CN107194032A - 一种基于安装角的扭形叶片动力学建模方法 - Google Patents

一种基于安装角的扭形叶片动力学建模方法 Download PDF

Info

Publication number
CN107194032A
CN107194032A CN201710264255.2A CN201710264255A CN107194032A CN 107194032 A CN107194032 A CN 107194032A CN 201710264255 A CN201710264255 A CN 201710264255A CN 107194032 A CN107194032 A CN 107194032A
Authority
CN
China
Prior art keywords
blade
formula
established angle
torsion
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710264255.2A
Other languages
English (en)
Other versions
CN107194032B (zh
Inventor
马辉
孙帆
谢方涛
孙祺
崔璨
郭旭民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201710264255.2A priority Critical patent/CN107194032B/zh
Publication of CN107194032A publication Critical patent/CN107194032A/zh
Application granted granted Critical
Publication of CN107194032B publication Critical patent/CN107194032B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种基于安装角的扭形叶片动力学建模方法,属于叶片动力学建模技术领域。其特征是考虑叶片离心刚化、旋转软化和科氏力影响的带安装角的扭形叶片动力学建模方法。本发明节省了叶片动力学实验所需的成本费用;本发明只需修改叶片的结构尺寸和材料参数即可得到不同叶片系统的动力学模型,操作简便;考虑真实叶片中安装角和扭角的影响,叶片几何构型更接近真实叶片;考虑叶片在旋转过程中离心刚化、旋转软化以及科氏力的影响,其动力学特性更能反应叶片的真实工作状态;与借助传统的商用有限元软件来分析叶片的动力学特性相比,本发明具有更高的计算效率;同时,本发明还能进行叶片系统的碰摩响应分析,从而为含叶片的系统结构提供设计优化。

Description

一种基于安装角的扭形叶片动力学建模方法
技术领域
本发明属于机械动力学技术领域,是涉及到叶片的动力学建模方法,特别是涉及到一种 考虑叶片离心刚化、旋转软化和科氏力影响的带安装角的扭形叶片动力学建模方法。
背景技术
目前,现有的含安装角的扭形叶片建模方法主要有以下几种方法:
1.基于商用有限元分析软件
将CAD三维模型导入商用有限元分析软件或者直接在有限元软件中建立三维模型,选择 合适的单元及合适的材料参数,对三维模型进行网格划分,建立有限元模型,设置合适的约 束并选择合适的求解方法对叶片的动力学特性进行分析。但利用现有的商用有限元分析软件 对含有安装角的扭形叶片进行动力学特性分析时,建模过程复杂且繁重,并且不同的建模方 式和单元类型得到的动力学特性也会有较大差距。
2.基于悬臂梁的建模方法
将叶片简化成悬臂梁模型,基于能量法进行动力学建模。然而现有的悬臂梁模型只能考 虑叶片截面质心沿径向、横向和摆动方向的振动,无法考虑叶片沿宽度方向的振动。
目前基于板壳振动理论,采用悬臂预扭板对旋转叶片进行动力学建模的技术处于空白状 态。
发明内容
针对现有技术的不足,本发明提出一种基于悬臂板的含安装角的预扭叶片动力学建模方 法,以达到在保证叶片主要振动模态的前提下,考虑叶片离心刚化、旋转软化和科氏力影响, 采用Galerkin截断的方法得到叶片的动力学方程。
为了实现上述目的,本发明采用如下技术方案,一种含安装角的扭形叶片动力学建模方 法,包括如下步骤:
步骤1:构建含安装角的扭形叶片动力学建模所需的三维坐标系,包括:整体坐标系 OXYZ,旋转坐标系o′x′y′z′,局部坐标系oxyz。
步骤2:对叶片的结构参数和材料参数进行测定,其中包括叶片长度L,叶片宽度b,叶 片厚度h,轮盘半径Rd,安装角β0,叶尖处扭转角β1,叶片弹性模量E,泊松比μ,叶片密 度ρ。
步骤3:求解叶片任意截面的扭转角:
式中,β(x)为叶片任意截面的扭转角,为叶片在单位长度上的扭角变化系数,其中β'为叶尖相对于叶根处的扭转角变化量。
步骤4:通过叶片上任意一点Q在整体坐标系OXYZ中的位移向量依据动能计算公式得 到叶片的动能:
式中,rQ为叶片上任意一点Q在整体坐标系下的位移向量;θ是叶片绕旋转轴转动的角位移; u、v、w分别为叶片在局部坐标系oxyz中径向、横向和摆动方向的位移;符号(·)表示对时间 的1阶偏导;符号(')表示对x的1阶偏导。
步骤5:基于板壳振动理论,考虑扭转角的影响,得出旋转预扭板的应变势能:
式中,εz=w′z
步骤6:得出叶片旋转产生的离心势能:
式中,fc1和fc2为叶片径向及摆动方向的离心力,表达式如下:
步骤7:得出作用在叶片上的外力所做的功:
式中,Fe为叶片单位面积上的气动均布载荷(Pa);Fn为叶尖处的法向碰摩力;Ft为叶尖处的 切向碰摩力。
步骤8:根据Hamilton变分原理其中U=Ub+Uc,得到旋转叶片 系统的动力学方程:
步骤9:以δu、δv和δw作为独立变量进行变分,分别得到u、v和w3个方向的运动微分方程:
步骤10:采用Galerkin方法,引入正则坐标对步骤9中式(9)-(11)中的旋转板的径向位移 u,横向位移v以及摆动位移w进行离散化处理,获得叶片的质量矩阵、科氏力矩阵和刚度矩 阵。具体如下:
式中,m和n分别为x和z方向的模态截断数,
cosh(αm)cos(αm)=-1
cosh(ψm)cos(ψm)=1
步骤11:引入瑞利阻尼,得到旋转悬臂板的运动微分方程:
式中,M、G、D和K分别为叶片的质量矩阵、科氏力矩阵、阻尼矩阵和刚度矩阵,其中K=Ke+Ks+Kc+Kacc,Ke、Ks、Kc和Kacc分别为叶片的结构刚度矩阵、旋转软化矩阵、离心刚化 矩阵和加速度导致的刚度矩阵。q和F分别为叶片正则坐标向量和外激振力向量。瑞利阻尼 D是由质量矩阵和刚度矩阵按比例组合构造而成的,D=αM+βK,其中α和β由下式求得:
式中,fn1、fn2分别为叶片的第一阶和第二阶固有频率(Hz),ξ1和ξ2为阻尼比。
步骤12:设置外激励向量为零,确定含安装角的扭形叶片在不同安装角、不同扭角、不 同转速下的固有频率。
本发明为一种含安装角的扭形叶片动力学建模方法,节省了叶片动力学实验所需要的成 本费用;本发明只需修改叶片的结构尺寸和材料参数后即可得到不同叶片系统的动力学模型, 操作简便;本发明考虑了真实叶片中的安装角和扭角的影响,叶片几何构型更接近真实叶片; 本发明考虑了叶片在旋转过程中离心刚化、旋转软化以及科氏力的影响,其动力学特性更能 反应叶片的真实工作状态;与借助传统的商用有限元软件来分析叶片的动力学特性相比,本 发明具有更高的计算效率;此外,还能获得叶片较高阶次频率,同时,还能进行叶片系统的 碰摩响应分析,从而实现为含叶片的系统结构的提供设计优化,以提升系统性能和安全性。
附图说明
图1为本发明含安装角的扭形叶片动力学建模的流程图;
图2为含安装角的旋转预扭悬臂板示意图;
图3-a-1为15°安装角一阶动频对比;
图3-a-2为15°安装角二阶动频对比;
图3-a-3为15°安装角三阶动频对比;
图3-b-1为30°安装角一阶动频对比;
图3-b-2为30°安装角二阶动频对比;
图3-b-3为30°安装角三阶动频对比;
图3-c-1为45°安装角一阶动频对比;
图3-c-2为45°安装角二阶动频对比;
图3-c-3为45°安装角三阶动频对比;
图4-a-1为0°扭转角一阶动频对比;
图4-a-2为0°扭转角二阶动频对比;
图4-a-3为0°扭转角三阶动频对比;
图4-b-1为5°扭转角一阶动频对比;
图4-b-2为5°扭转角二阶动频对比;
图4-b-3为5°扭转角三阶动频对比;
图4-c-1为10°扭转角一阶动频对比;
图4-c-2为10°扭转角二阶动频对比;
图4-c-3为10°扭转角三阶动频对比;
图中:解析板ANSYS实休——ANSYS壳
具体实施方式
下面结合附图对本发明一种实施例做进一步说明。
本发明实施例中旋转预扭悬臂板示意图如图2所示,含安装角的扭形叶片的动力学建模 方法,包括以下步骤:
步骤1:获取叶片系统的结构参数和材料参数,本发明假定叶片是各向同性的线弹性材 料,本构关系满足Hooke定律,旋转叶片的相关参数如表1所示:
表1旋转叶片参数
步骤2:考虑板的预扭角影响,确定叶片产生变形后任意一点Q在整体坐标系下的位移 向量和速度向量:
步骤3:依据动能计算式得到叶片的动能:
步骤4:基于板壳振动理论,考虑扭转角的影响,得到旋转板的应变势能:
式中,εz=w′z
步骤5:确定叶片旋转产生的离心势能:
式中,fc1和fc2为叶片径向及摆动方向的离心力,表达式如下:
步骤6:得出作用在叶片上的外力所做的功:
式中,Fe为叶片单位面积上的气动均布载荷(Pa);Fn为叶尖处的法向碰摩力;Ft为叶尖处的 切向碰摩力。
步骤7:根据Hamilton变分原理其中U=Ub+Uc,得到旋转叶片 系统的动力学方程:
步骤8:以δu、δv和δw作为独立变量进行变分,分别得到u、v和w3个方向的运动微分方程:
步骤9:采用Galerkin方法,引入正则坐标对上述步骤中式(23)-(25)中的旋转板的径向位 移u,横向位移v以及摆动位移w进行离散化处理,获得叶片的质量矩阵、科氏力矩阵和刚 度矩阵。具体如下:
式中,m和n分别为x和z方向的模态截断数,
cosh(αm)cos(αm)=-1
cosh(ψm)cos(ψm)=1
步骤10:引入瑞利阻尼,得到旋转悬臂板的运动微分方程:
式中,M、G、D和K分别为叶片的质量矩阵、科氏力矩阵、阻尼矩阵和刚度矩阵,其中K=Ke+Ks+Kc+Kacc,Ke、Ks、Kc和Kacc分别为叶片的结构刚度矩阵、离心刚化矩阵、旋转软化 矩阵和加速度导致的刚度矩阵。q和F分别为叶片正则坐标向量和外激振力向量。M、G和K 的具体表达式如下:
M为叶片质量矩阵:
其中各个元素的表达式为:
G为叶片科氏力矩阵:
其中各个元素的表达式为:
Ke为叶片结构刚度矩阵:
其中各个元素的表达式为:
Kc为叶片离心刚化矩阵:
其中各个元素的表达式为:
Ks为叶片旋转软化矩阵:
其中各个元素的表达式为:
Kacc为叶片加速度导致的刚度矩阵:
其中各个元素的表达式为:
瑞利阻尼D是由质量矩阵和刚度矩阵按比例组合构造而成的,D=αM+βK,其中α和β可由 下式求得:
式中,fn1、fn2分别为叶片的第一阶和第二阶固有频率(Hz),ξ1和ξ2为阻尼比。
步骤11:计算特征方程系数行列式的特征值λ,取其虚部的绝对值除以2π,并进行从小 到大排序,获得一组固有频率ωk,其中,k表示叶片模态的第k阶,k=1,2,…。
步骤12:通过有限元模型验证本发明的有效性,图3为不同安装角下动频结果对比,表 2-4为相对误差。图4为不同扭转角下动频结果对比,表5-7为相对误差。
表2叶片固有频率对比及相对误差(β0=15°)
注:误差1:解析板—ANSYS实体;误差2:ANSYS壳—ANSYS实体;
表3叶片固有频率对比及相对误差(β0=30°)
注:误差1:解析板—ANSYS实体;误差2:ANSYS壳—ANSYS实体;
表4叶片固有频率对比及相对误差(β0=45°)
注:误差1:解析板—ANSYS实体;误差2:ANSYS壳—ANSYS实体;
表5叶片固有频率对比及相对误差(β'=0°)
注:误差1:解析板—ANSYS实体;误差2:ANSYS壳—ANSYS实体;
表6叶片固有频率对比及相对误差(β'=5°)
注:误差1:解析板—ANSYS实体;误差2:ANSYS壳—ANSYS实体;
表7叶片固有频率对比及相对误差(β'=10°)
注:误差1:解析板—ANSYS实体;误差2:ANSYS壳—ANSYS实体;
通过本实施例的结果可以获得以下结论:
(1)固有频率随转速的增加而增加,转速对1阶和2阶弯曲动频影响较大,对1阶扭转 影响相对较小;
(2)安装角不影响叶片的静频,但对叶片的1阶弯曲动频影响相对较大,叶片动频随着 安装角的增加而增加;
(3)扭转角既影响叶片静频又影响叶片动频,对叶片1阶扭转动频影响较为明显;
(4)解析模型与ANSYS模型前3阶动频吻合较好,从而验证本发明所建立的动力学模 型的正确性。

Claims (7)

1.一种基于安装角的扭形叶片动力学建模方法,其特征在于,包括以下步骤:
步骤1:构建基于安装角的扭形叶片动力学建模所需的三维坐标系,包括:整体坐标系OXYZ,旋转坐标系o′x′y′z′和局部坐标系oxyz;
步骤2:对叶片的结构参数和材料参数进行测定,其中包括叶片长度L,叶片宽度b,叶片厚度h,轮盘半径Rd,安装角β0,叶尖处扭转角β1,叶片弹性模量E,泊松比μ,叶片密度ρ;
步骤3:求解叶片任意截面的扭转角,其表达式为:
式中,β(x)为叶片任意截面的扭转角,为叶片在单位长度上的扭角变化系数,其中β'为叶尖相对于叶根处的扭角变化量;
步骤4:通过叶片上任意一点Q在整体坐标系OXYZ中的位移向量对时间的一阶偏导,得到Q点的速度,再依据动能计算公式得到叶片的动能;
步骤5:基于板壳振动理论,同时考虑扭转角的影响,计算得出旋转预扭板的应变势能;
步骤6:计算叶片旋转产生的离心势能;
步骤7:计算作用在叶片上的外力所做的功;
步骤8:根据Hamilton变分原理,推导得出旋转叶片系统的动力学方程;
步骤9:以δu、δv和δw作为独立变量进行变分,分别得到u、v和w3个方向的运动微分方程:
式中,θ是叶片绕旋转轴转动的角位移;u、v、w分别为叶片在局部坐标系oxyz中径向、横向和摆动方向的位移;符号(·)表示对时间的1阶偏导;符号(··)表示对时间的2阶偏导;符号(')表示对x的1阶偏导;符号(”)表示对x的2阶偏导;Fe为叶片单位面积上的气动均布载荷(Pa);Fn为叶尖处的法向碰摩力;Ft为叶尖处的切向碰摩力,fc1和fc2为叶片径向及摆动方向的离心力,表达式如下:
步骤10:采用Galerkin方法,引入正则坐标对步骤9中式(9)-(11)中的旋转板的径向位移u,横向位移v以及摆动位移w进行离散化处理,获得叶片的质量矩阵、科氏力矩阵和刚度矩阵;
步骤11:引入瑞利阻尼D,得到旋转悬臂板的运动微分方程:
式中,M、G、D和K分别为叶片的质量矩阵、科氏力矩阵、阻尼矩阵和刚度矩阵,其中K=Ke+Ks+Kc+Kacc,Ke、Ks、Kc和Kacc分别为叶片的结构刚度矩阵、旋转软化矩阵、离心刚化矩阵和加速度导致的刚度矩阵;q和F分别为叶片正则坐标向量和外激振力向量;瑞利阻尼D是由质量矩阵和刚度矩阵按比例组合构造而成的,D=αM+βK,其中α和β由下式求得:
式中,fn1、fn2分别为叶片的第一阶和第二阶固有频率(Hz),ξ1和ξ2为阻尼比;
步骤12:设置外激励向量为零,确定带有安装角的扭形叶片在不同安转角、不同扭角、不同转速下的固有频率。
2.根据权利要求1所述的一种基于安装角的扭形叶片动力学建模方法,其特征在于,步骤4所述的动能表达式为:
式中,rQ为叶片上任意一点Q在整体坐标系下的位移向量;θ是叶片绕旋转轴旋转的角位移;u、v、w分别为叶片在局部坐标系oxyz中径向、横向和摆动方向的位移;符号(·)表示对时间的1阶偏导;符号(')表示对x的1阶偏导。
3.根据权利要求1所述的一种基于安装角的扭形叶片动力学建模方法,其特征在于,步骤5 所述的旋转预扭板的应变势能为:
式中εz=w′z
4.根据权利要求1所述的一种基于安装角的扭形叶片动力学建模方法,其特征在于,步骤6所述的叶片旋转产生的离心势能为:
5.根据权利要求1所述的一种基于安装角的扭形叶片动力学建模方法,其特征在于,步骤7所述的作用在叶片上的外力所做的功为:
式中,Fe为叶片单位面积上的气动均布载荷(Pa);Fn为叶尖处的法向碰摩力;Ft为叶尖处的切向碰摩力。
6.根据权利要求1所述的一种基于安装角的扭形叶片动力学建模方法,其特征在于,步骤8所述旋转叶片系统的动力学方程为:
7.根据权利要求1所述的一种基于安装角的扭形叶片动力学建模方法,其特征在于,步骤10所述的具体方法如下:
式中,m和n分别为x和z方向的模态截断数,
cosh(αm)cos(αm)=-1
cosh(ψm)cos(ψm)=1。
CN201710264255.2A 2017-04-24 2017-04-24 一种基于安装角的扭形叶片动力学建模方法 Active CN107194032B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710264255.2A CN107194032B (zh) 2017-04-24 2017-04-24 一种基于安装角的扭形叶片动力学建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710264255.2A CN107194032B (zh) 2017-04-24 2017-04-24 一种基于安装角的扭形叶片动力学建模方法

Publications (2)

Publication Number Publication Date
CN107194032A true CN107194032A (zh) 2017-09-22
CN107194032B CN107194032B (zh) 2020-07-24

Family

ID=59872178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710264255.2A Active CN107194032B (zh) 2017-04-24 2017-04-24 一种基于安装角的扭形叶片动力学建模方法

Country Status (1)

Country Link
CN (1) CN107194032B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108804853A (zh) * 2018-06-28 2018-11-13 东北大学 基于变截面梁的弹性支承下扭形凸肩叶片动力学建模方法
CN108897973A (zh) * 2018-07-23 2018-11-27 东北大学 一种弹簧-变截面盘-叶片系统的动力学建模方法
CN115270360A (zh) * 2022-09-29 2022-11-01 中国矿业大学(北京) 涡轮机械叶片的参数优化方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050220625A1 (en) * 2004-03-31 2005-10-06 Chandraker A L Transonic blade profiles
CN101532906A (zh) * 2009-04-27 2009-09-16 东南大学 风力发电机叶片的流体动力学和结构力学分析方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050220625A1 (en) * 2004-03-31 2005-10-06 Chandraker A L Transonic blade profiles
CN101532906A (zh) * 2009-04-27 2009-09-16 东南大学 风力发电机叶片的流体动力学和结构力学分析方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FANGTAO XIE.ET AL.: ""Vibration response comparison of twisted shrouded blades using different impact models"", 《JOURNAL OF SOUND AND VIBRATION》 *
HUI MA.ET AL.: ""Vibration characteristics analysis of rotating shrouded blades with impacts"", 《JOURNAL OF SOUND AND VIBRATION》 *
马辉 等: ""基于悬臂板理论的旋转叶片- 机匣振动响应分析"", 《振动工程学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108804853A (zh) * 2018-06-28 2018-11-13 东北大学 基于变截面梁的弹性支承下扭形凸肩叶片动力学建模方法
CN108804853B (zh) * 2018-06-28 2020-09-15 东北大学 基于变截面梁的弹性支承下扭形凸肩叶片动力学建模方法
CN108897973A (zh) * 2018-07-23 2018-11-27 东北大学 一种弹簧-变截面盘-叶片系统的动力学建模方法
CN108897973B (zh) * 2018-07-23 2020-09-15 东北大学 一种弹簧-变截面盘-叶片系统的动力学建模方法
CN115270360A (zh) * 2022-09-29 2022-11-01 中国矿业大学(北京) 涡轮机械叶片的参数优化方法及装置

Also Published As

Publication number Publication date
CN107194032B (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
Guo et al. A dynamic model for simulating rubbing between blade and flexible casing
CN108804853B (zh) 基于变截面梁的弹性支承下扭形凸肩叶片动力学建模方法
Gu et al. Free vibration of rotating cantilever pre-twisted panel with initial exponential function type geometric imperfection
CN109800512A (zh) 旋转圆柱壳-变截面盘-预扭叶片系统的动力学建模方法
Hashemi et al. Free vibration analysis of rotating thick plates
CN104166758B (zh) 一种转子‑叶片耦合系统固有频率的确定方法
CN107194032A (zh) 一种基于安装角的扭形叶片动力学建模方法
CN108897973A (zh) 一种弹簧-变截面盘-叶片系统的动力学建模方法
CN107895093A (zh) 一种风力机叶片流固耦合模态设计方法
CN105117539B (zh) 风力机叶片模态频率及其双峰高斯分布拟合方法
CN109614707A (zh) 一种基于阶梯轴-柔性盘耦合系统的动力学建模方法
Meng et al. Analytical and numerical study on centrifugal stiffening effect for large rotating wind turbine blade based on NREL 5 MW and WindPACT 1.5 MW models
Guruswamy Computational-fluid-dynamics-and computational-structural-dynamics-based time-accurate aeroelasticity of helicopter rotor blades
Rostami et al. Modeling and dynamic study of rotating blades with adjustable stagger angle
Zhou et al. Investigation on dynamics of rotating wind turbine blade using transferred differential transformation method
Li et al. Effect of balance weight on dynamic characteristics of a rotating wind turbine blade
Li et al. Numerical analysis on dynamic behaviors of coupled propeller-shafting system of underwater vehicles
CN115438437A (zh) 一种叶轮机械叶栅气弹稳定性拓扑优化方法
CN110532732B (zh) 一种叶片-机匣碰摩关系的确定方法
Meng et al. Research on vibration suppression of wind turbine blade based on bamboo wall three-layer damping structure
Chen et al. 3D modeling and finite element analysis of dynamic characteristics for blades of wind turbine
Petrova et al. Study of horizontal axis wind turbine blade in virtual wind tunnel simulator
Cornette et al. Aeroelastic tailoring of helicopter blades
Chiu et al. Research on effect of rings on coupling vibration in a rigid-disk rotor
Xia et al. Aeroelastic Stability for Straight and Double Swept Rotor Blades in Forward Flight

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant