CN107199042A - 一种氧化石墨烯/二硫化锡复合材料的制备方法 - Google Patents

一种氧化石墨烯/二硫化锡复合材料的制备方法 Download PDF

Info

Publication number
CN107199042A
CN107199042A CN201710492402.1A CN201710492402A CN107199042A CN 107199042 A CN107199042 A CN 107199042A CN 201710492402 A CN201710492402 A CN 201710492402A CN 107199042 A CN107199042 A CN 107199042A
Authority
CN
China
Prior art keywords
preparation
graphene oxide
sns
stannic disulfide
disulfide composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710492402.1A
Other languages
English (en)
Inventor
韩刘
黄颖超
宋云
袁园
郑丽洁
李琴玉
苏杨
戴兢陶
王俊
方东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Teachers University
Original Assignee
Yancheng Teachers University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yancheng Teachers University filed Critical Yancheng Teachers University
Priority to CN201710492402.1A priority Critical patent/CN107199042A/zh
Publication of CN107199042A publication Critical patent/CN107199042A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种氧化石墨烯/二硫化锡复合材料的制备方法,采用SnS2为主光催化剂,GO为载体、包裹材料和辅助光催化剂,常温常压下复合而成到目标化合物。本发明与现有光催化降解技术相比,优点为,(1)制备方法简单易行,工艺参数易控制,可有效降低生产成本;(2)结合了SnS2的优良的光催化能力以及GO极强的负载、包覆能力和抑制光生电子‑空穴的复合作用,协同催化效果优良;(3)在中性、酸性环境中,以可见光为光源,降解活性高,降解反应结束后,催化剂不损失,可以很好的回收并循环使用。

Description

一种氧化石墨烯/二硫化锡复合材料的制备方法
一技术领域
本发明涉及复合材料领域,具体涉及一种氧化石墨烯/二硫化锡复合材料的制备方法。
二背景技术
含六价铬离子的工业废水以排放量大、难降解、有机物含量高等特征成为废水治理工艺中的难点。半导体光催化技术作为一种高效、绿色的具有广阔应用前景的水处理技术,日益受到人们的重视(LIU Zi-li,LIU Hong-wei,LI Ru.Photocatalytic reductionof waste water containing Cr(VI)byphotocatalyst Cu2O[J].J Chem Eng of ChineseUniv,2007,21(1):88-92.; Xu Y H,Liang D H,Liu M L,et al.Preparation andcharacterization of Cu2O-TiO2:efficient photocatalytic degradation ofmethyleneblue[J].Mater Res Bull,2008,43(12):3474-3482.)。在诸多半导体光催化材料中,SnS2由于其效率高、能耗低、成本低、应用范围广以及二次污染少等特点在光催化领域具有广阔的应用前景(Zhang Y C,Du Z N,Li K W,Zhang M.Size-controlledhydrothermal synthesis of SnS2 nanoparticles with high performance in visiblelight-driven photocatalytic degradation of aqueous methylorange.Sep.Purif.Technol.2011,81, 101-107)。但SnS2的光催化活性受到光生电子与空穴的高复合率较低、可见光的利用率、易团聚等因素的制约,因此如何提高其光催化活性是人们普遍关心的问题。其中,非金属碳掺杂被认为是一种很好的扩展半导体催化剂响应区域的方法,氧化石墨烯作为一种蜂窝状晶格结构的新型碳质材料,具有独特的二维表面结构、良好的导电性能和较大的比表面积。本发明采用水热合成法制备了SnS2,并以氧化石墨烯(GO)为载体和包覆材料,制得氧化石墨烯 /二硫化锡复合材料.(GO@SnS2),其中GO作为电子受体能够抑制光生电子-空穴的复合,提高了复合材料的光催化活性。
三发明内容
本发明的目的在于提出一种氧化石墨烯/二硫化锡复合材料的制备方法。
实现本发明目的的技术解决方案为:一种氧化石墨烯/二硫化锡复合材料的制备方法,关键技术是采用SnS2为主要光催化剂,GO为载体、包裹材料和辅助光催化剂,常温常压下经敏化、复合、分离等步骤,制备得到GO@SnS2目标化合物,工艺方法包括如下反应步骤:
步骤1)敏化:将SnS2、KH550(72%乙醇、20%硅烷、8%水)溶于乙醇、乙腈、或 DMF(N,N-二甲基乙酰胺)任意一种溶剂中,于常温下搅拌,分别依次用100ml质量百分浓度为30%的盐酸、100ml无水乙醇各洗两次,干燥,得敏化后金属硫化物:
步骤2)复合:将敏化后的SnS2与GO水介质混合,磁力搅拌器常温下搅拌,得均匀分散液:
步骤3)分离:将均匀分散液离心,固体分别用100mL蒸馏水和100mL无水乙醇各洗两次,在真空度0.1MPa条件下干燥,得GO@SnS2纳米复合材料。
本发明所述的一种氧化石墨烯/二硫化锡复合材料的制备方法,敏化步骤中,每克的二硫化锡需要投入KH550用量为9~15mL、乙醇(乙腈、或DMF中任意一种)溶剂用量为 90~110mL。
本发明所述的一种氧化石墨烯/二硫化锡复合材料的制备方法,复合步骤中,每克的金属二硫化物需要投入GO水介质用量为330~380mL,其中,GO水介质是按0.3mg GO/mL水的比例,将GO搅拌或超声波分散到水中形成。
本发明所述的一种氧化石墨烯/二硫化锡复合材料的制备方法,敏化步骤中的干燥温度为 60~80℃,干燥时间为3~4h,分离步骤中的真空干燥温度为40~50℃,真空干燥时间为2~4h。
本发明所述的氧化石墨烯/二硫化锡的制备方法,敏化的搅拌时间为8~14h,复合的搅拌时间为8~14h。
本发明所述的一种氧化石墨烯/二硫化锡复合材料的制备方法,所得目标产品作为光催化剂,在中性或酸性条件下,采用可见光照射一段时间能够很好地去除废水液中的六价铬,在大规模环境污染治理方面具有广泛的应用。
本发明所用的SnS2可按照文献(Chanchal Mondal,Mainak Ganguly,Jaya Pal,Anindita Roy, Jayasmita Jana Morphology Controlled Synthesis of SnS2Nanomaterial for Promoting Photocatalytic Reduction of Aqueous Cr(VI)underVisible Light.Langmuir.2014,30,4157-4164) 水热合成方法制备。
依据本发明提供的一种氧化石墨烯/二硫化锡复合材料的制备方法,其技术关键是采用水热合成法制备的SnS2为主要光催化剂,GO为载体、包裹材料和辅助光催化剂,常温常压下复合而成到GO@SnS2目标化合物。本发明与现有光催化降解技术相比,优点为,(1)本发明中GO@SnS2复合材料的制备方法简单易行,工艺参数易控制,采用水热合成法制备石墨烯/硫化锡纳米复合材料,能耗低,可有效降低生产成本;(2)所得GO@SnS2复合材料充分结合了纳米SnS2的优良的光催化能力以及GO极强的负载、包覆能力和抑制光生电子-空穴的复合作用,协同催化效果优良;(3)GO@SnS2复合材料在中性、酸性环境中,以可见光为光源,可以大规模的处理污染物,降解活性高,降解反应结束后,催化剂不流失,可以很好的回收并循环使用。
时,依次用100mL质量百分浓度为30%的盐酸、100mL无水乙醇各洗两次,离心分离,80℃干燥3h,得敏化后金属硫化物,将敏化后的0.3g金属硫化物与按比例加入的105mLGO(0.3mg/ml)水介质混合,磁力搅拌器搅拌13小时,得均匀分散液,依次用100mL 蒸馏水、100mL无水乙醇各洗两次,固体用乙醇带出,在真空度0.1Mpa条件下40~50℃干燥 2~4h,得GO@SnS2复合材料。
实施例3
将0.3g二硫化锡、按比例加入3.5mLKH550溶于30mL乙腈溶剂中,在常温下搅拌14h,依次用100mL质量百分浓度为30%的盐酸、100mL无水乙醇各洗两次,离心分离,70℃干燥 3.5h,得敏化后金属硫化物,将敏化后的0.3g金属硫化物与按比例加入的104mLGO(0.3mg/ml) 水介质混合,磁力搅拌器搅拌9h,得均匀分散液,依次用100mL蒸馏水、100mL无水乙醇各洗两次,固体用乙醇带出,在真空度0.1Mpa条件下40~50℃干燥2~4h,得GO@SnS2复合材料。
实施例4
将0.3g二硫化锡、按比例加入3.3mLKH550溶于30mL乙醇溶剂中,在常温下搅拌10h,依次用100mL质量百分浓度为30%的盐酸、100mL无水乙醇各洗两次,离心分离,60℃干燥 4h,得敏化后金属硫化物,将敏化后的0.3g金属硫化物与按比例加入的110mLGO(0.3mg/ml) 水介质混合,磁力搅拌器搅拌13h,得均匀分散液,依次用100mL蒸馏水、100mL无水乙醇各洗两次,固体用乙醇带出,在真空度0.1Mpa条件下40~50℃干燥2~4h,得GO@SnS2复合材料。
实施例5
将0.3g二硫化锡、按比例加入4.5mLKH550溶于30mL乙腈溶剂中,在常温下搅拌9h,依次用100mL质量百分浓度为30%的盐酸、100mL无水乙醇各洗两次,离心分离80℃干燥3h,得敏化后金属硫化物,将敏化后的0.3g金属硫化物与按比例加入的108mLGO(0.3mg/ml)水介质混合,磁力搅拌器搅拌14h,得均匀分散液,依次用100mL蒸馏水、100mL无水乙醇各洗两次,固体用乙醇带出,在真空度0.1Mpa条件下40~50℃干燥2~4h,得GO@SnS2复合材料。
实施例6
将0.3g二硫化锡、按比例加入4.3mLKH550溶于30mL乙醇溶剂中,在常温下搅拌13h,依次用100mL质量百分浓度为30%的盐酸、100mL无水乙醇各洗两次,离心分离,65℃干燥 4h,得敏化后金属硫化物,将敏化后的0.3g金属硫化物与按比例加入的114mLGO(0.3mg/mL) 水介质混合,磁力搅拌器搅拌9h,得均匀分散液,依次用100mL蒸馏水、100mL无水乙醇各洗两次,固体用乙醇带出,在真空度0.1Mpa条件下40~50℃干燥2~4h,得GO@SnS2复合材料。
实施例7
光催化效果测试:
1)空白消除。将0.1g GO@SnS2复合材料和100ml 2×10-4mol/L K2Cr2O7溶液混合放入 250mL烧杯,用黑色塑料袋包裹烧杯几层,把磁力搅拌器放在柜子里搅拌溶液15h;
2)光降解。待上述反应完成后将溶液转移到光降解瓶子里放入光降解仪进行光照反应,采用模拟自然光照条件的250w疝灯照射。从0min开始取样,每隔10min取一次样,每次样品取3~5mL,然后用分子筛过滤。待反应达到90min的时候结束光照,对90min内取到的10个样品进行紫外分析。实验结果表明,当反应进行到30min的时候,六价铬离子开始减少,达到90min的时候六价铬离子浓度为0mol/L。
四附图说明
图1是本发明制备的GO@SnS2复合材料的XRD图。
图2是本发明制备的GO@SnS2复合材料的TEM图。
图3是本发明制备的GO@SnS2复合材料的XPS图。
图4是本发明制备的GO@SnS2复合材料的固体紫外图。
五具体实施方式
下面的实施例对本发明做进一步说明,其目的是能够更好理解本发明的内容。但是实施例不以任何方式限制本发明的范围。本专业领域的技术人员在本发明权利要求范围内做出的改进和调整也应属于本发明的权利和保护范围。
实施例1
将0.3g二硫化锡、按比例加入2.7mLKH550溶于27mL乙醇溶剂中,在常温下搅拌12h,依次用100mL质量百分浓度为30%的盐酸、100mL无水乙醇各洗两次,离心分离,60℃干燥 4h,得敏化后金属硫化物,将敏化后的0.3g金属硫化物与按比例加入的99mLGO(0.3mg/ml) 水介质混合,磁力搅拌器常温下搅拌12h,得均匀分散液,依次用100mL蒸馏水、100mL无水乙醇各洗两次,离心分离,在真空度0.1Mpa条件下40~50℃干燥2~3h,得GO@SnS2纳米复合材料。
实施例2
将0.3g二硫化锡、按比例加入3.2mLKH550溶于33mLDMF溶剂中,在常温下搅拌8小。

Claims (6)

1.一种氧化石墨烯/二硫化锡复合材料的制备方法,其特征在于:采用SnS2为主要光催化剂,GO为载体、包裹材料和辅助光催化剂,常温常压下经敏化、复合、分离等步骤,制备得到GO@SnS2目标化合物,工艺方法包括如下反应步骤:
步骤1)敏化:将SnS2、偶联剂KH550溶于乙醇、乙腈、或N,N-二甲基乙酰胺任意一种溶剂中,于常温下搅拌,分别依次用100mL质量百分浓度为30%的盐酸、100mL无水乙醇各洗两次,干燥,得敏化后金属硫化物:
步骤2)复合:将敏化后的SnS2与GO水介质混合,磁力搅拌器常温下搅拌,得均匀分散液:
步骤3)分离:将均匀分散液离心,固体分别用100mL蒸馏水和100mL无水乙醇各洗两次,在真空度为0.1MPa条件下干燥,得GO@SnS2复合材料。
2.根据权利要求1所述的一种氧化石墨烯/二硫化锡复合材料的制备方法,其特征在于:敏化步骤中,每克的硫化锡需要投入KH550用量为9~15mL、溶剂用量为90~110mL。
3.根据权利要求1所述的一种氧化石墨烯/二硫化锡复合材料的制备方法,其特征在于:复合步骤中,每克的金属硫化物需要投入GO水介质用量为330~380mL,其中,GO水介质是按0.3mg GO/mL水的比例,将GO搅拌或超声波分散到水中形成。
4.根据权利要求1所述的一种氧化石墨烯/二硫化锡复合材料的制备方法,其特征在于:敏化步骤中的干燥温度为60~80℃,干燥时间为3~4h,分离步骤中的真空干燥温度为40~50℃,真空干燥时间为2~4h。
5.根据权利要求1所述的一种氧化石墨烯/二硫化锡复合材料的制备方法,其特征在于:敏化的搅拌时间为8~14h,复合的搅拌时间为8~14h。
6.根据权利要求1所述的一种氧化石墨烯/二硫化锡复合材料的制备方法,其目标产品应用特征在于:用制得的目标产品作为光催化剂,在中性或酸性条件下,采用可见光照射一段时间能够去除废水液中的六价铬。
CN201710492402.1A 2017-06-17 2017-06-17 一种氧化石墨烯/二硫化锡复合材料的制备方法 Pending CN107199042A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710492402.1A CN107199042A (zh) 2017-06-17 2017-06-17 一种氧化石墨烯/二硫化锡复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710492402.1A CN107199042A (zh) 2017-06-17 2017-06-17 一种氧化石墨烯/二硫化锡复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN107199042A true CN107199042A (zh) 2017-09-26

Family

ID=59907902

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710492402.1A Pending CN107199042A (zh) 2017-06-17 2017-06-17 一种氧化石墨烯/二硫化锡复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN107199042A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107890876A (zh) * 2017-10-27 2018-04-10 苏州大学 一种可见光响应CC@SnS2/SnO2复合催化剂的制备方法及其应用
CN108816249A (zh) * 2018-05-18 2018-11-16 盐城师范学院 三硫化二铟@氧化石墨烯纳米复合材料的制备方法
JP2021502321A (ja) * 2017-11-10 2021-01-28 ジョ, ビョン ハクJO, Byeong Hak セメント添加物及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343239A (zh) * 2011-05-20 2012-02-08 四川大学 氧化石墨烯或石墨烯/无机粒子核/壳材料及其制备方法
CN103934004A (zh) * 2014-04-30 2014-07-23 陕西科技大学 一种二硫化锡/石墨烯复合光催化剂及其制备方法
CN104941594A (zh) * 2015-06-12 2015-09-30 苏州大学张家港工业技术研究院 光催化降解-吸附材料的制备方法与应用
CN105869893A (zh) * 2016-04-11 2016-08-17 河南师范大学 一步水热合成石墨烯-SnS2复合对电极材料的方法
CN106587691A (zh) * 2016-10-28 2017-04-26 同济大学 一种氧化石墨烯包覆改性微粒的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343239A (zh) * 2011-05-20 2012-02-08 四川大学 氧化石墨烯或石墨烯/无机粒子核/壳材料及其制备方法
CN103934004A (zh) * 2014-04-30 2014-07-23 陕西科技大学 一种二硫化锡/石墨烯复合光催化剂及其制备方法
CN104941594A (zh) * 2015-06-12 2015-09-30 苏州大学张家港工业技术研究院 光催化降解-吸附材料的制备方法与应用
CN105869893A (zh) * 2016-04-11 2016-08-17 河南师范大学 一步水热合成石墨烯-SnS2复合对电极材料的方法
CN106587691A (zh) * 2016-10-28 2017-04-26 同济大学 一种氧化石墨烯包覆改性微粒的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANCHAL MONDAL ET AL.: "Morphology Controlled Synthesis of SnS2 Nanomaterial for Promoting Photocatalytic Reduction of Aqueous Cr(VI) under Visible Light", 《LANGMUIR》 *
胡军成等: "SnS2纳米片/氧化石墨烯复合材料的制备及其光催化性能研究", 《中南民族大学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107890876A (zh) * 2017-10-27 2018-04-10 苏州大学 一种可见光响应CC@SnS2/SnO2复合催化剂的制备方法及其应用
JP2021502321A (ja) * 2017-11-10 2021-01-28 ジョ, ビョン ハクJO, Byeong Hak セメント添加物及びその製造方法
US11214516B2 (en) 2017-11-10 2022-01-04 Byeong Hak Jo Cement additive and method for producing same
CN108816249A (zh) * 2018-05-18 2018-11-16 盐城师范学院 三硫化二铟@氧化石墨烯纳米复合材料的制备方法

Similar Documents

Publication Publication Date Title
Li et al. TiO2 nanoparticles supported on PMMA nanofibers for photocatalytic degradation of methyl orange
Zhang et al. Multifunctional g-C3N4/graphene oxide wrapped sponge monoliths as highly efficient adsorbent and photocatalyst
Rahman et al. Fabrication of Ce3+ substituted nickel ferrite-reduced graphene oxide heterojunction with high photocatalytic activity under visible light irradiation
Zhu et al. New method to synthesize S-doped TiO2 with stable and highly efficient photocatalytic performance under indoor sunlight irradiation
Filippo et al. Enhanced photocatalytic activity of pure anatase TiO 2 and Pt-TiO 2 nanoparticles synthesized by green microwave assisted route
CN102489284B (zh) 可磁性分离回收的石墨烯复合二氧化钛光催化剂及其制备方法
Wang et al. One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity
White et al. Naturally inspired nitrogen doped porous carbon
Huang et al. Ultralight biodegradable 3D-g-C3N4 aerogel for advanced oxidation water treatment driven by oxygen delivery channels and triphase interfaces
Zhao et al. Unique bar-like sulfur-doped C3N4/TiO2 nanocomposite: excellent visible light driven photocatalytic activity and mechanism study
Li et al. Advanced nanostructured photocatalysts based on reduced graphene oxide-flower-like Bi2WO6 composites for an augmented simulated solar photoactivity activity
Wang et al. One-pot in-situ preparation of a lignin-based carbon/ZnO nanocomposite with excellent photocatalytic performance
Zhou et al. Hierarchical ZnO/MXene (Nb2C and V2C) heterostructure with efficient electron transfer for enhanced photocatalytic activity
CN105797753A (zh) 一种MoS2/TiO2二维复合纳米光催化剂及其制备方法和应用
Ji et al. Low-cost and facile fabrication of recyclable and reusable waste-based geopolymer for visible-light photocatalysis degradation
CN107199042A (zh) 一种氧化石墨烯/二硫化锡复合材料的制备方法
Rao et al. Ag3PO4/g-C3N4 nanocomposites for photocatalytic degradating gas phase formaldehyde at continuous flow under 420 nm LED irradiation
Talebian et al. Complete mineralization of surfactant from aqueous solution by a novel sono-synthesized nanocomposite (TiO2–Cu2O) under sunlight irradiation
CN107021523B (zh) 一种正交相α-MoO3纳米带的制备方法及其光催化应用
Sun et al. Controlled synthesis of Sn doped ZnO microspheres stringed on carbon fibers with enhanced visible-light photocatalytic activities
CN108355640A (zh) 一种含铋二氧化钛纳米材料的制备方法
CN107224986A (zh) 一种二硫化钼/铌酸锡复合纳米材料及用途
Qi et al. Synergistic effects of holey nanosheet and sulfur-doping on the photocatalytic activity of carbon nitride towards NO removal
Liu et al. Enhanced photocatalytic performance by polarizing ferroelectric KNbO3 for degradation of plastic wastes under mild conditions
Kumari et al. Benefits of tubular morphologies on electron transfer properties in CNT/TiNT nanohybrid photocatalyst for enhanced H 2 production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170926