CN104804205A - 具有各向异性的聚合物/碳管复合薄膜材料的制备方法 - Google Patents

具有各向异性的聚合物/碳管复合薄膜材料的制备方法 Download PDF

Info

Publication number
CN104804205A
CN104804205A CN201510195613.XA CN201510195613A CN104804205A CN 104804205 A CN104804205 A CN 104804205A CN 201510195613 A CN201510195613 A CN 201510195613A CN 104804205 A CN104804205 A CN 104804205A
Authority
CN
China
Prior art keywords
carbon
solution
periosteum
carbon tube
composite film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510195613.XA
Other languages
English (en)
Other versions
CN104804205B (zh
Inventor
封伟
李双雯
冯亦钰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201710191784.4A priority Critical patent/CN107189431A/zh
Priority to CN201510195613.XA priority patent/CN104804205B/zh
Priority to CN201710191774.0A priority patent/CN107189403B/zh
Publication of CN104804205A publication Critical patent/CN104804205A/zh
Application granted granted Critical
Publication of CN104804205B publication Critical patent/CN104804205B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Abstract

本发明公开了一种具有各向异性的聚合物/碳管复合薄膜材料的制备方法。首先进行碳管膜改性:将对苯二胺溶液滴加到HCl溶液中,得到酸性对苯二胺溶液;在0-5℃条件下,将亚硝酸钠滴加到酸性对苯二胺溶液中进行反应,得到深红色重氮盐溶液;将碳管膜置于重氮盐溶液中,反应12-24h;得到改性的碳管膜;然后将改性碳管膜为基板,采用的方法,将聚酰亚胺酸、聚氨酯、聚苯乙烯或聚四氟乙烯与旋涂到改性碳管膜进行碳管膜复合,在50-400℃范围内退火,得到聚合物/碳管复合薄膜材料。本发明的制备方法简单,周期短,快捷高效,易于操作、成本低,且聚合物/碳管复合薄膜材料各向异性明显,稳定性高,非常适合大规模生产,可推广使用。

Description

具有各向异性的聚合物/碳管复合薄膜材料的制备方法
技术领域
本发明涉及一种具有各向异性的聚合物/碳管复合薄膜材料的制备方法,其在航空航天、电子信息、汽车工业等领域都有重要的应用前景。属于复合材料的制备领域。
背景技术
近年来,高分子复合材料在能源、信息、电子、分子器件等方面有着广泛的应用,而具有各向异性的高分子复合材料为复合材料的应用提供了更大的潜在空间。材料的取向可以使材料在三维方向上的潜能得到充分发挥,同时使材料的力学、电学等性能在取向方向上也得到极大改进,这为高分子材料在军事、电子、包装等领域的应用提供了可能(D.Weller et al.,“High K/sub U/Materials Approach to 100Gbits/in/sup 2/,”IEEE Transactions on Magnetics 36,no.1(2000):10–15)。
聚合物材料由于具有柔性、轻质、强韧等特点,在微电子封装、印刷电路板和柔性器件等领域拥有很大的发展潜力。聚酰亚胺、聚砜、聚苯硫醚、聚芳醚酮、聚芳酯等,作为特种工程塑料,具有金属及无机材料无法比拟的有点,可以在150℃以上长期使用。例如,聚酰亚胺是一类重要的高性能聚合物,具有良好的力学性能,耐磨性,耐温性,绝缘性及化学稳定性(Thomas Caulfield,“Book Reviews,”1989,80–81)。芳香族聚酰亚胺是一类半结晶性的聚合物材料,可以通过控制制备条件和退火工艺实现结晶取向(T.P.Russell,H.Gugger,and J.D.Swalen,“In-Plane Orientation of Polyimide,”Journal of Polymer Science:Polymer Physics Edition21,no.9(September 1983):1745–56)。复合材料的各向异性是由聚合物基质和填料共同决定的。通过添加填料,制备具有各向异性的复合材料已有报道(Qian Jiang et al.,“Mechanical,Electrical and Thermal Properties of Aligned Carbon Nanotube/polyimide Composites,”Composites Part B:Engineering 56(January 2014):408–12.Mizuka Tanimoto et al.,“AnisotropicThermal Diffusivity of Hexagonal Boron Nitride-Filled Polyimide Films:Effects of Filler ParticleSize,Aggregation,Orientation,and Polymer Chain Rigidity.,”ACS Applied Materials&Interfaces5,no.10(May 22,2013):4374–82)。但是目前制备的各向异性材料均为面内和垂直方向各向异性,并且需在填料的添加量很大的情况下才呈现出各向异性,浪费资源。因此,若想在添加较少导热填料的情况下实现材料的高各向异性,还需要探索一种性能更优异的复合材料。
发明内容
本发明的目的在于提供一种简便易行的制备具有面内各向异性的复合膜材料的方法:所得的产品具有优良的力学性能,良好的尺寸和化学稳定性,耐化学腐蚀和耐光辐照性能,优异的柔韧性和轻质性,同时,该材料在光学、力学、导电性等方面还具有突出的各向异性。因此,该材料在航空航天、电子信息、汽车工业等领域都有重要的应用前景。
本发明是通过下述技术方案加以实现的:
一种具有面内各向异性的复合膜材料的方法;包括以下步骤:
(1)碳管膜改性:将对苯二胺溶液滴加到HCl溶液中,得到酸性对苯二胺溶液;在0-5℃条件下,将亚硝酸钠滴加到酸性对苯二胺溶液中进行反应,得到深红色重氮盐溶液;将碳管膜置于重氮盐溶液中,反应12-24h;得到改性的碳管膜;
(2)将改性碳管膜为基板,采用的方法,将聚酰亚胺酸、聚氨酯、聚苯乙烯或聚四氟乙烯与旋涂到改性碳管膜进行碳管膜复合,在50-400℃范围内退火,得到聚合物/碳管复合薄膜材料。
所述的亚硝酸钠和对苯二胺的摩尔比优选为1:1。
所述的对苯二胺优选为0.01-1mol/L溶液。
所述的HCl优选为0.1mol/L的溶液。
本发明制备方法简单,填料用量低,制备不需复杂的仪器设备。以取向碳管膜为基板制得具有明显面内各向异性的复合薄膜材料,面内水平方向的力学性能比垂直方向高约1倍,同时水平方向的导电性比垂直于碳管方向的导电率高超过1个数量级;对于各向异性复合材料的研究具有很高的指导价值,该材料有望应用于航空航天、电子器件等诸多领域。并且该发明不仅限于制备聚酰亚胺类各向异性复合材料,在其他各类高分子领域都可以应用,制备具有各种优良性能的各向异性材料。
通过CVD方法制备了具有高面内取向性的碳管膜材料,对取向碳管膜进行表面预处理。将改性的碳管膜与聚酰亚胺酸、聚氨酯、聚苯乙烯、聚四氟乙烯等高分子复合,在管式炉中退火后制得具有明显面内各向异性的聚合物/碳管复合薄膜材料。该碳管膜作为有序模板,可以诱导聚合物结晶取向,复合薄膜材料在面内呈现各向异性,且碳管膜的添加量不足千分之一。
目前关于制备具有面内各向异性复合材料的方法还鲜有报道。我们通过CVD方法制备了具有高面内取向性的碳管膜材料,对取向碳管膜进行表面预处理,将其与聚合物复合,退火后制得具有明显面内各向异性的聚合物/碳管复合薄膜材料。该碳管膜作为有序模板,可以诱导聚合物结晶取向,复合薄膜材料在面内呈现各向异性,且碳管膜的添加量不足千分之一,大大节约了资源。与传统填料和高分子复合的材料相比,聚合物/碳管复合材料具有更加优异的性能,通过添加取向碳管膜使复合材料具有更好的电学、光学和力学性能,并且复合薄膜表现出明显的各向异性。该方法制得的复合薄膜各向异性明显,填料添加量低,节约资源,同时操作简单、方法简便易行,可以实现工业化生产。
附图说明
图1为实施例2制备的碳管膜和聚酰亚胺/碳管复合膜的SEM图。从图1(A)可以看到碳管膜具有较高的取向性,且碳管膜表面的催化剂及无定形碳等杂质较少;从图1(B)可以看出聚酰亚胺和碳管的相容性很好,碳管在复合膜内平行排布,具有较高的取向性。
图2为实施例2所制备的聚酰亚胺/碳管复合膜的力学曲线。从图中可以看出,纯聚酰亚胺薄膜的抗张强度为196.9Mpa,断裂伸长率为3.8%,而添加了碳管后,薄膜水平方向的抗张强度为383.1Mpa,断裂伸长率为8.2%,垂直方向抗张强度为296.9Mpa,断裂伸长率为6.7%。说明取向碳管膜的加入显著提高了复合薄膜材料的力学性能,并且在面内水平和垂直方向呈现明显的各向异性,水平方向力学性能提高更加显著。
图3为实施例2所制备的聚酰亚胺/碳管复合膜的导电性曲线。纯聚酰亚胺为绝缘材料,添加碳管膜后,复合薄膜呈现导电性。从图中可以看出,水平方向电阻约为226Ω,垂直方向电阻约为1206Ω。说明碳管膜的加入对复合膜的导电性有显著影响,并且使复合膜的导电性呈现各向异性,水平方向的导电率高于垂直方向。
具体实施方式
下面是对本发明的进一步说明,而不是限制本发明的优选范围。
(1)碳管膜改性:按体积比1:1的比例,将0.01-1mol/L对苯二胺溶液滴加到0.1mol/L的HCl溶液中,得到酸性对苯二胺溶液;在0-5℃条件下,将亚硝酸钠和对苯二胺按摩尔比1:1的比例反应。将0.01-1mol/L亚硝酸钠溶滴加到酸性对苯二胺溶液中进行反应,得到深红色重氮盐溶液;室温下,将碳管膜置于重氮盐溶液中,反应12-24h;取出样品,用去离子水,乙醇及丙酮反复洗涤,得到改性的碳管膜;
(2)将改性碳管膜附着在玻璃基板上,以改性碳管膜为基板,采用旋涂的方法,将聚酰亚胺酸、聚氨酯、聚苯乙烯、聚四氟乙烯分别与碳管膜复合,在50-400℃范围内退火,得到聚合物/碳管复合薄膜材料。
实施例1:
(1)碳管膜改性:按体积比1:1的比例,将0.01mol/L对苯二胺溶液滴加到0.1mol/L的HCl溶液中,得到酸性对苯二胺溶液。在0℃条件下,按摩尔质量比1:1的比例将0.01mol/L亚硝酸钠溶滴加到酸性对苯二胺溶液中进行反应,得到深红色重氮盐溶液。室温下,将碳管膜置于重氮盐溶液中,反应12h。取出样品,用去离子水,乙醇及丙酮反复洗涤,得到改性的碳管膜。
(2)以改性碳管膜为基板,将聚氨酯与碳管膜复合,在50-400℃范围内阶梯升温退火,得到聚氨酯/碳管复合薄膜材料。
实施例2:
(1)碳管膜改性:按体积比1:1的比例,将0.5mol/L对苯二胺溶液滴加到0.1mol/L的HCl溶液中,得到酸性对苯二胺溶液。在0℃条件下,按摩尔质量比1:1的比例将0.5mol/L亚硝酸钠溶滴加到酸性对苯二胺溶液中进行反应,得到深红色重氮盐溶液。室温下,将碳管膜置于重氮盐溶液中,反应20h。取出样品,用去离子水,乙醇及丙酮反复洗涤,得到改性的碳管膜。
(2)以改性碳管膜为基板,将聚酰亚胺酸与碳管膜复合,在50-400℃范围内阶梯升温退火,得到聚酰亚胺/碳管复合薄膜材料。
图1为碳管膜和聚酰亚胺/碳管复合膜的SEM图。从图1(A)可以看到碳管膜具有较高的取向性,且碳管膜表面的催化剂及无定形碳等杂质较少;从图1(B)可以看出聚酰亚胺和碳管的相容性很好,碳管在复合膜内平行排布,具有较高的取向性。
图2聚酰亚胺/碳管复合膜的力学曲线。从图中可以看出,纯聚酰亚胺薄膜的抗张强度为196.9Mpa,断裂伸长率为3.8%,而添加了碳管后,薄膜水平方向的抗张强度为383.1Mpa,断裂伸长率为8.2%,垂直方向抗张强度为296.9Mpa,断裂伸长率为6.7%。说明取向碳管膜的加入显著提高了复合薄膜材料的力学性能,并且在面内水平和垂直方向呈现明显的各向异性,水平方向力学性能提高更加显著。
图3为聚酰亚胺/碳管复合膜的导电性曲线。纯聚酰亚胺为绝缘材料,添加碳管膜后,复合薄膜呈现导电性。从图中可以看出,水平方向电阻约为226Ω,垂直方向电阻约为1206Ω。说明碳管膜的加入对复合膜的导电性有显著影响,并且使复合膜的导电性呈现各向异性,水平方向的导电率高于垂直方向。
实施例3:
(1)碳管膜改性:按体积比1:1的比例,将0.01mol/L对苯二胺溶液滴加到0.1mol/L的HCl溶液中,得到酸性对苯二胺溶液。在0℃条件下,按摩尔质量比1:1的比例将0.01mol/L亚硝酸钠溶滴加到酸性对苯二胺溶液中进行反应,得到深红色重氮盐溶液。室温下,将碳管膜置于重氮盐溶液中,反应12h。取出样品,用去离子水,乙醇及丙酮反复洗涤,得到改性的碳管膜。
(2)以改性碳管膜为基板,将聚苯乙烯与碳管膜复合,在50-400℃范围内阶梯升温退火,得到聚苯乙烯/碳管复合薄膜材料。
实施例4:
(1)碳管膜改性:按体积比1:1的比例,将1mol/L对苯二胺溶液滴加到0.1mol/L的HCl溶液中,得到酸性对苯二胺溶液。在0℃条件下,按摩尔质量比1:1的比例将1mol/L亚硝酸钠溶滴加到酸性对苯二胺溶液中进行反应,得到深红色重氮盐溶液。室温下,将碳管膜置于重氮盐溶液中,反应24h。取出样品,用去离子水,乙醇及丙酮反复洗涤,得到改性的碳管膜。
(2)以改性碳管膜为基板,将聚四氟乙烯与碳管膜复合,在50-400℃范围内阶梯升温退火,得到聚四氟乙烯/碳管复合薄膜材料。

Claims (4)

1.一种具有面内各向异性的复合膜材料的方法;其特征在于包括以下步骤:
(1)碳管膜改性:将对苯二胺溶液滴加到HCl溶液中,得到酸性对苯二胺溶液;在0-5℃条件下,将亚硝酸钠滴加到酸性对苯二胺溶液中进行反应,得到深红色重氮盐溶液;将碳管膜置于重氮盐溶液中,反应12-24h;得到改性的碳管膜;
(2)将改性碳管膜为基板,采用的方法,将聚酰亚胺酸、聚氨酯、聚苯乙烯或聚四氟乙烯与旋涂到改性碳管膜进行碳管膜复合,在50-400℃范围内退火,得到聚合物/碳管复合薄膜材料。
2.如权利要求1所述的方法,其特征是所述的亚硝酸钠和对苯二胺的摩尔比为1:1。
3.如权利要求2所述的方法,其特征是所述的对苯二胺为0.01-1mol/L溶液。
4.如权利要求1所述的方法,其特征是所述的HCl为0.1mol/L的溶液。
CN201510195613.XA 2015-04-23 2015-04-23 具有各向异性的聚合物/碳管复合薄膜材料的制备方法 Active CN104804205B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710191784.4A CN107189431A (zh) 2015-04-23 2015-04-23 聚酰亚胺各向异性材料
CN201510195613.XA CN104804205B (zh) 2015-04-23 2015-04-23 具有各向异性的聚合物/碳管复合薄膜材料的制备方法
CN201710191774.0A CN107189403B (zh) 2015-04-23 2015-04-23 碳管膜在制备各向异性聚合物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510195613.XA CN104804205B (zh) 2015-04-23 2015-04-23 具有各向异性的聚合物/碳管复合薄膜材料的制备方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN201710191784.4A Division CN107189431A (zh) 2015-04-23 2015-04-23 聚酰亚胺各向异性材料
CN201710191774.0A Division CN107189403B (zh) 2015-04-23 2015-04-23 碳管膜在制备各向异性聚合物中的应用

Publications (2)

Publication Number Publication Date
CN104804205A true CN104804205A (zh) 2015-07-29
CN104804205B CN104804205B (zh) 2017-12-05

Family

ID=53689421

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201510195613.XA Active CN104804205B (zh) 2015-04-23 2015-04-23 具有各向异性的聚合物/碳管复合薄膜材料的制备方法
CN201710191784.4A Pending CN107189431A (zh) 2015-04-23 2015-04-23 聚酰亚胺各向异性材料
CN201710191774.0A Expired - Fee Related CN107189403B (zh) 2015-04-23 2015-04-23 碳管膜在制备各向异性聚合物中的应用

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201710191784.4A Pending CN107189431A (zh) 2015-04-23 2015-04-23 聚酰亚胺各向异性材料
CN201710191774.0A Expired - Fee Related CN107189403B (zh) 2015-04-23 2015-04-23 碳管膜在制备各向异性聚合物中的应用

Country Status (1)

Country Link
CN (3) CN104804205B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105713214A (zh) * 2016-02-03 2016-06-29 陕西科技大学 一种低角度依赖的红色聚苯乙烯胶体晶体膜的制备方法
CN105949732A (zh) * 2016-05-09 2016-09-21 贵州大学 一种高性能可降解聚乳酸复合材料及其制备方法
CN109884122A (zh) * 2017-12-06 2019-06-14 天津大学 基于硫化铼纳米器件的有机气体检测芯片
CN110746725A (zh) * 2019-11-13 2020-02-04 珠海国能新材料股份有限公司 一种高性能聚四氟乙烯薄膜及其微波基板的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1543399A (zh) * 2001-03-26 2004-11-03 含碳纳米管的涂层
CN101665247A (zh) * 2009-09-25 2010-03-10 天津大学 碳纳米管膜制备方法和装置
CN102582199A (zh) * 2012-02-14 2012-07-18 北京航空航天大学 一种仿生层状高含量碳纳米管高分子复合材料的制备方法
CN103396573A (zh) * 2013-08-22 2013-11-20 电子科技大学 一种复合纳米薄膜的制备方法
CN104072979A (zh) * 2014-07-18 2014-10-01 福州大学 一种氧化石墨烯纳米带/聚合物复合薄膜及其制备方法
CN104140643A (zh) * 2014-08-14 2014-11-12 上海交通大学 一种碳纤维增强热塑性树脂复合材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101140196B1 (ko) * 2010-04-02 2012-05-02 부산대학교 산학협력단 폴리이미드 나노복합체 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1543399A (zh) * 2001-03-26 2004-11-03 含碳纳米管的涂层
CN101665247A (zh) * 2009-09-25 2010-03-10 天津大学 碳纳米管膜制备方法和装置
CN102582199A (zh) * 2012-02-14 2012-07-18 北京航空航天大学 一种仿生层状高含量碳纳米管高分子复合材料的制备方法
CN103396573A (zh) * 2013-08-22 2013-11-20 电子科技大学 一种复合纳米薄膜的制备方法
CN104072979A (zh) * 2014-07-18 2014-10-01 福州大学 一种氧化石墨烯纳米带/聚合物复合薄膜及其制备方法
CN104140643A (zh) * 2014-08-14 2014-11-12 上海交通大学 一种碳纤维增强热塑性树脂复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUISHENG PENG: ""Aligned Carbon Nanotube/Polymer Composite Films with Robust Flexibility,High Transparency, and Excellent Conductivity"", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *
刘云圻: "《有机纳米与分子器件》", 31 May 2010, 科学出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105713214A (zh) * 2016-02-03 2016-06-29 陕西科技大学 一种低角度依赖的红色聚苯乙烯胶体晶体膜的制备方法
CN105949732A (zh) * 2016-05-09 2016-09-21 贵州大学 一种高性能可降解聚乳酸复合材料及其制备方法
CN109884122A (zh) * 2017-12-06 2019-06-14 天津大学 基于硫化铼纳米器件的有机气体检测芯片
CN109884122B (zh) * 2017-12-06 2021-04-20 天津大学 基于硫化铼纳米器件的有机气体检测芯片
CN110746725A (zh) * 2019-11-13 2020-02-04 珠海国能新材料股份有限公司 一种高性能聚四氟乙烯薄膜及其微波基板的制造方法
CN110746725B (zh) * 2019-11-13 2021-04-30 珠海国能新材料股份有限公司 一种高性能聚四氟乙烯薄膜及其微波基板的制造方法

Also Published As

Publication number Publication date
CN104804205B (zh) 2017-12-05
CN107189403B (zh) 2020-01-17
CN107189403A (zh) 2017-09-22
CN107189431A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
Jiang et al. Hydrogen bond-regulated boron nitride network structures for improved thermal conductive property of polyamide-imide composites
Liang et al. Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances
Shi et al. Graphene platelets and their polymer composites: fabrication, structure, properties, and applications
Wang et al. Highly thermally conductive fluorinated graphene films with superior electrical insulation and mechanical flexibility
Yao et al. Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites
Cui et al. Enhanced thermal conductivity of bioinspired nanofibrillated cellulose hybrid films based on graphene sheets and nanodiamonds
Sun et al. Developing polymer composite materials: carbon nanotubes or graphene?
KR100827861B1 (ko) 나노복합물 및 이의 제조 방법
Li et al. Highly oriented graphite aerogel fabricated by confined liquid-phase expansion for anisotropically thermally conductive epoxy composites
Kausar et al. Recent developments in epoxy/graphite, epoxy/graphene, and epoxy/graphene nanoplatelet composites: a comparative review
CN104804205A (zh) 具有各向异性的聚合物/碳管复合薄膜材料的制备方法
Kausar Fullerene nanofiller reinforced epoxy nanocomposites—Developments, progress and challenges
Azim et al. Recent progress in emerging hybrid nanomaterials towards the energy storage and heat transfer applications: A review
Fan et al. Constructing fibrillated skeleton with highly aligned boron nitride nanosheets confined in alumina fiber via electrospinning and sintering for thermally conductive composite
Nguyen et al. High-performance and lightweight thermal management devices by 3D printing and assembly of continuous carbon nanotube sheets
Anwar et al. Polymer and graphite-derived nanofiller composite: an overview of functional applications
An et al. Novel electro-active shape memory polymers for soft actuators
Naz et al. Influence of graphite filler on physicochemical characteristics of polymer/graphite composites: a review
Khan et al. Exploitation of nanobifiller in polymer/graphene oxide–carbon nanotube, polymer/graphene oxide–nanodiamond, and polymer/graphene oxide–montmorillonite composite: A review
Wu et al. Layer‐by‐Layer Assembly of Multifunctional NR/MXene/CNTs Composite Films with Exceptional Electromagnetic Interference Shielding Performances and Excellent Mechanical Properties
Bai et al. High thermal conductivity nanocomposites based on conductive polyaniline nanowire arrays on boron nitride
Zhang et al. Endowing thermally conductive and electrically insulating epoxy composites with a well-structured nanofiller network via dynamic transesterification-participated interfacial welding
Wan et al. Enhanced in-plane thermal conductivity and mechanical strength of flexible films by aligning and interconnecting Si3N4 nanowires
Chen et al. Covalently modified graphene and 3D thermally conductive network for PEEK composites with electromagnetic shielding performance
Wei et al. Ultra‐stretchable, fast self‐healing, conductive hydrogels for writing circuits and magnetic sensors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Feng Wei

Inventor after: Li Shuangwen

Inventor after: Feng Yiyu

Inventor before: Feng Wei

Inventor before: Li Shuangwen

Inventor before: Feng Yiyu

GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 300350 District, Jinnan District, Tianjin Haihe Education Park, 135 beautiful road, Beiyang campus of Tianjin University

Patentee after: Tianjin University

Address before: 300072 Tianjin City, Nankai District Wei Jin Road No. 92, Tianjin University

Patentee before: Tianjin University