CN107196611A - Broadband single-ended transfer difference low-noise amplifier - Google Patents
Broadband single-ended transfer difference low-noise amplifier Download PDFInfo
- Publication number
- CN107196611A CN107196611A CN201710266674.XA CN201710266674A CN107196611A CN 107196611 A CN107196611 A CN 107196611A CN 201710266674 A CN201710266674 A CN 201710266674A CN 107196611 A CN107196611 A CN 107196611A
- Authority
- CN
- China
- Prior art keywords
- transistor
- capacitor
- resistor
- drain
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 claims description 55
- 238000005516 engineering process Methods 0.000 description 10
- 238000004088 simulation Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 238000013461 design Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 230000003071 parasitic effect Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/26—Modifications of amplifiers to reduce influence of noise generated by amplifying elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45179—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
- H03F3/45183—Long tailed pairs
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/294—Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/372—Noise reduction and elimination in amplifier
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Abstract
Description
技术领域technical field
本发明为射频集成电路技术领域,具体涉及一种0.1~1.2GHz宽带单端转差分低噪声放大器。The invention belongs to the technical field of radio frequency integrated circuits, and in particular relates to a 0.1-1.2 GHz broadband single-end-to-differential low-noise amplifier.
背景技术Background technique
随着无线通信的发展,射频接收技术在军用和民用领域的作用愈发重要。宽带通讯系统是当今无线通讯技术的发展趋势,也是国内外研究的热点[1][2]。目前存在多种宽带低噪声放大器设计方法。共栅放大器利用输入管的跨导实现宽带匹配,噪声系数与工作频率和带宽关系不大而相对平坦,电路具有极好的反向隔离性能和较高的线性度,但噪声系数较高[3]。全局负反馈结构可以缓和阻抗匹配和噪声系数之间严峻的折衷关系,但增益较低而需要多级级联,将会导致不稳定的问题[4]。电阻并联反馈共源放大器降低输入端的品质因子从而实现带宽拓展和增益平坦化,但电阻本身会引入噪声,会恶化输入端的噪声特性[5]。分布式放大器需要多晶体管级联和大量的电感,或需要高质量的传输线,增加了面积和功耗,提高了成本[6]。With the development of wireless communication, the role of radio frequency receiving technology in military and civilian fields is becoming more and more important. Broadband communication system is the development trend of today's wireless communication technology, and it is also a hot research topic at home and abroad [1][2] . There are several approaches to wideband LNA design. The common-gate amplifier uses the transconductance of the input tube to achieve broadband matching. The noise figure has little relationship with the operating frequency and bandwidth and is relatively flat. The circuit has excellent reverse isolation performance and high linearity, but the noise figure is high [3 ] . The global negative feedback structure can ease the severe trade-off relationship between impedance matching and noise figure, but the gain is low and requires multi-stage cascading, which will lead to unstable problems [4] . Resistor parallel feedback common source amplifier reduces the quality factor of the input to achieve bandwidth expansion and gain flattening, but the resistor itself will introduce noise, which will deteriorate the noise characteristics of the input [5] . Distributed amplifiers require multi-transistor cascading and a large amount of inductance, or high-quality transmission lines, which increase the area and power consumption, and increase the cost [6] .
在射频接收机的设计中,为了抑制共模噪声,提高端口隔离度,常采用基尔伯特混频器。但是从天线接收到的信号为单端信号,且一般带通滤波器和低噪声放大器都是单端口结构,故需要巴伦进行单端信号转为差分信号的处理。无源巴伦一般利用同轴线、微带线等进行耦合和移相,缺点是有严重的信号损耗、面积很大且恶化系统噪声。有源巴伦是利用晶体管的工作特性实现单端转差分的作用。目前有几种常见的有源巴伦的结构。其中最简单的是单晶体管,通过仔细设计其源极和漏极的负载可实现单转双功能,但由于输出寄生作用,该结构不适合宽带应用[7]。反馈差分对的结构,缺点是由于R/L/C补偿回路的存在使得增益相位的不匹配依赖于频率,且功耗较高[8]。CS-CG对,它具有较低功耗和很好的隔离度,但是相位误差较大[9]。In the design of radio frequency receivers, in order to suppress common mode noise and improve port isolation, Gilbert mixers are often used. However, the signal received from the antenna is a single-ended signal, and the general band-pass filter and low-noise amplifier are single-port structures, so a balun is required to convert the single-ended signal into a differential signal. Passive baluns generally use coaxial lines, microstrip lines, etc. for coupling and phase shifting. The disadvantages are serious signal loss, large area, and worsening system noise. The active balun is to use the working characteristics of the transistor to realize the function of single-ended conversion. There are several common active balun structures. The simplest of these is a single transistor, which can achieve single-turn dual-function by carefully designing its source and drain loads, but due to output parasitics, this structure is not suitable for broadband applications [7] . The disadvantage of the structure of the feedback differential pair is that the mismatch of the gain phase depends on the frequency due to the existence of the R/L/C compensation loop, and the power consumption is high [8] . CS-CG pair, it has lower power consumption and good isolation, but the phase error is larger [9] .
现有的宽带低噪声放大器难以同时实现良好的输入匹配和很低的噪声,且多数局限于单端输入单端输出而只能与巴伦结构级联工作,这会增加级间匹配的复杂度,引入额外的噪声,芯片面积较大。Existing broadband low noise amplifiers are difficult to achieve good input matching and low noise at the same time, and most of them are limited to single-ended input and single-ended output and can only work in cascade with the balun structure, which will increase the complexity of inter-stage matching , introduce additional noise, and the chip area is larger.
参考文献:references:
【1】齐凯.基于噪声抵消技术的CMOS宽带低噪声放大器设计[J].微电子学,2012,42(5):622-626.【1】Qi Kai. Design of CMOS Broadband Low Noise Amplifier Based on Noise Cancellation Technology[J]. Microelectronics, 2012,42(5):622-626.
【2】Li C F,Chou S C,Lai C M,et al.A feedforward noise and distortioncancellation technique for CMOS broadband LNA-mixer[C]//Solid-State CircuitsConference.IEEE,2014:337-340.【2】Li C F, Chou S C, Lai C M, et al. A feedforward noise and distortion cancellation technique for CMOS broadband LNA-mixer[C]//Solid-State Circuits Conference.IEEE,2014:337-340.
【3】Arshad S,Ramzan R,Muhammad K,et al.A sub-10mW,noise cancelling,wideband LNA for UWB applications[J].AEU-International Journal of Electronicsand Communications,2014, 69(1):109-118.【3】Arshad S, Ramzan R, Muhammad K, et al.A sub-10mW, noise canceling, wideband LNA for UWB applications[J].AEU-International Journal of Electronics and Communications,2014, 69(1):109-118 .
【4】Nejdel A.Flexible Receivers in CMOS for Wireless Communication[J].2015.【4】Nejdel A.Flexible Receivers in CMOS for Wireless Communication[J].2015.
【5】Perumana B G,Zhan J H C,Taylor S S,et al.Resistive-Feedback CMOSLow-Noise Amplifiers for Multiband Applications[J].2008,56(5):1218-1225.【5】Perumana B G, Zhan J H C, Taylor S S, et al.Resistive-Feedback CMOSLow-Noise Amplifiers for Multiband Applications[J].2008,56(5):1218-1225.
【6】Parvizi M,Allidina K,El-Gamal M N.A Sub-mW,Ultra-Low-Voltage,Wideband Low-Noise Amplifier Design Technique[J].IEEE Transactions on VeryLarge Scale Integration Systems,2015, 23(6):1111-1122.【6】Parvizi M, Allidina K, El-Gamal M N.A Sub-mW, Ultra-Low-Voltage, Wideband Low-Noise Amplifier Design Technique [J]. IEEE Transactions on VeryLarge Scale Integration Systems, 2015, 23(6): 1111-1122.
【7】Azevedo F,Mendes L,Fialho V,et al.A 5GHz/1.8V CMOS active balunintegrated with LNA[J].2008.【7】Azevedo F, Mendes L, Fialho V, et al. A 5GHz/1.8V CMOS active balun integrated with LNA[J].2008.
【8】Joo S,Choi T Y,Kim J Y,et al.A 3-to-5GHz UWB LNA with a low-powerbalanced active balun[C]//Radio Frequency Integrated Circuits Symposium,2009.Rfic.IEEE Xplore,2009:303-306.【8】Joo S, Choi T Y, Kim J Y, et al.A 3-to-5GHz UWB LNA with a low-powerbalanced active balun[C]//Radio Frequency Integrated Circuits Symposium,2009.Rfic.IEEE Xplore,2009: 303-306.
【9】Yuan S,Zhao J,Li Y.Design and simulation of an improved widebandlow noise amplifier with an active balun[C]//International Conference onAutomatic Control and Artificial Intelligence.2012:786-789.【9】Yuan S, Zhao J, Li Y. Design and simulation of an improved widebandlow noise amplifier with an active balun[C]//International Conference on Automatic Control and Artificial Intelligence.2012:786-789.
发明内容Contents of the invention
本发明要解决的技术问题是提供一种可以工作在0.1~1.2GHz频段的宽带单转双低噪声放大器,将噪声抵消技术和有源巴伦技术应用于同一个电路中,在宽带同时实现良好的输入匹配和低噪声性能,同时具有单端输入差分输出的功能,结构简单,可以制作较小的芯片,能够CMOS 0.18um工艺实现,设计具有可复制性。技术方案如下:The technical problem to be solved by the present invention is to provide a broadband single-rotation dual low-noise amplifier that can work in the 0.1-1.2GHz frequency band, and apply noise cancellation technology and active balun technology to the same circuit to achieve good performance in broadband at the same time. It has excellent input matching and low noise performance, and has the function of single-ended input and differential output. It has a simple structure and can be made into a smaller chip. It can be realized in a CMOS 0.18um process, and the design is reproducible. The technical scheme is as follows:
一种宽带单端转差分低噪声放大器,包括:输入匹配级电路和噪声抵消级电路,所述输入匹配级电路,其输入端接收信号输入端的信号(IN),产生相位相反的两路信号,分别通过高通滤波器输出到后级的噪声抵消级电路;A wideband single-ended to differential low-noise amplifier, comprising: an input matching stage circuit and a noise canceling stage circuit, the input matching stage circuit receives a signal (IN) from a signal input end at its input, and generates two signals with opposite phases, output to the noise cancellation stage circuit of the subsequent stage through the high-pass filter;
所述噪声抵消级电路,该噪声抵消级电路有三个输入端,两个输出端,其中两路输入连接输入匹配级的两路输出,另一路输入接收信号输入端的信号(IN),输出两路差分信号(OUT+/OUT-);The noise canceling stage circuit, the noise canceling stage circuit has three input terminals and two output terminals, two of which are connected to the two outputs of the input matching stage, the other input receives the signal (IN) of the signal input terminal, and two outputs Differential signal (OUT+/OUT-);
所述输入匹配级电路包括:第一晶体管(M1),第二晶体管(M2),第三晶体管(M3),第四晶体管(M4),第五晶体管(M5);其中,所述第一晶体管(M1)的栅极分别与第二晶体管(M2)的栅极、第一电容(C1) 的第二端、第一电阻(R1)的第一端和第六电容(C6)的第一端连接;The input matching stage circuit includes: a first transistor (M1), a second transistor (M2), a third transistor (M3), a fourth transistor (M4), and a fifth transistor (M5); wherein, the first transistor The gate of (M1) is respectively connected with the gate of the second transistor (M2), the second end of the first capacitor (C1), the first end of the first resistor (R1) and the first end of the sixth capacitor (C6). connect;
所述的第一晶体管(M1)的漏极分别与第二晶体管(M2)的漏极、第一电阻(R1)的第二端、第三电容(C3)的第一端和第四电容(C4)的第一端连接;The drain of the first transistor (M1) is respectively connected to the drain of the second transistor (M2), the second end of the first resistor (R1), the first end of the third capacitor (C3) and the fourth capacitor ( The first end of C4) is connected;
所述的第二晶体管(M2)的源极分别与第三晶体管(M3)的漏极和第二电容(C2)的第二端连接;The source of the second transistor (M2) is respectively connected to the drain of the third transistor (M3) and the second end of the second capacitor (C2);
所述第四晶体管(M4)的栅极分别与第二电阻(R2)的第一端和第三电容(C3)的第二端连接;The gate of the fourth transistor (M4) is respectively connected to the first end of the second resistor (R2) and the second end of the third capacitor (C3);
所述第四晶体管(M4)的漏极分别与第五晶体管(M5)的漏极和第五电容(C5)的第一端连接。The drain of the fourth transistor (M4) is respectively connected to the drain of the fifth transistor (M5) and the first end of the fifth capacitor (C5).
所述噪声抵消级电路包括:第六晶体管(M6),第七晶体管(M7),第八晶体管(M8),第九晶体管(M9),第十晶体管(M10),第十一晶体管(M11);The noise cancellation stage circuit includes: a sixth transistor (M6), a seventh transistor (M7), an eighth transistor (M8), a ninth transistor (M9), a tenth transistor (M10), and an eleventh transistor (M11) ;
其中所述第六晶体管(M6)的栅极分别与第五电阻的第一端和第六电容(C6)的第二端连接;Wherein the gate of the sixth transistor (M6) is respectively connected to the first end of the fifth resistor and the second end of the sixth capacitor (C6);
所述第六晶体管(M6)的漏极与第七晶体管(M7)的源极连接;The drain of the sixth transistor (M6) is connected to the source of the seventh transistor (M7);
所述第七晶体管(M7)的漏极分别与第八晶体管(M8)的源极、第七电容(C7)的第一端和第八电容 (C8)的第一端连接;The drain of the seventh transistor (M7) is respectively connected to the source of the eighth transistor (M8), the first end of the seventh capacitor (C7) and the first end of the eighth capacitor (C8);
所述第八晶体管(M8)的栅极与第三电阻(R3)的第二端和第四电容(C4)的第二端连接;The gate of the eighth transistor (M8) is connected to the second end of the third resistor (R3) and the second end of the fourth capacitor (C4);
所述第九晶体管(M9)的栅极分别与第六电阻(R6)的第一端和第七电容(C7)的第二端连接;The gate of the ninth transistor (M9) is respectively connected to the first end of the sixth resistor (R6) and the second end of the seventh capacitor (C7);
所述第九晶体管(M9)的漏极与第十晶体管(M10)的源极连接;The drain of the ninth transistor (M9) is connected to the source of the tenth transistor (M10);
所述第十晶体管(M10)的漏极分别与第十一晶体管(M11)的源极和第九电容(C9)的第一端连接;The drain of the tenth transistor (M10) is respectively connected to the source of the eleventh transistor (M11) and the first end of the ninth capacitor (C9);
所述第十一晶体管(M11)的栅极分别与第四电阻(R4)的第二端和第五电容(C5)的第二端连接。The gate of the eleventh transistor (M11) is respectively connected to the second end of the fourth resistor (R4) and the second end of the fifth capacitor (C5).
所述第三晶体管(M3)的栅极和第五晶体管(M5)的栅极均与第一电压源(V1)连接;Both the gate of the third transistor (M3) and the gate of the fifth transistor (M5) are connected to the first voltage source (V1);
所述第二电阻(R2)的第二端、第五电阻(R5)的第二端和第六电阻(R6)的第二端均与第二电压源 (V2)连接;The second end of the second resistor (R2), the second end of the fifth resistor (R5) and the second end of the sixth resistor (R6) are all connected to the second voltage source (V2);
所述第三晶体管(M3)的源极、第五晶体管(M5)的源极、第八晶体管(M8)的漏极、第十一晶体管 (M11)的漏极、第二电容(C2)的第一端、第三电阻(R3)的第一端和第四电阻(R4)的第一端均与第三电压源(V3)连接;The source of the third transistor (M3), the source of the fifth transistor (M5), the drain of the eighth transistor (M8), the drain of the eleventh transistor (M11), the second capacitor (C2) The first end, the first end of the third resistor (R3) and the first end of the fourth resistor (R4) are all connected to the third voltage source (V3);
所述第一晶体管(M1)的源极、第四晶体管(M4)的源极、第六晶体管(M6)的源极和第九晶体管(M9) 的源极均与接地端连接。The sources of the first transistor (M1), the fourth transistor (M4), the sixth transistor (M6) and the ninth transistor (M9) are all connected to the ground terminal.
所述信号输入端(IN)连接第一电容(C1)的第一端;The signal input terminal (IN) is connected to the first terminal of the first capacitor (C1);
所述第八电容(C8)的第二端连接第一信号输出端(OUT+);The second end of the eighth capacitor (C8) is connected to the first signal output end (OUT+);
所述第九电容(C9)的第二端连接第二信号输出端(OUT-)。The second end of the ninth capacitor (C9) is connected to the second signal output end (OUT-).
与现有技术相比,本发明实施例的技术方案的有益效果是:Compared with the prior art, the beneficial effects of the technical solutions of the embodiments of the present invention are:
(1)本发明采用噪声抵消技术,在宽带实现良好的输入匹配和较低的噪声。(1) The present invention adopts noise canceling technology to realize good input matching and lower noise in broadband.
(2)本发明将有源巴伦技术结合于噪声抵消技术中,而非在低噪声放大器后单独增加一级有源巴伦,降低级间匹配的复杂度,并避免由巴伦带来的噪声和匹配不好引起的增益损耗。(2) The present invention combines the active balun technology with the noise canceling technology, instead of adding an active balun after the low-noise amplifier, reducing the complexity of inter-stage matching, and avoiding the noise caused by the balun Loss of gain due to noise and poor matching.
(3)本发明中使用的器件主要包括MOS管、电阻和电容,整体电路不含电感,从而节省芯片面积,降低了成本。(3) The devices used in the present invention mainly include MOS transistors, resistors and capacitors, and the overall circuit does not contain inductors, thereby saving chip area and reducing costs.
(4)本发明采用深亚微米0.18umCMOS工艺实现,1.8V低电源电压供电,其功耗消耗较低。(4) The present invention is realized by using a deep submicron 0.18um CMOS process, powered by a low power supply voltage of 1.8V, and its power consumption is relatively low.
(5)本发明的实现采用主流CMOS工艺,可以与普通采用CMOS工艺的数字基带电路集成在同一块芯片上,容易实现片上系统集成。(5) The implementation of the present invention adopts the mainstream CMOS technology, and can be integrated on the same chip with the common digital baseband circuit using the CMOS technology, so that system-on-chip integration can be easily realized.
附图说明Description of drawings
图1是本发明低噪声放大器的电路结构图;Fig. 1 is the circuit structure diagram of low noise amplifier of the present invention;
图2为本发明低噪声放大器的噪声系数的仿真结果图;Fig. 2 is the simulation result figure of the noise figure of the low noise amplifier of the present invention;
图3是本发明低噪声放大器的S参数的仿真结果图;Fig. 3 is the simulation result figure of the S parameter of low noise amplifier of the present invention;
图4是本发明低噪声放大器的两端口输出信号相位的仿真结果图;Fig. 4 is the simulation result figure of the two-port output signal phase of the low noise amplifier of the present invention;
图5是本发明低噪声放大器的两端口输出信号增益的仿真结果图;Fig. 5 is the simulation result figure of the two-port output signal gain of the low noise amplifier of the present invention;
图6是本发明低噪声放大器的线性度的仿真结果图。Fig. 6 is a simulation result diagram of the linearity of the low noise amplifier of the present invention.
具体实施方式detailed description
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。In order to make the technical problems, technical solutions and advantages to be solved by the present invention clearer, the following will describe in detail with reference to the drawings and specific embodiments.
如图1所示,所述输入匹配级电路包括:第一晶体管(M1),第二晶体管(M2),第三晶体管(M3),第四晶体管(M4),第五晶体管(M5);As shown in Figure 1, the input matching stage circuit includes: a first transistor (M1), a second transistor (M2), a third transistor (M3), a fourth transistor (M4), and a fifth transistor (M5);
其中,所述第一晶体管(M1)的栅极分别与第二晶体管(M2)的栅极、第一电容(C1)的第二端、第一电阻(R1)的第一端和第六电容(C6)的第一端连接;Wherein, the gate of the first transistor (M1) is respectively connected with the gate of the second transistor (M2), the second terminal of the first capacitor (C1), the first terminal of the first resistor (R1) and the sixth capacitor The first end of (C6) is connected;
所述的第一晶体管(M1)的漏极分别与第二晶体管(M2)的漏极、第一电阻(R1)的第二端、第三电容(C3)的第一端和第四电容(C4)的第一端连接;The drain of the first transistor (M1) is respectively connected to the drain of the second transistor (M2), the second end of the first resistor (R1), the first end of the third capacitor (C3) and the fourth capacitor ( The first end of C4) is connected;
所述的第二晶体管(M2)的源极分别与第三晶体管(M3)的漏极和第二电容(C2)的第二端连接;The source of the second transistor (M2) is respectively connected to the drain of the third transistor (M3) and the second end of the second capacitor (C2);
所述第四晶体管(M4)的栅极分别与第二电阻(R2)的第一端和第三电容(C3)的第二端连接;The gate of the fourth transistor (M4) is respectively connected to the first end of the second resistor (R2) and the second end of the third capacitor (C3);
所述第四晶体管(M4)的漏极分别与第五晶体管(M5)的漏极和第五电容(C5)的第一端连接。The drain of the fourth transistor (M4) is respectively connected to the drain of the fifth transistor (M5) and the first end of the fifth capacitor (C5).
本发明的实施例中,第一晶体管(M1)、第二晶体管(M2)和第一电阻(R1)构成电阻并联反馈的电流复用结构,利用互补共栅极晶体管跨导提供输入阻抗,保证在较宽的频带内具有良好的输入匹配特性,在相同的偏置电流下,层叠的NMOS管和PMOS管将单管跨导增大到两管跨导之和,在不增加功耗的情况下提高电路增益。该结构还能提高电路的鲁棒性,可以降低寄生效应、温度以及工艺变化对功率增益和输入阻抗匹配的影响。输入级晶体管M1和M2的噪声电流流经第一电阻(R1)和电源内阻从而在X和Y点形成同相噪声电压,同时由于共源放大器的反相放大特性,X和Y点有反相有用信号电压,这种差别正是噪声抵消的关键。M4和M5构成的共源放大器将互补共栅极的输出实现反相放大后作为噪声抵消级的输入之一,是形成单端输入差分输出的基础。In the embodiment of the present invention, the first transistor (M1), the second transistor (M2) and the first resistor (R1) form a current multiplexing structure with parallel feedback of resistors, and the transconductance of complementary common-gate transistors is used to provide input impedance, ensuring It has good input matching characteristics in a wide frequency band. Under the same bias current, the stacked NMOS transistor and PMOS transistor increase the transconductance of a single transistor to the sum of the transconductance of the two transistors without increasing power consumption. increase the circuit gain. The structure can also improve the robustness of the circuit, which can reduce the influence of parasitic effects, temperature and process variations on power gain and input impedance matching. The noise current of the input-stage transistors M1 and M2 flows through the first resistor (R1) and the internal resistance of the power supply to form the same-phase noise voltage at the X and Y points, and at the same time, due to the inverting amplification characteristic of the common-source amplifier, the X and Y points have an inversion useful signal voltage, this difference is the key to noise cancellation. The common-source amplifier composed of M4 and M5 inverts and amplifies the output of the complementary common gate as one of the inputs of the noise canceling stage, which is the basis for forming a single-ended input and a differential output.
如图1所示,所述噪声抵消级电路包括:第六晶体管(M6),第七晶体管(M7),第八晶体管(M8),第九晶体管(M9),第十晶体管(M10),第十一晶体管(M11);As shown in Figure 1, the noise cancellation stage circuit includes: a sixth transistor (M6), a seventh transistor (M7), an eighth transistor (M8), a ninth transistor (M9), a tenth transistor (M10), and a sixth transistor (M10). Eleven transistors (M11);
其中所述第六晶体管(M6)的栅极分别与第五电阻的第一端和第六电容(C6)的第二端连接;Wherein the gate of the sixth transistor (M6) is respectively connected to the first end of the fifth resistor and the second end of the sixth capacitor (C6);
所述第六晶体管(M6)的漏极与第七晶体管(M7)的源极连接;The drain of the sixth transistor (M6) is connected to the source of the seventh transistor (M7);
所述第七晶体管(M7)的漏极分别与第八晶体管(M8)的源极、第七电容(C7)的第一端和第八电容 (C8)的第一端连接;The drain of the seventh transistor (M7) is respectively connected to the source of the eighth transistor (M8), the first end of the seventh capacitor (C7) and the first end of the eighth capacitor (C8);
所述第八晶体管(M8)的栅极与第三电阻(R3)的第二端和第四电容(C4)的第二端连接;The gate of the eighth transistor (M8) is connected to the second end of the third resistor (R3) and the second end of the fourth capacitor (C4);
所述第九晶体管(M9)的栅极分别与第六电阻(R6)的第一端和第七电容(C7)的第二端连接;The gate of the ninth transistor (M9) is respectively connected to the first end of the sixth resistor (R6) and the second end of the seventh capacitor (C7);
所述第九晶体管(M9)的漏极与第十晶体管(M10)的源极连接;The drain of the ninth transistor (M9) is connected to the source of the tenth transistor (M10);
所述第十晶体管(M10)的漏极分别与第十一晶体管(M11)的源极和第九电容(C9)的第一端连接;The drain of the tenth transistor (M10) is respectively connected to the source of the eleventh transistor (M11) and the first end of the ninth capacitor (C9);
所述第十一晶体管(M11)的栅极分别与第四电阻(R4)的第二端和第五电容(C5)的第二端连接。The gate of the eleventh transistor (M11) is respectively connected to the second end of the fourth resistor (R4) and the second end of the fifth capacitor (C5).
本发明的实施例中,源跟随器M8将Y点噪声电压同相放大,M6和M7共源共栅放大器将X点噪声电压信号反相放大,在M8源极进行叠加,噪声可以在输出端OUT+处抵消;同理,源跟随器M11将Z点噪声电压同相放大,M9和M10共源共栅放大器将M7漏极处的噪声电压反相放大,在M8源极进行叠加,噪声可以在输出端OUT-处抵消。同时对于有用信号,M8将Y点信号同相放大因而与X点相位相反,M6和M7共源共栅放大器将X点反相放大,在输出端OUT+处得以加强;M11将Z点信号同相放大因而与X点相位相同,M9 和M10共源共栅放大器反相放大M6和M7共源共栅放大器的输出信号因而与X点相位相同,在输出端OUT- 处得以加强,且与输出端OUT+的信号相位相反。M7和M10可以抑制密勒效应,提高反向隔离度,增加电路稳定性,使输入输出阻抗匹配网络互不影响。只要仔细设计MOS管跨导值就可以实现在两个端口处分别抵消输入级噪声并形成差分输出信号。同时由于M8和M11的跨导提供输出阻抗,可以在较宽频带范围内实现输出匹配,增加了电路系统的增益平坦度。In the embodiment of the present invention, the source follower M8 amplifies the noise voltage at point Y in phase, the cascode amplifiers M6 and M7 amplify the noise voltage signal at point X in reverse phase, and superimposes it at the source of M8, and the noise can be generated at the output terminal OUT+ Similarly, the source follower M11 amplifies the noise voltage at point Z in phase, and the M9 and M10 cascode amplifiers invert and amplify the noise voltage at the drain of M7 and superimpose it at the source of M8, and the noise can be output at the output offset at OUT-. At the same time, for the useful signal, M8 amplifies the signal at point Y in phase so that it is opposite to point X, M6 and M7 cascode amplifiers amplify point X in reverse, and strengthen it at the output terminal OUT+; M11 amplifies the signal at point Z in phase so that In the same phase as point X, the M9 and M10 cascode amplifiers invert and amplify the output signals of the M6 and M7 cascode amplifiers so that they are in the same phase as point X, and are strengthened at the output terminal OUT-, and are connected to the output terminal OUT+ The signal phase is reversed. M7 and M10 can suppress the Miller effect, improve reverse isolation, increase circuit stability, and make the input and output impedance matching networks independent of each other. As long as the transconductance value of the MOS tube is carefully designed, the noise of the input stage can be canceled at the two ports and a differential output signal can be formed. At the same time, since the transconductance of M8 and M11 provides output impedance, output matching can be realized in a wide frequency range, which increases the gain flatness of the circuit system.
本发明的实施例中,所述第三晶体管(M3)的栅极和第五晶体管(M5)的栅极均与第一电压源(V1) 连接;所述第二电阻(R2)的第二端、第五电阻(R5)的第二端和第六电阻(R6)的第二端均与第二电压源(V2)连接;所述第三晶体管(M3)的源极、第五晶体管(M5)的源极、第八晶体管(M8)的漏极、第十一晶体管(M11)的漏极、第二电容(C2)的第一端、第三电阻(R3)的第一端和第四电阻(R4)的第一端均与第三电压源(V3)连接;所述第一晶体管(M1)的源极、第四晶体管(M4)的源极、第六晶体管 (M6)的源极和第九晶体管(M9)的源极均与接地端连接。所述信号输入端(IN)连接第一电容(C1)的第一端;所述第八电容(C8)的第二端连接第一信号输出端(OUT+);所述第九电容(C9)的第二端连接第二信号输出端(OUT-)。In an embodiment of the present invention, both the gate of the third transistor (M3) and the gate of the fifth transistor (M5) are connected to the first voltage source (V1); the second of the second resistor (R2) end, the second end of the fifth resistor (R5) and the second end of the sixth resistor (R6) are all connected to the second voltage source (V2); the source of the third transistor (M3), the fifth transistor ( M5), the drain of the eighth transistor (M8), the drain of the eleventh transistor (M11), the first end of the second capacitor (C2), the first end of the third resistor (R3) and the first end of the third resistor (R3). The first ends of the four resistors (R4) are all connected to the third voltage source (V3); the source of the first transistor (M1), the source of the fourth transistor (M4), and the source of the sixth transistor (M6) Both the pole and the source of the ninth transistor (M9) are connected to the ground terminal. The signal input terminal (IN) is connected to the first terminal of the first capacitor (C1); the second terminal of the eighth capacitor (C8) is connected to the first signal output terminal (OUT+); the ninth capacitor (C9) The second terminal of is connected to the second signal output terminal (OUT-).
本文采用TSMC CMOS 0.18um工艺,利用Cadence RF Spectre对电路进行仿真验证。In this paper, TSMC CMOS 0.18um process is used, and Cadence RF Specter is used to simulate and verify the circuit.
图2为本发明所述0.1~1.2GHz宽带低噪声放大器噪声系数的仿真结果。由此可以看出,在0.1~1.2GHz 频带范围内,噪声系数在3.2~4.1dB,表明本发明的低噪声放大器在整个频带内具有良好的噪声系数。Fig. 2 is the simulation result of the noise figure of the 0.1-1.2 GHz broadband low noise amplifier of the present invention. It can be seen that, in the range of 0.1-1.2 GHz frequency band, the noise figure is 3.2-4.1 dB, indicating that the low noise amplifier of the present invention has a good noise figure in the whole frequency band.
图3为本发明所述0.1~1.2GHz宽带低噪声放大器S参数的仿真结果。由此可以看出,在0.1~1.2GHz 频带范围内,S11<-15,S22<-19,表明本发明的低噪声放大器在整个频带内实现了良好的输入输出匹配; S12<-44,表明本发明的低噪声放大器具有良好的反向隔离性能;S21最大值为13.5dB,表明本发明的低噪声放大器具有较高的增益。Fig. 3 is the simulation result of S parameters of the 0.1-1.2 GHz broadband low noise amplifier of the present invention. It can be seen that, within the frequency range of 0.1-1.2 GHz, S 11 <-15, S 22 <-19, indicating that the low noise amplifier of the present invention has achieved good input-output matching in the entire frequency band; S 12 <- 44, indicating that the low noise amplifier of the present invention has good reverse isolation performance; the maximum value of S 21 is 13.5dB, indicating that the low noise amplifier of the present invention has relatively high gain.
图4为本发明所述0.1~1.2GHz宽带低噪声放大器两输出端口的相位和增益的仿真结果。由此可以看出,在0.1~1.2GHz频带范围内,相位误差为2.5°,证明输出信号具有很好的差分特性,该LNA能够实现巴伦的功能。Fig. 4 is the simulation result of the phase and gain of the two output ports of the 0.1-1.2 GHz broadband low noise amplifier of the present invention. It can be seen that, in the 0.1-1.2GHz frequency band, the phase error is 2.5°, which proves that the output signal has good differential characteristics, and the LNA can realize the function of the balun.
图5为本发明所述0.1~1.2GHz宽带低噪声放大器端口的线性度的仿真结果。由此可以看出,在频率为700M时输入1dB压缩点为-8dBm,表明本发明的低噪声放大器具有良好的线性度。Fig. 5 is the simulation result of the linearity of the 0.1-1.2 GHz broadband low noise amplifier port of the present invention. It can be seen that the input 1dB compression point is -8dBm when the frequency is 700M, indicating that the low noise amplifier of the present invention has good linearity.
图6为本发明所述0.1~1.2GHz宽带低噪声放大器的稳定性因数。由此可以看出,Kf>23,表明本发明的低噪声放大器具有无条件稳定性。Fig. 6 is the stability factor of the 0.1-1.2GHz broadband low noise amplifier of the present invention. It can be seen that K f >23, indicating that the low noise amplifier of the present invention has unconditional stability.
本发明采用电阻并联反馈的电流复用结构,利用晶体管跨导提供输入阻抗,保证在较宽的频带内具有良好的输入匹配特性,且在相同的偏置电流下,层叠的NMOS管和PMOS管将单管跨导增大到两管跨导之和,在不增加功耗的情况下提高电路增益。该结构还能提高电路的鲁棒性,可以降低寄生效应、温度以及工艺变化对功率增益和输入阻抗匹配的影响。在输入匹配级后增加一级共源放大器增加一路反相信号输出,是实现单端输入双端输出的基础。噪声抵消级以源跟随器和共源共栅极的结合为基础,在输出端抵消输入匹配级的噪声并加强有用信号,形成相位相反幅值相等的差分信号,并且由源跟随器的跨导提供输出阻抗使得在较宽频带范围内具有良好的输出匹配。The present invention adopts the current multiplexing structure of parallel feedback of resistors, uses the transconductance of transistors to provide input impedance, and ensures good input matching characteristics in a wide frequency band, and under the same bias current, the stacked NMOS tube and PMOS tube Increase the transconductance of a single transistor to the sum of the transconductance of two transistors, and increase the circuit gain without increasing power consumption. The structure can also improve the robustness of the circuit, which can reduce the influence of parasitic effects, temperature and process variations on power gain and input impedance matching. Adding a common-source amplifier after the input matching stage to increase an inverted signal output is the basis for realizing single-ended input and double-ended output. The noise cancellation stage is based on the combination of the source follower and the common source common gate, and cancels the noise of the input matching stage at the output end and strengthens the useful signal to form a differential signal with opposite phase and equal amplitude, and the transconductance of the source follower The output impedance is provided for good output matching over a wide frequency band.
以上实施例仅用以说明本发明的电路结构,而非对其限制。此外,根据上述配置的示例性实施方式可有本领域技术人员理解和实施;可以对前述各实施例所记载的电路结构进行修改,或者对其中部分电路结构进行等同替换;而这些修改或者替换,并不使相应电路结构的本质脱离本发明各实施例技术方案的基本特征。本发明的范围应根据权利要求来解释。The above embodiments are only used to illustrate the circuit structure of the present invention, not to limit it. In addition, the exemplary implementations according to the above configurations can be understood and implemented by those skilled in the art; the circuit structures described in the foregoing embodiments can be modified, or some of the circuit structures can be equivalently replaced; and these modifications or replacements, The essence of the corresponding circuit structure does not deviate from the basic features of the technical solutions of the various embodiments of the present invention. The scope of the present invention should be construed based on the claims.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710266674.XA CN107196611B (en) | 2017-04-21 | 2017-04-21 | Broadband single-ended-to-differential low-noise amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710266674.XA CN107196611B (en) | 2017-04-21 | 2017-04-21 | Broadband single-ended-to-differential low-noise amplifier |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107196611A true CN107196611A (en) | 2017-09-22 |
CN107196611B CN107196611B (en) | 2020-05-05 |
Family
ID=59872313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710266674.XA Expired - Fee Related CN107196611B (en) | 2017-04-21 | 2017-04-21 | Broadband single-ended-to-differential low-noise amplifier |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107196611B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108336978A (en) * | 2018-01-10 | 2018-07-27 | 南京邮电大学 | A kind of cascade distributed low noise amplifier |
CN108880483A (en) * | 2018-07-12 | 2018-11-23 | 安徽矽磊电子科技有限公司 | A kind of broad band amplifier of noise feedforward cancellation |
CN109361363A (en) * | 2018-09-11 | 2019-02-19 | 天津大学 | A Wideband Fully Differential Low Noise Amplifier |
CN110460312A (en) * | 2019-06-27 | 2019-11-15 | 天津大学 | A Broadband Low Noise Amplifier with Stable Output Impedance |
CN112803899A (en) * | 2020-12-28 | 2021-05-14 | 东南大学 | Low-noise amplifier adopting noise cancellation and having no on-chip inductor and single-to-double conversion |
CN113131883A (en) * | 2019-12-30 | 2021-07-16 | 澜至电子科技(成都)有限公司 | Low noise amplifier |
CN113746441A (en) * | 2021-07-13 | 2021-12-03 | 天津大学 | Broadband SiGe BiCMOS low noise amplifier |
CN114665826A (en) * | 2022-05-23 | 2022-06-24 | 苏州瀚宸科技有限公司 | Non-fully differential circuit system for improving power supply voltage rejection ratio |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101777877A (en) * | 2010-01-05 | 2010-07-14 | 南京广嘉微电子有限公司 | Wide band radio-frequency low noise amplifier with single-ended input and differential output |
CN102163955A (en) * | 2011-04-18 | 2011-08-24 | 上海信朴臻微电子有限公司 | Low-noise amplifier adopting single-ended input and differential output |
CN103633947A (en) * | 2013-12-03 | 2014-03-12 | 天津大学 | Noninductive and high-gain CMOS (Complementary Metal Oxide Semiconductor) broadband low-noise amplifier |
EP2913922A1 (en) * | 2014-02-28 | 2015-09-02 | Telefonaktiebolaget L M Ericsson (publ) | A low noise amplifier circuit |
CN104935264A (en) * | 2015-06-02 | 2015-09-23 | 电子科技大学 | An Inductorless Broadband Low Noise Transconductance Amplifier |
US9444410B1 (en) * | 2015-05-19 | 2016-09-13 | AltoBeam Inc. | Wide-band single-ended-to-differential low-noise amplifier using complementary push-pull structure |
-
2017
- 2017-04-21 CN CN201710266674.XA patent/CN107196611B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101777877A (en) * | 2010-01-05 | 2010-07-14 | 南京广嘉微电子有限公司 | Wide band radio-frequency low noise amplifier with single-ended input and differential output |
CN102163955A (en) * | 2011-04-18 | 2011-08-24 | 上海信朴臻微电子有限公司 | Low-noise amplifier adopting single-ended input and differential output |
CN103633947A (en) * | 2013-12-03 | 2014-03-12 | 天津大学 | Noninductive and high-gain CMOS (Complementary Metal Oxide Semiconductor) broadband low-noise amplifier |
EP2913922A1 (en) * | 2014-02-28 | 2015-09-02 | Telefonaktiebolaget L M Ericsson (publ) | A low noise amplifier circuit |
US9444410B1 (en) * | 2015-05-19 | 2016-09-13 | AltoBeam Inc. | Wide-band single-ended-to-differential low-noise amplifier using complementary push-pull structure |
CN104935264A (en) * | 2015-06-02 | 2015-09-23 | 电子科技大学 | An Inductorless Broadband Low Noise Transconductance Amplifier |
Non-Patent Citations (1)
Title |
---|
陈晓飞: "带有源巴伦的CMOS宽带低噪声放大器设计", 《华中科技大学学报(自然科学版)》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108336978B (en) * | 2018-01-10 | 2021-07-20 | 南京邮电大学 | A Cascaded Distributed Low Noise Amplifier |
CN108336978A (en) * | 2018-01-10 | 2018-07-27 | 南京邮电大学 | A kind of cascade distributed low noise amplifier |
CN108880483A (en) * | 2018-07-12 | 2018-11-23 | 安徽矽磊电子科技有限公司 | A kind of broad band amplifier of noise feedforward cancellation |
CN108880483B (en) * | 2018-07-12 | 2022-06-14 | 安徽矽磊电子科技有限公司 | Broadband amplifier with noise feedforward cancellation |
CN109361363A (en) * | 2018-09-11 | 2019-02-19 | 天津大学 | A Wideband Fully Differential Low Noise Amplifier |
CN110460312A (en) * | 2019-06-27 | 2019-11-15 | 天津大学 | A Broadband Low Noise Amplifier with Stable Output Impedance |
CN113131883A (en) * | 2019-12-30 | 2021-07-16 | 澜至电子科技(成都)有限公司 | Low noise amplifier |
CN113131883B (en) * | 2019-12-30 | 2022-10-28 | 澜至电子科技(成都)有限公司 | Low noise amplifier |
CN112803899A (en) * | 2020-12-28 | 2021-05-14 | 东南大学 | Low-noise amplifier adopting noise cancellation and having no on-chip inductor and single-to-double conversion |
CN112803899B (en) * | 2020-12-28 | 2023-10-03 | 东南大学 | Noise-cancellation-based on-chip inductance-free single-to-double low-noise amplifier |
CN113746441A (en) * | 2021-07-13 | 2021-12-03 | 天津大学 | Broadband SiGe BiCMOS low noise amplifier |
CN113746441B (en) * | 2021-07-13 | 2023-10-20 | 天津大学 | Broadband SiGe BiCMOS Low Noise Amplifier |
CN114665826A (en) * | 2022-05-23 | 2022-06-24 | 苏州瀚宸科技有限公司 | Non-fully differential circuit system for improving power supply voltage rejection ratio |
CN114665826B (en) * | 2022-05-23 | 2022-10-04 | 苏州瀚宸科技有限公司 | Non-fully differential circuit system for improving power supply voltage rejection ratio |
Also Published As
Publication number | Publication date |
---|---|
CN107196611B (en) | 2020-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107196611A (en) | Broadband single-ended transfer difference low-noise amplifier | |
CN102355200B (en) | Single-ended input and differential output parallel dual-frequency low noise amplifier and design method thereof | |
CN106849876B (en) | A Low Power Wideband RF Mixer | |
CN106921346B (en) | High linearity broadband up-mixer | |
CN107911092A (en) | A kind of radio-frequency emission front-end circuit of broadband high linearity | |
CN103490731A (en) | Low-noise passive frequency mixer | |
CN101282110A (en) | A low-power low-noise amplifier with single-ended input and differential output | |
CN101202533A (en) | A low-power high-performance quadrature down-mixer | |
CN102946230A (en) | Ultra-wide band low-noise single-ended input and differential output amplifier | |
CN101252341A (en) | Broadband Low Noise Amplifier | |
CN111865221A (en) | A silicon-based millimeter wave receiving front-end circuit | |
CN104124923B (en) | A kind of low-noise mixer circuit | |
CN214707654U (en) | A CMOS Ultra-Broadband Low Noise Amplifier | |
CN102638227A (en) | Ultra-wideband mixer circuit with on-chip active balun | |
CN111245373A (en) | An Ultra-Broadband Low Noise Amplifier Using Partial Active Negative Feedback Technology and Positive Feedback Technology | |
CN111478671B (en) | A Novel Low Noise Amplifier Applied in Sub-GHz Frequency Band | |
CN104065346A (en) | Broadband low noise amplifier circuit based on cross-coupled feedback | |
CN102035479A (en) | Low noise amplifier circuit with high linearity | |
CN102130654A (en) | Dual-band reconfigurable mixer integrated circuit chip | |
CN107332522B (en) | Low noise amplifier in radio frequency front end | |
CN117499183B (en) | Signal processing method, system and circuit | |
CN111384984B (en) | Receiver and low noise amplifier | |
CN201910768U (en) | High-linearity foldable image mixer | |
CN116566408A (en) | A Transformer-Based Noise Elimination Structure Receiver Front-End Circuit | |
CN112003571B (en) | Anti-interference network and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200505 Termination date: 20210421 |