CN107189403B - 碳管膜在制备各向异性聚合物中的应用 - Google Patents

碳管膜在制备各向异性聚合物中的应用 Download PDF

Info

Publication number
CN107189403B
CN107189403B CN201710191774.0A CN201710191774A CN107189403B CN 107189403 B CN107189403 B CN 107189403B CN 201710191774 A CN201710191774 A CN 201710191774A CN 107189403 B CN107189403 B CN 107189403B
Authority
CN
China
Prior art keywords
carbon tube
tube film
film
solution
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710191774.0A
Other languages
English (en)
Other versions
CN107189403A (zh
Inventor
封伟
李双雯
冯奕钰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201710191774.0A priority Critical patent/CN107189403B/zh
Publication of CN107189403A publication Critical patent/CN107189403A/zh
Application granted granted Critical
Publication of CN107189403B publication Critical patent/CN107189403B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开碳管膜在制备各向异性聚合物中的应用,将聚酰亚胺酸旋涂到改性碳管膜进行碳管膜复合,在50‑400℃范围内退火。本发明方法简单,周期短,快捷高效,易于操作、成本低,取向碳管膜的加入显著提高了复合薄膜材料的力学性能,并且在面内水平和垂直方向呈现明显的各向异性。

Description

碳管膜在制备各向异性聚合物中的应用
本发明申请是母案申请“具有各向异性的聚合物/碳管复合薄膜材料的制备方法”的分案申请,母案申请的申请号为201510195613X,申请日为2015年4月23日。
技术领域
本发明涉及一种具有各向异性的聚合物/碳管复合薄膜材料的制备方法,其在航空航天、电子信息、汽车工业等领域都有重要的应用前景。属于复合材料的制备领域。
背景技术
近年来,高分子复合材料在能源、信息、电子、分子器件等方面有着广泛的应用,而具有各向异性的高分子复合材料为复合材料的应用提供了更大的潜在空间。材料的取向可以使材料在三维方向上的潜能得到充分发挥,同时使材料的力学、电学等性能在取向方向上也得到极大改进,这为高分子材料在军事、电子、包装等领域的应用提供了可能(D.Weller et al.,“High K/sub U/Materials Approach to 100Gbits/in/sup 2/,”IEEETransactions on Magnetics 36,no.1(2000):10–15)。
聚合物材料由于具有柔性、轻质、强韧等特点,在微电子封装、印刷电路板和柔性器件等领域拥有很大的发展潜力。聚酰亚胺、聚砜、聚苯硫醚、聚芳醚酮、聚芳酯等,作为特种工程塑料,具有金属及无机材料无法比拟的有点,可以在150℃以上长期使用。例如,聚酰亚胺是一类重要的高性能聚合物,具有良好的力学性能,耐磨性,耐温性,绝缘性及化学稳定性(Thomas Caulfield,“Book Reviews,”1989,80–81)。芳香族聚酰亚胺是一类半结晶性的聚合物材料,可以通过控制制备条件和退火工艺实现结晶取向(T.P.Russell,H.Gugger,and J.D.Swalen,“In-Plane Orientation of Polyimide,”Journal of PolymerScience:Polymer Physics Edition 21,no.9(September 1983):1745–56)。复合材料的各向异性是由聚合物基质和填料共同决定的。通过添加填料,制备具有各向异性的复合材料已有报道(Qian Jiang et al.,“Mechanical,Electrical and Thermal Properties ofAligned Carbon Nanotube/polyimide Composites,”Composites Part B:Engineering56(January 2014):408–12.Mizuka Tanimoto et al.,“Anisotropic ThermalDiffusivity of Hexagonal Boron Nitride-Filled Polyimide Films:Effects ofFiller Particle Size,Aggregation,Orientation,and Polymer Chain Rigidity.,”ACSApplied Materials&Interfaces 5,no.10(May 22,2013):4374–82)。但是目前制备的各向异性材料均为面内和垂直方向各向异性,并且需在填料的添加量很大的情况下才呈现出各向异性,浪费资源。因此,若想在添加较少导热填料的情况下实现材料的高各向异性,还需要探索一种性能更优异的复合材料。中国专利201310652749X、200910070631X和2007100594902陆续报道了有关碳纳米管纤维和薄膜的制备设备和方法,以此设备和方法可以通过工艺调整得到基于碳纳米管纤维和薄膜,并可进行有关方向的取向生长。
发明内容
本发明的目的在于提供一种简便易行的制备具有面内各向异性的复合膜材料的方法:所得的产品具有优良的力学性能,良好的尺寸和化学稳定性,耐化学腐蚀和耐光辐照性能,优异的柔韧性和轻质性,同时,该材料在光学、力学、导电性等方面还具有突出的各向异性。因此,该材料在航空航天、电子信息、汽车工业等领域都有重要的应用前景。
本发明是通过下述技术方案加以实现的:
一种具有面内各向异性的复合膜材料的方法;包括以下步骤:
(1)碳管膜改性:将对苯二胺溶液滴加到HCl溶液中,得到酸性对苯二胺溶液;在0-5℃条件下,将亚硝酸钠滴加到酸性对苯二胺溶液中进行反应,得到深红色重氮盐溶液;将碳管膜置于重氮盐溶液中,反应12-24h;得到改性的碳管膜;
(2)将改性碳管膜为基板,采用的方法,将聚酰亚胺酸、聚氨酯、聚苯乙烯或聚四氟乙烯与旋涂到改性碳管膜进行碳管膜复合,在50-400℃范围内退火,得到聚合物/碳管复合薄膜材料。
所述的亚硝酸钠和对苯二胺的摩尔比优选为1:1。
所述的对苯二胺优选为0.01-1mol/L溶液。
所述的HCl优选为0.1mol/L的溶液。
本发明制备方法简单,填料用量低,制备不需复杂的仪器设备。以取向碳管膜为基板制得具有明显面内各向异性的复合薄膜材料,面内水平方向的力学性能比垂直方向高约1倍,同时水平方向的导电性比垂直于碳管方向的导电率高超过1个数量级;对于各向异性复合材料的研究具有很高的指导价值,该材料有望应用于航空航天、电子器件等诸多领域。并且该发明不仅限于制备聚酰亚胺类各向异性复合材料,在其他各类高分子领域都可以应用,制备具有各种优良性能的各向异性材料。
通过CVD方法制备了具有高面内取向性的碳管膜材料,对取向碳管膜进行表面预处理。将改性的碳管膜与聚酰亚胺酸、聚氨酯、聚苯乙烯、聚四氟乙烯等高分子复合,在管式炉中退火后制得具有明显面内各向异性的聚合物/碳管复合薄膜材料。该碳管膜作为有序模板,可以诱导聚合物结晶取向,复合薄膜材料在面内呈现各向异性,且碳管膜的添加量不足千分之一。
目前关于制备具有面内各向异性复合材料的方法还鲜有报道。我们通过CVD方法制备了具有高面内取向性的碳管膜材料,对取向碳管膜进行表面预处理,将其与聚合物复合,退火后制得具有明显面内各向异性的聚合物/碳管复合薄膜材料。该碳管膜作为有序模板,可以诱导聚合物结晶取向,复合薄膜材料在面内呈现各向异性,且碳管膜的添加量不足千分之一,大大节约了资源。与传统填料和高分子复合的材料相比,聚合物/碳管复合材料具有更加优异的性能,通过添加取向碳管膜使复合材料具有更好的电学、光学和力学性能,并且复合薄膜表现出明显的各向异性。该方法制得的复合薄膜各向异性明显,填料添加量低,节约资源,同时操作简单、方法简便易行,可以实现工业化生产。
附图说明
图1为实施例2制备的碳管膜和聚酰亚胺/碳管复合膜的SEM图。从图1(A)可以看到碳管膜具有较高的取向性,且碳管膜表面的催化剂及无定形碳等杂质较少;从图1(B)可以看出聚酰亚胺和碳管的相容性很好,碳管在复合膜内平行排布,具有较高的取向性。
图2为实施例2所制备的聚酰亚胺/碳管复合膜的力学曲线。从图中可以看出,纯聚酰亚胺薄膜的抗张强度为196.9Mpa,断裂伸长率为3.8%,而添加了碳管后,薄膜水平方向的抗张强度为383.1Mpa,断裂伸长率为8.2%,垂直方向抗张强度为296.9Mpa,断裂伸长率为6.7%。说明取向碳管膜的加入显著提高了复合薄膜材料的力学性能,并且在面内水平和垂直方向呈现明显的各向异性,水平方向力学性能提高更加显著。
图3为实施例2所制备的聚酰亚胺/碳管复合膜的导电性曲线。纯聚酰亚胺为绝缘材料,添加碳管膜后,复合薄膜呈现导电性。从图中可以看出,水平方向电阻约为226Ω,垂直方向电阻约为1206Ω。说明碳管膜的加入对复合膜的导电性有显著影响,并且使复合膜的导电性呈现各向异性,水平方向的导电率高于垂直方向。
具体实施方式
下面是对本发明的进一步说明,而不是限制本发明的优选范围。
(1)碳管膜改性:按体积比1:1的比例,将0.01-1mol/L对苯二胺溶液滴加到0.1mol/L的HCl溶液中,得到酸性对苯二胺溶液;在0-5℃条件下,将亚硝酸钠和对苯二胺按摩尔比1:1的比例反应。将0.01-1mol/L亚硝酸钠溶滴加到酸性对苯二胺溶液中进行反应,得到深红色重氮盐溶液;室温下,将碳管膜置于重氮盐溶液中,反应12-24h;取出样品,用去离子水,乙醇及丙酮反复洗涤,得到改性的碳管膜;
(2)将改性碳管膜附着在玻璃基板上,以改性碳管膜为基板,采用旋涂的方法,将聚酰亚胺酸、聚氨酯、聚苯乙烯、聚四氟乙烯分别与碳管膜复合,在50-400℃范围内退火,得到聚合物/碳管复合薄膜材料。
实施例1:
(1)碳管膜改性:按体积比1:1的比例,将0.01mol/L对苯二胺溶液滴加到0.1mol/L的HCl溶液中,得到酸性对苯二胺溶液。在0℃条件下,按摩尔质量比1:1的比例将0.01mol/L亚硝酸钠溶滴加到酸性对苯二胺溶液中进行反应,得到深红色重氮盐溶液。室温下,将碳管膜置于重氮盐溶液中,反应12h。取出样品,用去离子水,乙醇及丙酮反复洗涤,得到改性的碳管膜。
(2)以改性碳管膜为基板,将聚氨酯与碳管膜复合,在50-400℃范围内阶梯升温退火,得到聚氨酯/碳管复合薄膜材料。
实施例2:
(1)碳管膜改性:按体积比1:1的比例,将0.5mol/L对苯二胺溶液滴加到0.1mol/L的HCl溶液中,得到酸性对苯二胺溶液。在0℃条件下,按摩尔质量比1:1的比例将0.5mol/L亚硝酸钠溶滴加到酸性对苯二胺溶液中进行反应,得到深红色重氮盐溶液。室温下,将碳管膜置于重氮盐溶液中,反应20h。取出样品,用去离子水,乙醇及丙酮反复洗涤,得到改性的碳管膜。
(2)以改性碳管膜为基板,将聚酰亚胺酸与碳管膜复合,在50-400℃范围内阶梯升温退火,得到聚酰亚胺/碳管复合薄膜材料。
图1为碳管膜和聚酰亚胺/碳管复合膜的SEM图。从图1(A)可以看到碳管膜具有较高的取向性,且碳管膜表面的催化剂及无定形碳等杂质较少;从图1(B)可以看出聚酰亚胺和碳管的相容性很好,碳管在复合膜内平行排布,具有较高的取向性。
图2聚酰亚胺/碳管复合膜的力学曲线。从图中可以看出,纯聚酰亚胺薄膜的抗张强度为196.9Mpa,断裂伸长率为3.8%,而添加了碳管后,薄膜水平方向的抗张强度为383.1Mpa,断裂伸长率为8.2%,垂直方向抗张强度为296.9Mpa,断裂伸长率为6.7%。说明取向碳管膜的加入显著提高了复合薄膜材料的力学性能,并且在面内水平和垂直方向呈现明显的各向异性,水平方向力学性能提高更加显著。
图3为聚酰亚胺/碳管复合膜的导电性曲线。纯聚酰亚胺为绝缘材料,添加碳管膜后,复合薄膜呈现导电性。从图中可以看出,水平方向电阻约为226Ω,垂直方向电阻约为1206Ω。说明碳管膜的加入对复合膜的导电性有显著影响,并且使复合膜的导电性呈现各向异性,水平方向的导电率高于垂直方向。
实施例3:
(1)碳管膜改性:按体积比1:1的比例,将0.01mol/L对苯二胺溶液滴加到0.1mol/L的HCl溶液中,得到酸性对苯二胺溶液。在0℃条件下,按摩尔质量比1:1的比例将0.01mol/L亚硝酸钠溶滴加到酸性对苯二胺溶液中进行反应,得到深红色重氮盐溶液。室温下,将碳管膜置于重氮盐溶液中,反应12h。取出样品,用去离子水,乙醇及丙酮反复洗涤,得到改性的碳管膜。
(2)以改性碳管膜为基板,将聚苯乙烯与碳管膜复合,在50-400℃范围内阶梯升温退火,得到聚苯乙烯/碳管复合薄膜材料。
实施例4:
(1)碳管膜改性:按体积比1:1的比例,将1mol/L对苯二胺溶液滴加到0.1mol/L的HCl溶液中,得到酸性对苯二胺溶液。在0℃条件下,按摩尔质量比1:1的比例将1mol/L亚硝酸钠溶滴加到酸性对苯二胺溶液中进行反应,得到深红色重氮盐溶液。室温下,将碳管膜置于重氮盐溶液中,反应24h。取出样品,用去离子水,乙醇及丙酮反复洗涤,得到改性的碳管膜。
(2)以改性碳管膜为基板,将聚四氟乙烯与碳管膜复合,在50-400℃范围内阶梯升温退火,得到聚四氟乙烯/碳管复合薄膜材料。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (4)

1.碳管膜在制备各向异性聚合物中的应用,其特征在于,将聚酰亚胺酸、聚氨酯、聚苯乙烯或聚四氟乙烯旋涂到改性碳管膜进行碳管膜复合,在50-400℃范围内退火,以改性碳管膜为基板,诱导聚酰亚胺结晶取向,所得材料在面内呈现各向异性,且碳管膜的添加量不足千分之一;碳管膜为改性碳管膜,通过CVD方法制备具有高面内取向性的碳管膜材料,再进行碳管膜改性,将对苯二胺溶液滴加到HCl溶液中,得到酸性对苯二胺溶液;在0-5℃条件下,将亚硝酸钠滴加到酸性对苯二胺溶液中进行反应,得到深红色重氮盐溶液;将碳管膜置于重氮盐溶液中,反应12-24h;得到改性的碳管膜;聚酰亚胺和改性碳管膜复合后,面内水平方向的抗张强度为383.1Mpa,断裂伸长率为8.2%,面内垂直方向抗张强度为296.9Mpa,断裂伸长率为6.7%;面内水平方向电阻为226Ω,面内垂直方向电阻为1206Ω。
2.根据权利要求1所述的碳管膜在制备各向异性聚合物中的应用,其特征在于,所述的亚硝酸钠和对苯二胺的摩尔比为1:1。
3.根据权利要求1所述的碳管膜在制备各向异性聚合物中的应用,其特征在于,所述的对苯二胺为0.01-1mol/L溶液。
4.根据权利要求1所述的碳管膜在制备各向异性聚合物中的应用,其特征在于,所述的HCl为0.1mol/L的溶液。
CN201710191774.0A 2015-04-23 2015-04-23 碳管膜在制备各向异性聚合物中的应用 Expired - Fee Related CN107189403B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710191774.0A CN107189403B (zh) 2015-04-23 2015-04-23 碳管膜在制备各向异性聚合物中的应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510195613.XA CN104804205B (zh) 2015-04-23 2015-04-23 具有各向异性的聚合物/碳管复合薄膜材料的制备方法
CN201710191774.0A CN107189403B (zh) 2015-04-23 2015-04-23 碳管膜在制备各向异性聚合物中的应用

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201510195613.XA Division CN104804205B (zh) 2015-04-23 2015-04-23 具有各向异性的聚合物/碳管复合薄膜材料的制备方法

Publications (2)

Publication Number Publication Date
CN107189403A CN107189403A (zh) 2017-09-22
CN107189403B true CN107189403B (zh) 2020-01-17

Family

ID=53689421

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201710191784.4A Pending CN107189431A (zh) 2015-04-23 2015-04-23 聚酰亚胺各向异性材料
CN201510195613.XA Active CN104804205B (zh) 2015-04-23 2015-04-23 具有各向异性的聚合物/碳管复合薄膜材料的制备方法
CN201710191774.0A Expired - Fee Related CN107189403B (zh) 2015-04-23 2015-04-23 碳管膜在制备各向异性聚合物中的应用

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201710191784.4A Pending CN107189431A (zh) 2015-04-23 2015-04-23 聚酰亚胺各向异性材料
CN201510195613.XA Active CN104804205B (zh) 2015-04-23 2015-04-23 具有各向异性的聚合物/碳管复合薄膜材料的制备方法

Country Status (1)

Country Link
CN (3) CN107189431A (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105713214A (zh) * 2016-02-03 2016-06-29 陕西科技大学 一种低角度依赖的红色聚苯乙烯胶体晶体膜的制备方法
CN105949732B (zh) * 2016-05-09 2018-04-13 贵州大学 一种高性能可降解聚乳酸复合材料及其制备方法
CN109884122B (zh) * 2017-12-06 2021-04-20 天津大学 基于硫化铼纳米器件的有机气体检测芯片
CN110746725B (zh) * 2019-11-13 2021-04-30 珠海国能新材料股份有限公司 一种高性能聚四氟乙烯薄膜及其微波基板的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103396573A (zh) * 2013-08-22 2013-11-20 电子科技大学 一种复合纳米薄膜的制备方法
CN104072979A (zh) * 2014-07-18 2014-10-01 福州大学 一种氧化石墨烯纳米带/聚合物复合薄膜及其制备方法
CN104140643A (zh) * 2014-08-14 2014-11-12 上海交通大学 一种碳纤维增强热塑性树脂复合材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040030553A (ko) * 2001-03-26 2004-04-09 에이코스 인코포레이티드 탄소 나노튜브를 함유하는 코팅막
CN101665247A (zh) * 2009-09-25 2010-03-10 天津大学 碳纳米管膜制备方法和装置
KR101140196B1 (ko) * 2010-04-02 2012-05-02 부산대학교 산학협력단 폴리이미드 나노복합체 및 그 제조방법
CN102582199B (zh) * 2012-02-14 2014-09-03 北京航空航天大学 一种仿生层状高含量碳纳米管高分子复合材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103396573A (zh) * 2013-08-22 2013-11-20 电子科技大学 一种复合纳米薄膜的制备方法
CN104072979A (zh) * 2014-07-18 2014-10-01 福州大学 一种氧化石墨烯纳米带/聚合物复合薄膜及其制备方法
CN104140643A (zh) * 2014-08-14 2014-11-12 上海交通大学 一种碳纤维增强热塑性树脂复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Aligned Carbon Nanotube/Polymer Composite Films with Robust Flexibility,High Transparency, and Excellent Conductivity";Huisheng Peng;《Journal of the American Chemical Society》;20071212;第130卷(第1期);第42页左栏第2-3段,图1,第42页右栏第2段 *

Also Published As

Publication number Publication date
CN107189403A (zh) 2017-09-22
CN104804205A (zh) 2015-07-29
CN104804205B (zh) 2017-12-05
CN107189431A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
Ma et al. A bioinspired interface design for improving the strength and electrical conductivity of graphene‐based fibers
CN110550956B (zh) 基于石墨烯聚酰亚胺复合海绵前驱体导热薄膜的制备方法
CN107189403B (zh) 碳管膜在制备各向异性聚合物中的应用
An et al. Flexible and quasi-isotropically thermoconductive polyimide films by guided assembly of boron nitride nanoplate/boron nitride flakes for microelectronic application
Liu et al. Functionalization with MXene (Ti3C2) enhances the wettability and shear strength of carbon fiber-epoxy composites
Du et al. Microwave-induced shape-memory effect of silicon carbide/poly (vinyl alcohol) composite
KR101311458B1 (ko) 폴리이미드-그래핀 복합 재료 조성 및 그의 제조 방법
Kausar Fullerene nanofiller reinforced epoxy nanocomposites—Developments, progress and challenges
WO2012108412A1 (ja) 高熱伝導性熱可塑性樹脂、樹脂組成物および成形体
Kumar et al. Synthesis and characterization of fluorine functionalized graphene oxide dispersed quinoline‐based polyimide composites having low‐k and UV shielding properties
Zheng et al. Preparation of polyimide/amino-modified reduced graphene oxide composite matrix and its application in UV-cured functionalized films
Zhang et al. Effect of the Structure of Epoxy Monomers and Curing Agents: Toward Making Intrinsically Highly Thermally Conductive and Low-Dielectric Epoxy Resins
Kumar et al. Synthesis and characterization of graphene oxide reinforced triphenyl pyridine-based polyimide composites having UV shielding and low k properties
Ge et al. Diisocyanate-modified graphene oxide/hydroxyl-terminated silicone rubber composites for improved thermal conductivity
KR101073639B1 (ko) 폴리우레탄 코팅 수지의 제조 방법
Cao et al. In situ polymerized poly (amide imide)/multiwalled carbon nanotube composite: structural, mechanical, and electrical studies
Zhang et al. Improved mechanical, thermal properties and ideal dielectric properties of polyimide composite films by incorporation of boron nitride nanosheets and aramid nanofibers
Fan et al. Enhancing multiwalled carbon nanotubes/poly (amide-imide) interfacial strength through grafting polar conjugated polymer on multiwalled carbon nanotubes
Zhang et al. Polyimide-surface-modified silica tubes: Preparation and cryogenic properties
Zhang et al. Graphite tube woven fabric/boron nitride/polymer composite with enhanced thermal conductivity and electric isolation
KR101271606B1 (ko) 폴리이미드-그래핀 복합 재료의 제조 방법
Li et al. Flexible and thermally conductive epoxy‐dispersed liquid crystal composites filled with functionalized boron nitride nanosheets
Zhao et al. Optimizing the reinforcement effect of graphene oxide on polyimide by ternary copolymerization
Zheng et al. Improved thermal conductivity and excellent electrical insulation properties of polysiloxane nanocomposite-incorporated functional boron nitride sheets via in situ polymerization
Wang Novel polysilicone flame-retardant functionalized carbon nanotubes: synthesis, characterization and flame retardancy as used in epoxy-based composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200117