CN107194032B - 一种基于安装角的扭形叶片动力学建模方法 - Google Patents

一种基于安装角的扭形叶片动力学建模方法 Download PDF

Info

Publication number
CN107194032B
CN107194032B CN201710264255.2A CN201710264255A CN107194032B CN 107194032 B CN107194032 B CN 107194032B CN 201710264255 A CN201710264255 A CN 201710264255A CN 107194032 B CN107194032 B CN 107194032B
Authority
CN
China
Prior art keywords
blade
matrix
angle
dynamic
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710264255.2A
Other languages
English (en)
Other versions
CN107194032A (zh
Inventor
马辉
孙帆
谢方涛
孙祺
崔璨
郭旭民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201710264255.2A priority Critical patent/CN107194032B/zh
Publication of CN107194032A publication Critical patent/CN107194032A/zh
Application granted granted Critical
Publication of CN107194032B publication Critical patent/CN107194032B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种基于安装角的扭形叶片动力学建模方法,属于叶片动力学建模技术领域。其特征是考虑叶片离心刚化、旋转软化和科氏力影响的带安装角的扭形叶片动力学建模方法。本发明节省了叶片动力学实验所需的成本费用;本发明只需修改叶片的结构尺寸和材料参数即可得到不同叶片系统的动力学模型,操作简便;考虑真实叶片中安装角和扭角的影响,叶片几何构型更接近真实叶片;考虑叶片在旋转过程中离心刚化、旋转软化以及科氏力的影响,其动力学特性更能反应叶片的真实工作状态;与借助传统的商用有限元软件来分析叶片的动力学特性相比,本发明具有更高的计算效率;同时,本发明还能进行叶片系统的碰摩响应分析,从而为含叶片的系统结构提供设计优化。

Description

一种基于安装角的扭形叶片动力学建模方法
技术领域
本发明属于机械动力学技术领域,是涉及到叶片的动力学建模方法,特别是涉及到一种考虑叶片离心刚化、旋转软化和科氏力影响的带安装角的扭形叶片动力学建模方法。
背景技术
目前,现有的含安装角的扭形叶片建模方法主要有以下几种方法:
1.基于商用有限元分析软件
将CAD三维模型导入商用有限元分析软件或者直接在有限元软件中建立三维模型,选择合适的单元及合适的材料参数,对三维模型进行网格划分,建立有限元模型,设置合适的约束并选择合适的求解方法对叶片的动力学特性进行分析。但利用现有的商用有限元分析软件对含有安装角的扭形叶片进行动力学特性分析时,建模过程复杂且繁重,并且不同的建模方式和单元类型得到的动力学特性也会有较大差距。
2.基于悬臂梁的建模方法
将叶片简化成悬臂梁模型,基于能量法进行动力学建模。然而现有的悬臂梁模型只能考虑叶片截面质心沿径向、横向和摆动方向的振动,无法考虑叶片沿宽度方向的振动。
目前基于板壳振动理论,采用悬臂预扭板对旋转叶片进行动力学建模的技术处于空白状态。
发明内容
针对现有技术的不足,本发明提出一种基于悬臂板的含安装角的预扭叶片动力学建模方法,以达到在保证叶片主要振动模态的前提下,考虑叶片离心刚化、旋转软化和科氏力影响,采用Galerkin截断的方法得到叶片的动力学方程。
为了实现上述目的,本发明采用如下技术方案,一种含安装角的扭形叶片动力学建模方法,包括如下步骤:
步骤1:构建含安装角的扭形叶片动力学建模所需的三维坐标系,包括:整体坐标系OXYZ,旋转坐标系o′x′y′z′,局部坐标系oxyz。
步骤2:对叶片的结构参数和材料参数进行测定,其中包括叶片长度L,叶片宽度b,叶片厚度h,轮盘半径Rd,安装角β0,叶尖处扭转角β1,叶片弹性模量E,泊松比μ,叶片密度ρ。
步骤3:求解叶片任意截面的扭转角:
Figure GDA0002439495600000011
式中,β(x)为叶片任意截面的扭转角,
Figure GDA0002439495600000012
为叶片在单位长度上的扭角变化系数,
Figure GDA0002439495600000013
其中β'为叶尖相对于叶根处的扭转角变化量。
步骤4:通过叶片上任意一点Q在整体坐标系OXYZ中的位移向量依据动能计算公式得到叶片的动能:
Figure GDA0002439495600000021
式中,rQ为叶片上任意一点Q在整体坐标系下的位移向量;θ是叶片绕旋转轴转动的角位移;u、v、w分别为叶片在局部坐标系oxyz中径向、横向和摆动方向的位移;符号(·)表示对时间的1阶偏导;符号(')表示对x的1阶偏导。
步骤5:基于板壳振动理论,考虑扭转角的影响,得出旋转预扭板的应变势能:
Figure GDA0002439495600000022
式中,
Figure GDA0002439495600000023
εz=w′z
Figure GDA0002439495600000024
Figure GDA0002439495600000025
Figure GDA0002439495600000026
Figure GDA0002439495600000027
Figure GDA0002439495600000028
步骤6:得出叶片旋转产生的离心势能:
Figure GDA0002439495600000029
式中,fc1和fc2为叶片径向及摆动方向的离心力,表达式如下:
Figure GDA00024394956000000210
Figure GDA0002439495600000031
步骤7:得出作用在叶片上的外力所做的功:
Figure GDA0002439495600000032
式中,Fe为叶片单位面积上的气动均布载荷(Pa);Fn为叶尖处的法向碰摩力;Ft为叶尖处的切向碰摩力。
步骤8:根据Hamilton变分原理
Figure GDA0002439495600000033
其中U=Ub+Uc,得到旋转叶片系统的动力学方程:
Figure GDA0002439495600000034
步骤9:以δu、δv和δw作为独立变量进行变分,分别得到u、v和w3个方向的运动微分方程:
Figure GDA0002439495600000041
Figure GDA0002439495600000051
Figure GDA0002439495600000061
Figure GDA0002439495600000062
Figure GDA0002439495600000071
步骤10:采用Galerkin方法,引入正则坐标对步骤9中式(9)-(11)中的旋转板的径向位移u,横向位移v以及摆动位移w进行离散化处理,获得叶片的质量矩阵、科氏力矩阵和刚度矩阵。具体如下:
Figure GDA0002439495600000072
式中,m和n分别为x和z方向的模态截断数,
Figure GDA0002439495600000073
Figure GDA0002439495600000081
Figure GDA0002439495600000082
Figure GDA0002439495600000083
cosh(αm)cos(αm)=-1
cosh(ψn)cos(ψn)=1
步骤11:引入瑞利阻尼,得到旋转悬臂板的运动微分方程:
Figure GDA0002439495600000084
式中,M、G、D和K分别为叶片的质量矩阵、科氏力矩阵、阻尼矩阵和刚度矩阵,其中K=Ke+Ks+Kc+Kacc,Ke、Ks、Kc和Kacc分别为叶片的结构刚度矩阵、旋转软化矩阵、离心刚化矩阵和加速度导致的刚度矩阵。q和F分别为叶片正则坐标向量和外激振力向量。瑞利阻尼D是由质量矩阵和刚度矩阵按比例组合构造而成的,D=αM+βK,其中α和β由下式求得:
Figure GDA0002439495600000085
式中,fn1、fn2分别为叶片的第一阶和第二阶固有频率(Hz),ξ1和ξ2为阻尼比。
步骤12:设置外激励向量为零,确定含安装角的扭形叶片在不同安装角、不同扭角、不同转速下的固有频率。
本发明为一种含安装角的扭形叶片动力学建模方法,节省了叶片动力学实验所需要的成本费用;本发明只需修改叶片的结构尺寸和材料参数后即可得到不同叶片系统的动力学模型,操作简便;本发明考虑了真实叶片中的安装角和扭角的影响,叶片几何构型更接近真实叶片;本发明考虑了叶片在旋转过程中离心刚化、旋转软化以及科氏力的影响,其动力学特性更能反应叶片的真实工作状态;与借助传统的商用有限元软件来分析叶片的动力学特性相比,本发明具有更高的计算效率;此外,还能获得叶片较高阶次频率,同时,还能进行叶片系统的碰摩响应分析,从而实现为含叶片的系统结构的提供设计优化,以提升系统性能和安全性。
附图说明
图1为本发明含安装角的扭形叶片动力学建模的流程图;
图2为含安装角的旋转预扭悬臂板示意图;
图3-a-1为15°安装角一阶动频对比;
图3-a-2为15°安装角二阶动频对比;
图3-a-3为15°安装角三阶动频对比;
图3-b-1为30°安装角一阶动频对比;
图3-b-2为30°安装角二阶动频对比;
图3-b-3为30°安装角三阶动频对比;
图3-c-1为45°安装角一阶动频对比;
图3-c-2为45°安装角二阶动频对比;
图3-c-3为45°安装角三阶动频对比;
图4-a-1为0°扭转角一阶动频对比;
图4-a-2为0°扭转角二阶动频对比;
图4-a-3为0°扭转角三阶动频对比;
图4-b-1为5°扭转角一阶动频对比;
图4-b-2为5°扭转角二阶动频对比;
图4-b-3为5°扭转角三阶动频对比;
图4-c-1为10°扭转角一阶动频对比;
图4-c-2为10°扭转角二阶动频对比;
图4-c-3为10°扭转角三阶动频对比;
图中:
Figure GDA0002439495600000091
解析板
Figure GDA0002439495600000092
ANSYS实体——ANSYS壳
具体实施方式
下面结合附图对本发明一种实施例做进一步说明。
本发明实施例中旋转预扭悬臂板示意图如图2所示,含安装角的扭形叶片的动力学建模方法,包括以下步骤:
步骤1:获取叶片系统的结构参数和材料参数,本发明假定叶片是各向同性的线弹性材料,本构关系满足Hooke定律,旋转叶片的相关参数如表1所示:
表1旋转叶片参数
Figure GDA0002439495600000093
步骤2:考虑板的预扭角影响,确定叶片产生变形后任意一点Q在整体坐标系下的位移向量和速度向量:
Figure GDA0002439495600000094
Figure GDA0002439495600000095
步骤3:依据动能计算式得到叶片的动能:
Figure GDA0002439495600000101
步骤4:基于板壳振动理论,考虑扭转角的影响,得到旋转板的应变势能:
Figure GDA0002439495600000102
式中,
Figure GDA0002439495600000103
εz=w′z
Figure GDA0002439495600000104
Figure GDA0002439495600000105
Figure GDA0002439495600000106
Figure GDA0002439495600000107
Figure GDA0002439495600000108
步骤5:确定叶片旋转产生的离心势能:
Figure GDA0002439495600000109
式中,fc1和fc2为叶片径向及摆动方向的离心力,表达式如下:
Figure GDA00024394956000001010
Figure GDA00024394956000001011
步骤6:得出作用在叶片上的外力所做的功:
Figure GDA0002439495600000111
式中,Fe为叶片单位面积上的气动均布载荷(Pa);Fn为叶尖处的法向碰摩力;Ft为叶尖处的切向碰摩力。
步骤7:根据Hamilton变分原理
Figure GDA0002439495600000112
其中U=Ub+Uc,得到旋转叶片系统的动力学方程:
Figure GDA0002439495600000113
Figure GDA0002439495600000121
步骤8:以δu、δv和δw作为独立变量进行变分,分别得到u、v和w3个方向的运动微分方程:
Figure GDA0002439495600000122
Figure GDA0002439495600000131
Figure GDA0002439495600000141
Figure GDA0002439495600000151
Figure GDA0002439495600000152
Figure GDA0002439495600000161
步骤9:采用Galerkin方法,引入正则坐标对上述步骤中式(23)-(25)中的旋转板的径向位移u,横向位移v以及摆动位移w进行离散化处理,获得叶片的质量矩阵、科氏力矩阵和刚度矩阵。具体如下:
Figure GDA0002439495600000162
式中,m和n分别为x和z方向的模态截断数,
Figure GDA0002439495600000163
Figure GDA0002439495600000171
Figure GDA0002439495600000172
Figure GDA0002439495600000173
cosh(αm)cos(αm)=-1
cosh(ψn)cos(ψn)=1
步骤10:引入瑞利阻尼,得到旋转悬臂板的运动微分方程:
Figure GDA0002439495600000174
式中,M、G、D和K分别为叶片的质量矩阵、科氏力矩阵、阻尼矩阵和刚度矩阵,其中K=Ke+Ks+Kc+Kacc,Ke、Ks、Kc和Kacc分别为叶片的结构刚度矩阵、离心刚化矩阵、旋转软化矩阵和加速度导致的刚度矩阵。q和F分别为叶片正则坐标向量和外激振力向量。M、G和K的具体表达式如下:
M为叶片质量矩阵:
Figure GDA0002439495600000175
其中各个元素的表达式为:
Figure GDA0002439495600000176
Figure GDA0002439495600000177
Figure GDA0002439495600000178
(m,i=1,2,…,M),(n,j=1,2,…,N).
G为叶片科氏力矩阵:
Figure GDA0002439495600000179
其中各个元素的表达式为:
Figure GDA0002439495600000181
Figure GDA0002439495600000182
Figure GDA0002439495600000183
Figure GDA0002439495600000184
Ke为叶片结构刚度矩阵:
Figure GDA0002439495600000185
其中各个元素的表达式为:
Figure GDA0002439495600000186
Figure GDA0002439495600000191
Figure GDA0002439495600000192
Figure GDA0002439495600000201
Figure GDA0002439495600000202
Figure GDA0002439495600000211
Figure GDA0002439495600000212
Figure GDA0002439495600000221
Figure GDA0002439495600000222
Kc为叶片离心刚化矩阵:
Figure GDA0002439495600000231
其中各个元素的表达式为:
Figure GDA0002439495600000232
Figure GDA0002439495600000233
Figure GDA0002439495600000234
Ks为叶片旋转软化矩阵:
Figure GDA0002439495600000235
其中各个元素的表达式为:
Figure GDA0002439495600000236
Figure GDA0002439495600000237
Figure GDA0002439495600000238
Figure GDA0002439495600000239
Figure GDA00024394956000002310
Kacc为叶片加速度导致的刚度矩阵:
Figure GDA00024394956000002311
其中各个元素的表达式为:
Figure GDA0002439495600000241
(m,i=1,2,…,M),(n,j=1,2,…,N),
Figure GDA0002439495600000242
(m,i=1,2,…,M),(n,j=1,2,…,N),
Figure GDA0002439495600000243
(m,i=1,2,…,M),(n,j=1,2,…,N),
Figure GDA0002439495600000244
(m,i=1,2,…,M),(n,j=1,2,…,N),
瑞利阻尼D是由质量矩阵和刚度矩阵按比例组合构造而成的,D=αM+βK,其中α和β可由下式求得:
Figure GDA0002439495600000245
式中,fn1、fn2分别为叶片的第一阶和第二阶固有频率(Hz),ξ1和ξ2为阻尼比。
步骤11:计算特征方程系数行列式的特征值λ,取其虚部的绝对值除以2π,并进行从小到大排序,获得一组固有频率ωk,其中,k表示叶片模态的第k阶,k=1,2,…。
步骤12:通过有限元模型验证本发明的有效性,图3为不同安装角下动频结果对比,表2-4为相对误差。图4为不同扭转角下动频结果对比,表5-7为相对误差。
表2叶片固有频率对比及相对误差(β0=15°)
Figure GDA0002439495600000246
注:误差1:解析板—ANSYS实体;误差2:ANSYS壳—ANSYS实体;
表3叶片固有频率对比及相对误差(β0=30°)
Figure GDA0002439495600000247
Figure GDA0002439495600000251
注:误差1:解析板—ANSYS实体;误差2:ANSYS壳—ANSYS实体;
表4叶片固有频率对比及相对误差(β0=45°)
Figure GDA0002439495600000252
注:误差1:解析板—ANSYS实体;误差2:ANSYS壳—ANSYS实体;
表5叶片固有频率对比及相对误差(β'=0°)
Figure GDA0002439495600000253
注:误差1:解析板—ANSYS实体;误差2:ANSYS壳—ANSYS实体;
表6叶片固有频率对比及相对误差(β'=5°)
Figure GDA0002439495600000254
注:误差1:解析板—ANSYS实体;误差2:ANSYS壳—ANSYS实体;
表7叶片固有频率对比及相对误差(β'=10°)
Figure GDA0002439495600000255
Figure GDA0002439495600000261
注:误差1:解析板—ANSYS实体;误差2:ANSYS壳—ANSYS实体;
通过本实施例的结果可以获得以下结论:
(1)固有频率随转速的增加而增加,转速对1阶和2阶弯曲动频影响较大,对1阶扭转影响相对较小;
(2)安装角不影响叶片的静频,但对叶片的1阶弯曲动频影响相对较大,叶片动频随着安装角的增加而增加;
(3)扭转角既影响叶片静频又影响叶片动频,对叶片1阶扭转动频影响较为明显;
(4)解析模型与ANSYS模型前3阶动频吻合较好,从而验证本发明所建立的动力学模型的正确性。

Claims (7)

1.一种基于安装角的扭形叶片动力学建模方法,其特征在于,包括以下步骤:
步骤1:构建基于安装角的扭形叶片动力学建模所需的三维坐标系,包括:整体坐标系OXYZ,旋转坐标系o′x′y′z′和局部坐标系oxyz;
步骤2:对叶片的结构参数和材料参数进行测定,其中包括叶片长度L,叶片宽度b,叶片厚度h,轮盘半径Rd,安装角β0,叶尖处扭转角β1,叶片弹性模量E,泊松比μ,叶片密度ρ;
步骤3:求解叶片任意截面的扭转角,其表达式为:
Figure FDA0002439495590000011
式中,β(x)为叶片任意截面的扭转角,
Figure FDA0002439495590000012
为叶片在单位长度上的扭角变化系数,
Figure FDA0002439495590000013
其中β'为叶尖相对于叶根处的扭角变化量;
步骤4:通过叶片上任意一点Q在整体坐标系OXYZ中的位移向量对时间的一阶偏导,得到Q点的速度,再依据动能计算公式得到叶片的动能;
步骤5:基于板壳振动理论,同时考虑扭转角的影响,计算得出旋转预扭板的应变势能;
步骤6:计算叶片旋转产生的离心势能;
步骤7:计算作用在叶片上的外力所做的功;
步骤8:根据Hamilton变分原理,推导得出旋转叶片系统的动力学方程;
步骤9:以δu、δv和δw作为独立变量进行变分,分别得到u、v和w3个方向的运动微分方程:
Figure FDA0002439495590000014
Figure FDA0002439495590000021
Figure FDA0002439495590000031
Figure FDA0002439495590000041
Figure FDA0002439495590000042
Figure FDA0002439495590000051
式中,
Figure FDA0002439495590000052
θ是叶片绕旋转轴转动的角位移;u、v、w分别为叶片在局部坐标系oxyz中径向、横向和摆动方向的位移;符号(·)表示对时间的1阶偏导;符号(··)表示对时间的2阶偏导;符号(')表示对x的1阶偏导;符号(”)表示对x的2阶偏导;Fe为叶片单位面积上的气动均布载荷(Pa);Fn为叶尖处的法向碰摩力;Ft为叶尖处的切向碰摩力,fc1和fc2为叶片径向及摆动方向的离心力,表达式如下:
Figure FDA0002439495590000053
Figure FDA0002439495590000054
步骤10:采用Galerkin方法,引入正则坐标对步骤9中式(9)-(11)中的旋转板的径向位移u,横向位移v以及摆动位移w进行离散化处理,获得叶片的质量矩阵、科氏力矩阵和刚度矩阵;
步骤11:引入瑞利阻尼D,得到旋转悬臂板的运动微分方程:
Figure FDA0002439495590000061
式中,M、G、D和K分别为叶片的质量矩阵、科氏力矩阵、阻尼矩阵和刚度矩阵,其中K=Ke+Ks+Kc+Kacc,Ke、Ks、Kc和Kacc分别为叶片的结构刚度矩阵、旋转软化矩阵、离心刚化矩阵和加速度导致的刚度矩阵;q和F分别为叶片正则坐标向量和外激振力向量;瑞利阻尼D是由质量矩阵和刚度矩阵按比例组合构造而成的,D=αM+βK,其中α和β由下式求得:
Figure FDA0002439495590000062
式中,fn1、fn2分别为叶片的第一阶和第二阶固有频率(Hz),ξ1和ξ2为阻尼比;
步骤12:设置外激励向量为零,确定带有安装角的扭形叶片在不同安转角、不同扭角、不同转速下的固有频率。
2.根据权利要求1所述的一种基于安装角的扭形叶片动力学建模方法,其特征在于,步骤4所述的动能表达式为:
Figure FDA0002439495590000063
式中,rQ为叶片上任意一点Q在整体坐标系下的位移向量;θ是叶片绕旋转轴旋转的角位移;u、v、w分别为叶片在局部坐标系oxyz中径向、横向和摆动方向的位移;符号(·)表示对时间的1阶偏导;符号(')表示对x的1阶偏导。
3.根据权利要求1所述的一种基于安装角的扭形叶片动力学建模方法,其特征在于,步骤5所述的旋转预扭板的应变势能为:
Figure FDA0002439495590000071
式中
Figure FDA0002439495590000072
εz=w′z
Figure FDA0002439495590000073
Figure FDA0002439495590000074
Figure FDA0002439495590000075
Figure FDA0002439495590000076
Figure FDA0002439495590000077
4.根据权利要求1所述的一种基于安装角的扭形叶片动力学建模方法,其特征在于,步骤6所述的叶片旋转产生的离心势能为:
Figure FDA0002439495590000078
5.根据权利要求1所述的一种基于安装角的扭形叶片动力学建模方法,其特征在于,步骤7所述的作用在叶片上的外力所做的功为:
Figure FDA0002439495590000079
式中,Fe为叶片单位面积上的气动均布载荷(Pa);Fn为叶尖处的法向碰摩力;Ft为叶尖处的切向碰摩力。
6.根据权利要求1所述的一种基于安装角的扭形叶片动力学建模方法,其特征在于,步骤8所述旋转叶片系统的动力学方程为:
Figure FDA0002439495590000081
7.根据权利要求1所述的一种基于安装角的扭形叶片动力学建模方法,其特征在于,步骤10所述的具体方法如下:
Figure FDA0002439495590000091
Figure FDA0002439495590000092
Figure FDA0002439495590000093
式中,m和n分别为x和z方向的模态截断数,
Figure FDA0002439495590000094
Figure FDA0002439495590000095
Figure FDA0002439495590000096
Figure FDA0002439495590000097
cosh(αm)cos(αm)=-1
cosh(ψn)cos(ψn)=1。
CN201710264255.2A 2017-04-24 2017-04-24 一种基于安装角的扭形叶片动力学建模方法 Active CN107194032B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710264255.2A CN107194032B (zh) 2017-04-24 2017-04-24 一种基于安装角的扭形叶片动力学建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710264255.2A CN107194032B (zh) 2017-04-24 2017-04-24 一种基于安装角的扭形叶片动力学建模方法

Publications (2)

Publication Number Publication Date
CN107194032A CN107194032A (zh) 2017-09-22
CN107194032B true CN107194032B (zh) 2020-07-24

Family

ID=59872178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710264255.2A Active CN107194032B (zh) 2017-04-24 2017-04-24 一种基于安装角的扭形叶片动力学建模方法

Country Status (1)

Country Link
CN (1) CN107194032B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108804853B (zh) * 2018-06-28 2020-09-15 东北大学 基于变截面梁的弹性支承下扭形凸肩叶片动力学建模方法
CN108897973B (zh) * 2018-07-23 2020-09-15 东北大学 一种弹簧-变截面盘-叶片系统的动力学建模方法
CN115270360B (zh) * 2022-09-29 2023-03-17 中国矿业大学(北京) 涡轮机械叶片的参数优化方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101532906A (zh) * 2009-04-27 2009-09-16 东南大学 风力发电机叶片的流体动力学和结构力学分析方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7175393B2 (en) * 2004-03-31 2007-02-13 Bharat Heavy Electricals Limited Transonic blade profiles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101532906A (zh) * 2009-04-27 2009-09-16 东南大学 风力发电机叶片的流体动力学和结构力学分析方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Vibration characteristics analysis of rotating shrouded blades with impacts";Hui Ma.et al.;《Journal of Sound and Vibration》;20160602;第92-108页 *
"Vibration response comparison of twisted shrouded blades using different impact models";Fangtao Xie.et al.;《Journal of Sound and Vibration》;20170311;第171-191页 *
"基于悬臂板理论的旋转叶片- 机匣振动响应分析";马辉 等;《振动工程学报》;20170415;第30卷(第2期);第222-230页 *

Also Published As

Publication number Publication date
CN107194032A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
CN108804853B (zh) 基于变截面梁的弹性支承下扭形凸肩叶片动力学建模方法
CN109800512B (zh) 旋转圆柱壳-变截面盘-预扭叶片系统的动力学建模方法
Gu et al. Free vibration of rotating cantilever pre-twisted panel with initial exponential function type geometric imperfection
CN108897973B (zh) 一种弹簧-变截面盘-叶片系统的动力学建模方法
Guo et al. A dynamic model for simulating rubbing between blade and flexible casing
Sun et al. General shell model for a rotating pretwisted blade
CN107194032B (zh) 一种基于安装角的扭形叶片动力学建模方法
Hashemi et al. Free vibration analysis of rotating thick plates
CN102938003B (zh) 一种叶轮机械计入错频的气动弹性稳定性数值预测方法
Sinha Combined torsional-bending-axial dynamics of a twisted rotating cantilever Timoshenko beam with contact-impact loads at the free end
CN104166758A (zh) 一种转子-叶片耦合系统固有频率的确定方法
CN108062452B (zh) 一种弧形齿面蜗杆减速机动态性能评价及优化方法
Yang et al. Dynamic coupling vibration of rotating shaft–disc–blade system—Modeling, mechanism analysis and numerical study
CN110457740B (zh) 一种机械结构在基础激励下的响应特性分析方法
Farhadi et al. Aeroelastic behavior of cantilevered rotating rectangular plates
CN103292959A (zh) 发动机转子组件动平衡模拟转子的参数分析及检测方法
CN110069822B (zh) 一种叶片动应变测量的传感器布置方法
CN109614707B (zh) 一种基于阶梯轴-柔性盘耦合系统的动力学建模方法
CN105117539A (zh) 风力机叶片模态频率及其双峰高斯分布拟合方法
Oh et al. Vibration analysis of rotating cantilever beams orienting inward
Lee et al. Dynamic response of coupled shaft torsion and blade bending in rotor blade system
Wu et al. Modal characteristics of a flexible dual-rotor coupling system with blade crack
Chen et al. Influence of wake asymmetry on wind turbine blade aerodynamic and aeroelastic performance in shear/yawed wind
Yangui et al. Nonlinear analysis of twisted wind turbine blade
CN103745091A (zh) 一种薄壁圆柱筒结构振动故障特征确定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant