods and systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6905838B1 (en) * 1999-10-11 2005-06-14 Innovatis Ag Method and device for characterizing a culture liquid

Also Published As

Publication number Publication date
WO2016123157A9 (en) 2016-10-20
US20160216503A1 (en) 2016-07-28
AU2016211635A1 (en) 2017-06-29
CN109507155A (zh) 2019-03-22
EP3251144A1 (en) 2017-12-06
EP3250908A4 (en) 2018-09-12
US10222605B2 (en) 2019-03-05
US10754138B2 (en) 2020-08-25
CN107003245A (zh) 2017-08-01
EP3251144A4 (en) 2018-09-05
CN109507155B (zh) 2021-08-24
US9829695B2 (en) 2017-11-28
EP3250908A1 (en) 2017-12-06
US10732396B2 (en) 2020-08-04
US20190049712A1 (en) 2019-02-14
AU2016211634A1 (en) 2017-05-04
JP2018504628A (ja) 2018-02-15
US10168525B2 (en) 2019-01-01
US20160216208A1 (en) 2016-07-28
JP2018511815A (ja) 2018-04-26
WO2016123157A1 (en) 2016-08-04
CA2965999A1 (en) 2016-08-04
US20190317311A1 (en) 2019-10-17
CA2970053A1 (en) 2016-08-04
US20170299854A1 (en) 2017-10-19
WO2016123156A1 (en) 2016-08-04
CN107209123A (zh) 2017-09-26
CN107003245B (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
CN107209123B (zh) 多孔傅立叶重叠关联和荧光成像
US10419665B2 (en) Variable-illumination fourier ptychographic imaging devices, systems, and methods
US9983397B2 (en) Aperture scanning fourier ptychographic imaging
US9864184B2 (en) Embedded pupil function recovery for fourier ptychographic imaging devices
Dong et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging
Chan et al. Parallel Fourier ptychographic microscopy for high-throughput screening with 96 cameras (96 Eyes)
US8946619B2 (en) Talbot-illuminated imaging devices, systems, and methods for focal plane tuning
CN102449454A (zh) 波前成像传感器
Cui et al. Wavefront image sensor chip
Pan et al. In situ correction of liquid meniscus in cell culture imaging system based on parallel Fourier ptychographic microscopy (96 Eyes)
Reinhard Preliminary Amendment dated Nov. 28, 2016 filed in US Appl. No.
Chan et al. 96 eyes: parallel Fourier ptychographic microscopy for high-throughput screening
Kim Compact microscope system for biomedical applications
Zhang Lens-Free Computational Microscopy for Disease Diagnosis
CN116893500A (zh) 一种高通量细胞培养与药物筛选成像装置及图像重构方法
Ou et al. Fourier Ptychography–Towards Perfect Microscope

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant