CN107196686B - 一种带有预处理操作的大规模mimo系统信号检测方法 - Google Patents

一种带有预处理操作的大规模mimo系统信号检测方法 Download PDF

Info

Publication number
CN107196686B
CN107196686B CN201710454347.7A CN201710454347A CN107196686B CN 107196686 B CN107196686 B CN 107196686B CN 201710454347 A CN201710454347 A CN 201710454347A CN 107196686 B CN107196686 B CN 107196686B
Authority
CN
China
Prior art keywords
matrix
preprocessing
algorithm
diagonal
signal detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710454347.7A
Other languages
English (en)
Other versions
CN107196686A (zh
Inventor
张川
金洁珺
尤肖虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201710454347.7A priority Critical patent/CN107196686B/zh
Publication of CN107196686A publication Critical patent/CN107196686A/zh
Application granted granted Critical
Publication of CN107196686B publication Critical patent/CN107196686B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种带有预处理操作的大规模多输入多输出(MIMO)系统信号检测方法,从格雷矩阵对角占优的特点出发,设计相关预处理环节,通过矩阵乘法改进格雷矩阵条件数。在此基础上运用共轭梯度算法,结果显示,在其他条件相同时,现有结果比原来未加预处理的迭代算法具有更快的收敛速率,即使当用户天线数目较多时,本发明结果仍然有很好的表现,使得传统共轭梯度算法收敛速度降低的问题得以解决。而与其他现有的预处理方法相比,本发明还具有算法复杂度低的特点,这一优势在用户天线数较多时尤为显著。因此,本发明使得MIMO系统信号检测结果实现了算法准确性与复杂度的平衡。

Description

一种带有预处理操作的大规模MIMO系统信号检测方法
技术领域
本发明涉及一种带有预处理操作的大规模MIMO系统信号检测方法,属于信号检测技术领域。
背景技术
目前,大规模多输入多输出(MIMO)技术正在如火如荼的发展,该技术是指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统信道容量,显示出明显的优势、被视为下一代移动通信的核心技术[1]
然而阻碍该技术应用的一个障碍就是大规模MIMO信号检测技术的难题,随着天线数目的大幅增加,大规模MIMO信号检测的复杂度也在不断攀升。精确的检测方法:最大似然法(ML)因为其极高的复杂度被放弃,随后设计的迫零(ZF)和最小均方误差(MMSE)检测方法虽然在一定程度上降低了复杂度,但由于存在矩阵的精确求逆运算,复杂度仍居高不下[2],所以为了达到复杂度与检测结果的折中,一些迭代算法应运而生。
在这些迭代算法中,共轭梯度法(CG)因为适用于求解大规模矩阵问题而被得到重视,可是,随着系统中用户与基站天线数量比的增加,这种方法的收敛速率开始变慢[3],这意味着需要更多次的迭代才能得到较理想的结果,这是不被追求低复杂度的目标所接受的,因此,理所应当的,预处理环节开始被引入。
现存算法中的预处理环节,多采用部分乔里斯基分解(IC)方法[4],这种方法虽然使迭代结果的收敛速率大大加快,但需要耗费不小的计算复杂度,得到预处理矩阵的操作也很繁琐,因此本发明在尽量提高算法结果收敛速率的前提下,减小了预处理过程的步骤和复杂度,真正实现了复杂度与检测结果的平衡。
参考文献:
[1]E.G.Larsson,O.Edfors,F.Tufvesson,and T.L.Marzetta.“Massive MIMOfor next generation wireless system,”IEEE Commun.Mag.,vol.52,no.2,pp.186–195,2014.
[2]B.Yin,M.Wu,G.Wang,C.Dick,J.R.Cavallaro,and C.Studer,“A 3.8Gb/slarge-scale MIMO detector for 3GPP LTE-Advanced,”in Proc.IEEE InternationalConference on Acoustics,Speech and Signal Processing(ICASSP),2014,pp.3879–3883.
[3]Y.Saad,Iterative methods for sparse linear systems.Siam,2003.
[4]Y.Xue,C.Zhang,S.Zhang,and X.You,“A fast-convergent pre-conditionedconjugate gradient detection for massive MIMO uplink,”in Proc.IEEEInternational Conference on Digital Signal Processing(DSP),2016,pp.331–335.
发明内容
发明目的:针对现有技术中存在的问题与不足,本发明提供一种合适的迭代预处理方法,使得大规模多输入多输出(MIMO)系统中,随着天线数目的大幅增加,信号检测的复杂度和准确性能够平衡。目标是在检测结果迭代算法快速收敛的前提下,减小预处理过程复杂度,实现复杂度与检测结果的折中。
技术方案:一种带有预处理操作的大规模MIMO系统信号检测方法,基于大规模MIMO系统的理想信道模型:y=Hs+n,利用最小均方误差(MMSE)检测方法,可以将问题划归为求解线性方程组:
Figure GDA0002451751530000021
其中,A=HHH+σ2I,
Figure GDA0002451751530000022
针对A矩阵具有的对角占优、对称正定等特点,本发明对A矩阵进行预处理操作。用作转换操作的矩阵B是对角阵,其对角线元素均取A矩阵中相应位置的元素平方根的倒数。然后,通过A’=BAB,可以将矩阵A变成新的矩阵A’,此时的新矩阵对角线全部归一化。同时,对于原来方程中的
Figure GDA0002451751530000023
作如下变换:
Figure GDA0002451751530000024
这样新的方程可以等价的写成:
Figure GDA0002451751530000025
对这个方程运用共轭梯度迭代算法,即可得到结果
Figure GDA0002451751530000026
有益效果:本发明具有普适一般性,可以用作多种迭代方法的预处理,通俗易懂,简洁明了。
与现有的方法相比,本发明的有益效果是:本发明添加了预处理环节,通过对方程中系数矩阵条件数进行改善大大加快了算法的收敛速率。与其他现有的预处理方法相比,本发明步骤简单,很好理解。预处理矩阵的计算复杂度也从O(M3)降低到了O(M2)。因此,本发明使得MIMO系统信号检测结果实现了算法准确性与复杂度的平衡。仿真结果显示,本发明的结果与传统的不含预处理操作的迭代算法相比,在误码率为10-4量级时,具有超过2dB的效果提升(见图2);与其他现有的预处理方法相比,当用户端天线数目较大时,可以减小75%的计算复杂度(见图5)。
附图说明
图1为采用本发明预处理后的矩阵A’的条件数与未经过预处理的格雷矩阵A的条件数对比图;
图2为在基站端天线数和用户端天线数分别为128和16时,本发明的检测结果与传统共轭梯度算法和乔里斯基求逆算法(Cholesky Inverse)结果的对比图;
图3为在基站端天线数和用户端天线数分别为128和32时,本发明的检测结果与传统共轭梯度算法和乔里斯基求逆算法结果的对比图;
图4为在用户端天线数和基站端天线数数目比ρ变化时,本发明的检测结果与传统共轭梯度算法和乔里斯基求逆算法结果的对比图;
图5为在基站端天线数和信噪比分别为128和10dB时,本发明的计算复杂度与乔里斯基求逆算法、传统共轭梯度算法、基于部分乔里斯基分解的预处理共轭梯度算法的复杂度随用户端天线数变化的对比图。
具体实施方式
下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
1、大规模MIMO系统模型
在大规模MIMO系统中,本发明假设基站端和用户端的天线数目分别为M和N,则根据理想信道模型,基站处接收到的符号y是M维的复列向量,可以用下式表示:
y=Hs+n。
其中,H是M×N维的复矩阵,称为平坦瑞利信道矩阵,它的每一个元素满足独立同分布的标准正态分布,均值为1,方差为0。s是发射符号向量,它的每个元素sk∈ON(k=1,2,……N),O代表2Q-QAM星座集,并且这里假设sk的平均发射功率是1。向量n是每一项服从均值为0,方差为σ2的加性高斯白噪声。
2、MMSE检测过程
为了能够减小估计符号
Figure GDA0002451751530000041
与真实的发射符号s之间的均方误差,可以使用最小均方误差(MMSE)检测方法,根据这一算法,检测后的符号
Figure GDA0002451751530000042
可以表示为:
Figure GDA0002451751530000043
其中,HH表示了H矩阵的共轭转置;I表示了N×N的单位矩阵。为了方便起见,下面定义:
A=HHH+σ2I,(称为格雷矩阵)
Figure GDA0002451751530000044
这样,原来的问题即转换成了
Figure GDA0002451751530000045
因为这里假设H和σ2在接收端都已知,并且每个接收天线的信噪比可以表示成
Figure GDA0002451751530000046
那么估计符号
Figure GDA0002451751530000047
的结果在理论上可以用求解线性方程组的方法求得。
3、带有预处理操作的线性迭代算法
根据前面的分析,只要求得线性方程组
Figure GDA0002451751530000048
的解,即可获得估计符号。传统的共轭梯度算法可以用来求解线性方程组,并且对于大型矩阵有不错的计算精度,具体的迭代过程如下:
Figure GDA0002451751530000049
Figure GDA00024517515300000410
Figure GDA0002451751530000051
上述迭代算法中,
Figure GDA0002451751530000052
Figure GDA0002451751530000053
分别表示表示经过i步迭代后,
Figure GDA0002451751530000054
Figure GDA0002451751530000055
的值,其中,
Figure GDA0002451751530000056
就是要求的估计符号。经过合理的初值设置,可以将上述算法运用于大规模MIMO信号检测中。但是,随着用户端天线数目N的不断增加,该迭代算法的收敛性变差,使得计算结果所需的迭代次数大大增加,这额外地增加了计算的复杂度。于是,本发明着眼新的预处理方法,试图通过对于格雷矩阵A进行修正,减小迭代次数却也能达到同样的收敛效果。
由于矩阵A具有对角占优的特点,这意味着,矩阵A中的非零元素主要集中在对角线周围。根据共轭梯度算法的性质,它的收敛速度主要取决于矩阵A的条件数。条件数越接近于1,收敛速度越快;反之,则越慢。因为这里的A是对称正定矩阵,条件数可以简单表示为A的最大特征值与最小特征值的商,这说明,当A矩阵的最大最小特征值很接近时,算法具有很快的收敛速率。根据A对角占优的特点,可以知道,其最大最小特征值也主要取决于对角线元素。因此,只要A的对角线元素间差距很小,A的条件数就很小,从而可以实现较快的收敛。
基于上述原因,进行A的预处理操作。用作转换操作的矩阵B是对角阵,其对角线元素均取A矩阵中相应位置的元素平方根的倒数。然后,通过A’=BAB,可以将矩阵A变成新的矩阵A’,此时的新矩阵对角线元素全部归一化。同时,对于原来方程中的
Figure GDA0002451751530000057
作如下变换:
Figure GDA0002451751530000058
这样新的方程可以等价的写成:
Figure GDA0002451751530000059
对这个方程结合
Figure GDA00024517515300000510
的关系运用共轭梯度算法,即可通过迭代结果得到估计符号
Figure GDA00024517515300000511
Figure GDA00024517515300000512
Figure GDA00024517515300000513
Figure GDA0002451751530000061
(其中的迭代初值可以取
Figure GDA0002451751530000062
)
通过数学中的圆盘定理,可以证明上述预处理过程的正确性。圆盘定理指出,对于任一矩阵A,它的所有特征值均在其盖尔区域中。上述预处理操作其实是将原来A的盖尔圆圆心全部挪到了一点(1,0),同时,由于矩阵A中元素的数量级均与M相近,A’的盖尔圆的半径也有所减小。因此,整个A’的盖尔区域比A小得多,A’的最大最小特征值间的距离也比A的小,因此条件数减小了。这一结果也可由仿真得到的图1说明。
最后的检测结果可以由图2、图3、图4清楚地显示。相较于不含预处理的传统共轭梯度算法,本发明具有更快的收敛速率和更好的表现。在图2中,当迭代次数达到4时,本发明结果一度逼近理想结果乔里斯基求逆算法(Cholesky Inverse)。
表1针对乔里斯基求逆算法、传统共轭梯度算法、基于部分乔里斯基分解的预处理共轭梯度算法(ICCG)和本发明的计算复杂度(这里只考虑所需要计算的复数乘法)进行了分析对比(其中ICCG算法中的S表示预处理矩阵L中的0元素个数,具体的计算过程可参见参考文献[4])。结果显示,本发明的计算复杂度不含N3项,因此大大降低。图5在基站端天线数和信噪比分别为128和10dB时,对这一结论进行了仿真验证。
表1
Figure GDA0002451751530000063

Claims (1)

1.一种带有预处理操作的大规模MIMO系统信号检测方法,其特征在于:基于大规模MIMO系统的理想信道模型:y=Hs+n;其中,y是基站处接收到的符号向量;H是平坦瑞利信道矩阵,它的每一个元素满足独立同分布的标准正态分布,均值为1,方差为0;s是发射符号向量,它的每个元素sk∈ON(k=1,2,……N),O代表2Q-QAM星座集,并且这里假设sk的平均发射功率是1;向量n是每一项服从均值为0,方差为σ2的加性高斯白噪声;利用最小均方误差检测方法,可以将问题划归为求解线性方程组:
Figure FDA0002451751520000011
其中,A=HHH+σ2I,
Figure FDA0002451751520000012
其中HH表示H矩阵的共轭转置;I表示单位矩阵;
对A矩阵进行预处理操作,用作转换操作的矩阵B是对角阵,其对角线元素均取A矩阵中相应位置的元素平方根的倒数;然后,通过A’=BAB,可以将矩阵A变成新的矩阵A’,此时的新矩阵对角线全部归一化;同时,对于原来方程中的
Figure FDA0002451751520000013
作如下变换:
Figure FDA0002451751520000014
这样新的方程可以等价的写成:
Figure FDA0002451751520000015
对这个方程结合
Figure FDA0002451751520000016
的关系运用预处理共轭梯度算法,即可通过迭代结果得到估计符号
Figure FDA0002451751520000017
CN201710454347.7A 2017-06-09 2017-06-09 一种带有预处理操作的大规模mimo系统信号检测方法 Active CN107196686B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710454347.7A CN107196686B (zh) 2017-06-09 2017-06-09 一种带有预处理操作的大规模mimo系统信号检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710454347.7A CN107196686B (zh) 2017-06-09 2017-06-09 一种带有预处理操作的大规模mimo系统信号检测方法

Publications (2)

Publication Number Publication Date
CN107196686A CN107196686A (zh) 2017-09-22
CN107196686B true CN107196686B (zh) 2020-06-16

Family

ID=59878896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710454347.7A Active CN107196686B (zh) 2017-06-09 2017-06-09 一种带有预处理操作的大规模mimo系统信号检测方法

Country Status (1)

Country Link
CN (1) CN107196686B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110336594B (zh) * 2019-06-17 2020-11-24 浙江大学 一种基于共轭梯度下降法的深度学习信号检测方法
CN113328771B (zh) * 2021-06-03 2022-09-23 重庆邮电大学 一种基于共轭梯度算法的大规模mimo信号检测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104954056A (zh) * 2015-06-05 2015-09-30 东南大学 大规模mimo线性检测中矩阵求逆的硬件构架及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9801564B2 (en) * 2012-02-29 2017-10-31 General Electric Company System and method for determining physiological parameters based on electrical impedance measurements

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104954056A (zh) * 2015-06-05 2015-09-30 东南大学 大规模mimo线性检测中矩阵求逆的硬件构架及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A fast-convergent pre-conditioned conjugate gradient detection for massive MIMO uplink;Y.Xue,C.Zhang,S.Zhang,and X.You;《IEEE International Conference on Digital Signal Processing(DSP)》;20161018;全文 *

Also Published As

Publication number Publication date
CN107196686A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
Gao et al. Matrix inversion-less signal detection using SOR method for uplink large-scale MIMO systems
CN110808765B (zh) 一种基于不完全信道信息的大规模mimo系统频谱效率优化的功率分配方法
CN108650056B (zh) 一种大规模mimo系统上行链路中的混合迭代检测方法
CN111478749B (zh) 基于优化初值快收敛mimo迭代检测方法、系统及应用
Wang et al. Convex optimization based multiuser detection for uplink large-scale MIMO under low-resolution quantization
CN109768816B (zh) 一种非高斯噪声3d-mimo系统数据检测方法
CN112565118A (zh) 毫米波透镜天线阵列通信系统信道估计方法
CN113315560B (zh) 一种紧凑型平面阵列Massive MIMO系统的波束赋形方法
Zhou et al. Biased MMSE soft-output detection based on Jacobi method in massive MIMO
CN107196686B (zh) 一种带有预处理操作的大规模mimo系统信号检测方法
CN107094043B (zh) 基于块迭代法的改进后的mmse低复杂度信号检测方法
Liu et al. A Low complexity high performance weighted Neumann series-based Massive MIMO detection
CN107276657B (zh) 基于并行算法的毫米波混合波束形成方法
Zhou et al. Biased MMSE soft-output detection based on conjugate gradient in massive MIMO
Khoso et al. A fast-convergent detector based on joint jacobi and richardson method for uplink massive MIMO Systems
CN110912588B (zh) 一种基于改进Prony方法的下行时变信道预测方法
CN107733487B (zh) 一种大规模多输入多输出系统的信号检测方法及装置
Gao et al. Near-optimal signal detection with low complexity based on Gauss-Seidel method for uplink large-scale MIMO systems
Bai et al. Joint precoding using successive over-relaxation matrix inversion and Newton iteration for massive MIMO systems
Jing et al. Low-complexity soft-output signal detector for massive MIMO with higher order QAM constellations
Dan et al. A low-complexity hybrid iterative signal detection algorithm for massive MIMO
Berthe et al. Low-complexity soft-output signal detector based on AI-SSOR preconditioned conjugate gradient method over massive MIMO correlated channel
KR20170043231A (ko) 다중 안테나 시스템에서 연판정 검출 방법 및 장치
Niu et al. A new lattice-reduction-based receiver for MIMO systems
Seidel et al. Decentralized massive MIMO uplink signal estimation by binary multistep synthesis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant