CN107188547B - 一种高铝质可塑料及其制备方法 - Google Patents

一种高铝质可塑料及其制备方法 Download PDF

Info

Publication number
CN107188547B
CN107188547B CN201710412830.9A CN201710412830A CN107188547B CN 107188547 B CN107188547 B CN 107188547B CN 201710412830 A CN201710412830 A CN 201710412830A CN 107188547 B CN107188547 B CN 107188547B
Authority
CN
China
Prior art keywords
alumina
moldable
granularity
micro mist
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710412830.9A
Other languages
English (en)
Other versions
CN107188547A (zh
Inventor
张寒
赵惠忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Huaxin New Material Co ltd
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201710412830.9A priority Critical patent/CN107188547B/zh
Publication of CN107188547A publication Critical patent/CN107188547A/zh
Application granted granted Critical
Publication of CN107188547B publication Critical patent/CN107188547B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Catalysts (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明涉及一种高铝质可塑料及其制备方法。其技术方案是:在水浴条件下,将聚丙烯酸钠、聚乙二醇400、聚丙烯酰胺和水置入容器中,搅拌,制得结合剂。再将铝矾土、γ‑氧化铝微粉和氧化钇微粉混磨至粒度≤80μm,压制成型,1400~1600℃条件下热处理,将热处理后的物料破碎,研磨,筛分,得到粒度为3~5mm的A物料、粒度为1~2mm的B物料、粒度为0.088~0.5mm的C物料和粒度小于80μm的D物料;将A物料、B物料、C物料、D物料和ρ‑氧化铝微粉混合,制得混合均质料。然后向混合均质料中加入铝溶胶和结合剂,混合,困料,即得高铝质可塑料。本发明具有成本低廉、工艺简单的特点;所制备的高铝质可塑料的保存周期长、体积密度大和耐压强度高。

Description

一种高铝质可塑料及其制备方法
技术领域
本发明属于可塑料技术领域。具体涉及一种高铝质可塑料及其制备方法。
背景技术
可塑料属于不定形耐火材料中的一类,一般呈“泥浆状”,可在较长时间内保持高的可塑性,且硬化后具有一定强度,根据用途和材质可分为高铝质、硅质和镁质等。
目前,高铝质可塑料主要采用高铝矾土、氧化铝微粉和结合剂等为原料(凌志达,等.高铝质耐火可塑料的组成与性能关系研究.南京工业大学学报(自科版),1989,11(3):pp8~15),经配料、混炼后封装。如“一种坚甲可塑料及其制备方法”(CN201010158430.8)和“一种长保存期磷酸结合高铝质可塑料及制备方法”(CN201310004596.8)专利技术,虽有其优点,但其主要缺点在于可塑料的保存周期较短和可塑性大幅降低,或是可塑料的强度和致密度等性能较差。
发明内容
本发明旨在克服现有技术缺陷,目的在于提供一种成本低廉和工艺简单的高铝质可塑料的制备方法;用该方法制备的高铝质可塑料的保存周期长、体积密度大和耐压强度高。
为实现上述目的,本发明采用的技术方案的步骤是:
步骤一、按聚丙烯酸钠∶聚乙二醇400∶聚丙烯酰胺∶水的质量比为(1~4)∶(2~5)∶(2~5)∶100,在35~40℃水浴条件下,将聚丙烯酸钠、聚乙二醇400、聚丙烯酰胺和水置入容器中,搅拌5~8分钟,制得结合剂。
步骤二、按铝矾土︰γ-氧化铝微粉︰氧化钇微粉的质量比为100︰(10~15)︰(1~4),将铝矾土、γ-氧化铝微粉和氧化钇微粉混磨至粒度≤80μm,得到混合料。
步骤三、将所述混合料在20~30MPa条件下压制成型,再将成型后的坯体置于马弗炉中,在空气气氛和1400~1600℃条件下热处理1~2小时,随炉冷却,得到热处理后的物料。
步骤四、将所述热处理后的物料破碎,研磨,筛分,分别得到粒度为3~5mm的A物料、粒度为1~2mm的B物料、粒度为0.088~0.5mm的C物料和粒度小于80μm的D物料。
步骤五、将30~35wt%的所述A物料、30~35wt%的所述B物料、15~20wt%的所述C物料、10~15wt%的所述D物料和3~6wt%的ρ-氧化铝微粉加入搅拌机中,混合5~10分钟,制得混合均质料。
步骤六、按所述混合均质料︰铝溶胶︰所述结合剂的质量比为1︰(0.05~0.08)︰(0.05~0.08),向所述混合均质料中依次加入所述铝溶胶和所述结合剂,混合10~15分钟,然后在密封条件下困料12~24小时,即得高铝质可塑料。
所述聚丙烯酸钠、聚乙二醇400和聚丙烯酰胺均为化学纯。
所述铝矾土的主要化学成分为:Al2O3含量为85~90wt%,SiO2含量为2~3wt%,Fe2O3含量≤0.2wt%,(Na2O+K2O)含量≤0.5wt%,(MgO+CaO)含量≤2wt%。
所述γ-氧化铝微粉的Al2O3含量≥98wt%。
所述氧化钇微粉的Y2O3含量≥99wt%。
所述ρ-氧化铝微粉的Al2O3含量≥98wt%;ρ-Al2O3微粉的粒度为60~80μm。
所述铝溶胶的Al2O3含量为25~30wt%。
由于采取上述技术方案,本发明与现有技术相比具有如下积极效果:
1、本发明所用原料来源丰富,成本低廉,制备过程无需特殊设备和复杂的处理技术,工艺简单;
2、本发明利用有机组分的水解与电化学特性,促进结合剂的键合,提升结合剂的交联作用。
3、本发明通过溶胶结合与有机结合剂包覆作用,提升了高铝质可塑料的结合性,延长了高铝质可塑料的保存时间,增强其致密度和强度。
本发明制备的高铝质可塑料经测定:硬化时间为12~16个月;1500℃×2h烧后体积密度为2.50~2.55g/cm3;1500℃×2h烧后冷态耐压强度为50~55MPa。
因此,本发明具有成本低廉、工艺简单的特点;所制备的高铝质可塑料的保存周期长、体积密度大和耐压强度高。
具体实施方式
下面结合具体实施方式对本发明作进一步的描述,并非对其保护范围的限制。
为避免重复,先将本具体实施方式所涉及的物料统一描述如下,实施例中不再赘述:
所述聚丙烯酸钠、聚乙二醇400和聚丙烯酰胺均为化学纯。
所述铝矾土的主要化学成分为:Al2O3含量为85~90wt%,SiO2含量为2~3wt%,Fe2O3含量≤0.2wt%,(Na2O+K2O)含量≤0.5wt%,(MgO+CaO)含量≤2wt%。
所述γ-氧化铝微粉的Al2O3含量≥98wt%。
所述氧化钇微粉的Y2O3含量≥99wt%。
所述ρ-氧化铝微粉的Al2O3含量≥98wt%;ρ-Al2O3微粉的粒度为60~80μm。
所述铝溶胶的Al2O3含量为25~30wt%。
实施例1
一种高铝质可塑料及其制备方法。本实施例所述制备方法的步骤是:
步骤一、按聚丙烯酸钠∶聚乙二醇400∶聚丙烯酰胺∶水的质量比为(1~3)∶(2~4)∶(2~4)∶100,在35~40℃水浴条件下,将聚丙烯酸钠、聚乙二醇400、聚丙烯酰胺和水置入容器中,搅拌5~8分钟,制得结合剂。
步骤二、按铝矾土︰γ-氧化铝微粉︰氧化钇微粉的质量比为100︰(10~12)︰(1~3),将铝矾土、γ-氧化铝微粉和氧化钇微粉混磨至粒度≤80μm,得到混合料。
步骤三、将所述混合料在20~30MPa条件下压制成型,再将成型后的坯体置于马弗炉中,在空气气氛和1400~1500℃条件下热处理1~2小时,随炉冷却,得到热处理后的物料。
步骤四、将所述热处理后的物料破碎,研磨,筛分,分别得到粒度为3~5mm的A物料、粒度为1~2mm的B物料、粒度为0.088~0.5mm的C物料和粒度小于80μm的D物料。
步骤五、将30~32wt%的所述A物料、33~35wt%的所述B物料、15~17wt%的所述C物料、10~12wt%的所述D物料和4~6wt%的ρ-氧化铝微粉加入搅拌机中,混合5~10分钟,制得混合均质料。
步骤六、按所述混合均质料︰铝溶胶︰所述结合剂的质量比为1︰(0.05~0.07)︰(0.05~0.07),向所述混合均质料中依次加入所述铝溶胶和所述结合剂,混合10~15分钟,然后在密封条件下困料12~24小时,即得高铝质可塑料。
本实施例制备的高铝质可塑料经测定:硬化时间为12~15个月;1500℃×2h烧后体积密度为2.50~2.52g/cm3;1500℃×2h烧后冷态耐压强度为50~52MPa。
实施例2
一种高铝质可塑料及其制备方法。本实施例所述制备方法的步骤是:
步骤一、按聚丙烯酸钠∶聚乙二醇400∶聚丙烯酰胺∶水的质量比为(1~3)∶(2~4)∶(2~4)∶100,在35~40℃水浴条件下,将聚丙烯酸钠、聚乙二醇400、聚丙烯酰胺和水置入容器中,搅拌5~8分钟,制得结合剂。
步骤二、按铝矾土︰γ-氧化铝微粉︰氧化钇微粉的质量比为100︰(11~13)︰(1~3),将铝矾土、γ-氧化铝微粉和氧化钇微粉混磨至粒度≤80μm,得到混合料。
步骤三、将所述混合料在20~30MPa条件下压制成型,再将成型后的坯体置于马弗炉中,在空气气氛和1400~1500℃条件下热处理1~2小时,随炉冷却,得到热处理后的物料。
步骤四、将所述热处理后的物料破碎,研磨,筛分,分别得到粒度为3~5mm的A物料、粒度为1~2mm的B物料、粒度为0.088~0.5mm的C物料和粒度小于80μm的D物料。
步骤五、将31~33wt%的所述A物料、32~34wt%的所述B物料、16~18wt%的所述C物料、11~13wt%的所述D物料和4~6wt%的ρ-氧化铝微粉加入搅拌机中,混合5~10分钟,制得混合均质料。
步骤六、按所述混合均质料︰铝溶胶︰所述结合剂的质量比为1︰(0.05~0.07)︰(0.05~0.07),向所述混合均质料中依次加入所述铝溶胶和所述结合剂,混合10~15分钟,然后在密封条件下困料12~24小时,即得高铝质可塑料。
本实施例制备的高铝质可塑料经测定:硬化时间为12~15个月;1500℃×2h烧后体积密度为2.51~2.53g/cm3;1500℃×2h烧后冷态耐压强度为51~53MPa。
实施例3
一种高铝质可塑料及其制备方法。本实施例所述制备方法的步骤是:
步骤一、按聚丙烯酸钠∶聚乙二醇400∶聚丙烯酰胺∶水的质量比为(2~4)∶(3~5)∶(3~5)∶100,在35~40℃水浴条件下,将聚丙烯酸钠、聚乙二醇400、聚丙烯酰胺和水置入容器中,搅拌5~8分钟,制得结合剂。
步骤二、按铝矾土︰γ-氧化铝微粉︰氧化钇微粉的质量比为100︰(12~14)︰(2~4),将铝矾土、γ-氧化铝微粉和氧化钇微粉混磨至粒度≤80μm,得到混合料。
步骤三、将所述混合料在20~30MPa条件下压制成型,再将成型后的坯体置于马弗炉中,在空气气氛和1500~1600℃条件下热处理1~2小时,随炉冷却,得到热处理后的物料。
步骤四、将所述热处理后的物料破碎,研磨,筛分,分别得到粒度为3~5mm的A物料、粒度为1~2mm的B物料、粒度为0.088~0.5mm的C物料和粒度小于80μm的D物料。
步骤五、将32~34wt%的所述A物料、31~33wt%的所述B物料、17~19wt%的所述C物料、12~14wt%的所述D物料和3~5wt%的ρ-氧化铝微粉加入搅拌机中,混合5~10分钟,制得混合均质料。
步骤六、按所述混合均质料︰铝溶胶︰所述结合剂的质量比为1︰(0.06~0.08)︰(0.06~0.08),向所述混合均质料中依次加入所述铝溶胶和所述结合剂,混合10~15分钟,然后在密封条件下困料12~24小时,即得高铝质可塑料。
本实施例制备的高铝质可塑料经测定:硬化时间为13~16个月;1500℃×2h烧后体积密度为2.52~2.54g/cm3;1500℃×2h烧后冷态耐压强度为52~54MPa。
实施例4
一种高铝质可塑料及其制备方法。本实施例所述制备方法的步骤是:
步骤一、按聚丙烯酸钠∶聚乙二醇400∶聚丙烯酰胺∶水的质量比为(2~4)∶(3~5)∶(3~5)∶100,在35~40℃水浴条件下,将聚丙烯酸钠、聚乙二醇400、聚丙烯酰胺和水置入容器中,搅拌5~8分钟,制得结合剂。
步骤二、按铝矾土︰γ-氧化铝微粉︰氧化钇微粉的质量比为100︰(13~15)︰(2~4),将铝矾土、γ-氧化铝微粉和氧化钇微粉混磨至粒度≤80μm,得到混合料。
步骤三、将所述混合料在20~30MPa条件下压制成型,再将成型后的坯体置于马弗炉中,在空气气氛和1500~1600℃条件下热处理1~2小时,随炉冷却,得到热处理后的物料。
步骤四、将所述热处理后的物料破碎,研磨,筛分,分别得到粒度为3~5mm的A物料、粒度为1~2mm的B物料、粒度为0.088~0.5mm的C物料和粒度小于80μm的D物料。
步骤五、将33~35wt%的所述A物料、30~32wt%的所述B物料、18~20wt%的所述C物料、13~15wt%的所述D物料和3~5wt%的ρ-氧化铝微粉加入搅拌机中,混合5~10分钟,制得混合均质料。
步骤六、按所述混合均质料︰铝溶胶︰所述结合剂的质量比为1︰(0.06~0.08)︰(0.06~0.08),向所述混合均质料中依次加入所述铝溶胶和所述结合剂,混合10~15分钟,然后在密封条件下困料12~24小时,即得高铝质可塑料。
本实施例制备的高铝质可塑料经测定:硬化时间为13~16个月;1500℃×2h烧后体积密度为2.53~2.55g/cm3;1500℃×2h烧后冷态耐压强度为53~55MPa。
本具体实施方式与现有技术相比具有如下积极效果:
1、本具体实施方式所用原料来源丰富,成本低廉,制备过程无需特殊设备和复杂的处理技术,工艺简单;
2、本具体实施方式利用有机组分的水解与电化学特性,促进结合剂的键合,提升结合剂的交联作用。
3、本具体实施方式通过溶胶结合与有机结合剂包覆作用,提升了高铝质可塑料的结合性,延长了高铝质可塑料的保存时间,增强其致密度和强度。
本具体实施方式制备的高铝质可塑料经测定:硬化时间为12~16个月;1500℃×2h烧后体积密度为2.50~2.55g/cm3;1500℃×2h烧后冷态耐压强度为50~55MPa。
因此,本具体实施方式具有成本低廉、工艺简单的特点;所制备的高铝质可塑料的保存周期长、体积密度大和耐压强度高。

Claims (6)

1.一种高铝质可塑料的制备方法,其特征在于所述制备方法的步骤是:
步骤一、按聚丙烯酸钠∶聚乙二醇400∶聚丙烯酰胺∶水的质量比为(1~4)∶(2~5)∶(2~5)∶100,在35~40℃水浴条件下,将聚丙烯酸钠、聚乙二醇400、聚丙烯酰胺和水置入容器中,搅拌5~8分钟,制得结合剂;
步骤二、按铝矾土︰γ-氧化铝微粉︰氧化钇微粉的质量比为100︰(10~15)︰(1~4),将铝矾土、γ-氧化铝微粉和氧化钇微粉混磨至粒度≤80μm,得到混合料;
步骤三、将所述混合料在20~30MPa条件下压制成型,再将成型后的坯体置于马弗炉中,在空气气氛和1400~1600℃条件下热处理1~2小时,随炉冷却,得到热处理后的物料;
步骤四、将所述热处理后的物料破碎,研磨,筛分,分别得到粒度为3~5mm的A物料、粒度为1~2mm的B物料、粒度为0.088~0.5mm的C物料和粒度小于80μm的D物料;
步骤五、将30~35wt%的所述A物料、30~35wt%的所述B物料、15~20wt%的所述C物料、10~15wt%的所述D物料和3~6wt%的ρ-氧化铝微粉加入搅拌机中,混合5~10分钟,制得混合均质料;
步骤六、按所述混合均质料︰铝溶胶︰所述结合剂的质量比为1︰(0.05~0.08)︰(0.05~0.08),向所述混合均质料中依次加入所述铝溶胶和所述结合剂,混合10~15分钟,然后在密封条件下困料12~24小时,即得高铝质可塑料;
所述聚丙烯酸钠、聚乙二醇400和聚丙烯酰胺均为化学纯;
所述铝矾土的主要化学成分为:Al2O3含量为85~90wt%,SiO2含量为2~3wt%,Fe2O3含量≤0.2wt%,(Na2O+K2O)含量≤0.5wt%,(MgO+CaO)含量≤2wt%。
2.根据权利要求1所述的高铝质可塑料的制备方法,其特征在于所述γ-氧化铝微粉的Al2O3含量≥98wt%。
3.根据权利要求1所述的高铝质可塑料的制备方法,其特征在于所述氧化钇微粉的Y2O3含量≥99wt%。
4.根据权利要求1所述的高铝质可塑料的制备方法,其特征在于所述ρ-氧化铝微粉的Al2O3含量≥98wt%;ρ-Al2O3微粉的粒度为60~80μm。
5.根据权利要求1所述的高铝质可塑料的制备方法,其特征在于所述铝溶胶的Al2O3含量为25~30wt%。
6.一种高铝质可塑料,其特征在于所述高铝质可塑料是根据权利要求1~5项中任一项所述的高铝质可塑料的制备方法所制备的高铝质可塑料。
CN201710412830.9A 2017-06-05 2017-06-05 一种高铝质可塑料及其制备方法 Active CN107188547B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710412830.9A CN107188547B (zh) 2017-06-05 2017-06-05 一种高铝质可塑料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710412830.9A CN107188547B (zh) 2017-06-05 2017-06-05 一种高铝质可塑料及其制备方法

Publications (2)

Publication Number Publication Date
CN107188547A CN107188547A (zh) 2017-09-22
CN107188547B true CN107188547B (zh) 2019-10-11

Family

ID=59877076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710412830.9A Active CN107188547B (zh) 2017-06-05 2017-06-05 一种高铝质可塑料及其制备方法

Country Status (1)

Country Link
CN (1) CN107188547B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108569906A (zh) * 2018-04-27 2018-09-25 武汉科技大学 一种轻量隔热耐磨浇注料及其制备方法
CN108395263A (zh) * 2018-04-27 2018-08-14 武汉科技大学 一种保温耐磨耐火浇注料及其制备方法
CN109206129A (zh) * 2018-09-25 2019-01-15 宜兴市集创新材料科技有限公司 一种莫来石复相高强耐磨可塑料及其制备方法
CN110627490B (zh) * 2019-10-25 2022-02-01 中冶武汉冶金建筑研究院有限公司 一种环保自流铝硅质耐火压注料的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101544504A (zh) * 2009-05-08 2009-09-30 巩义市金岭耐火材料有限公司 一种磷酸盐结合铝碳化硅砖及其制备方法
CN102030550A (zh) * 2010-11-03 2011-04-27 通达耐火技术股份有限公司 一种含均质料的刚玉-莫来石质高强耐磨可塑料
CN102351522A (zh) * 2011-07-15 2012-02-15 郑州大学 一种用蓝晶石制备莫来石均质料的制备方法
CN103951393A (zh) * 2014-04-01 2014-07-30 浙江立鑫高温耐火材料有限公司 高铝质阻流块
CN104496432A (zh) * 2014-12-29 2015-04-08 阳泉金隅通达高温材料有限公司 一种改性烧结刚玉的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100210444A1 (en) * 2009-02-19 2010-08-19 Rhoads Randy L Large refractory article and method for making

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101544504A (zh) * 2009-05-08 2009-09-30 巩义市金岭耐火材料有限公司 一种磷酸盐结合铝碳化硅砖及其制备方法
CN102030550A (zh) * 2010-11-03 2011-04-27 通达耐火技术股份有限公司 一种含均质料的刚玉-莫来石质高强耐磨可塑料
CN102351522A (zh) * 2011-07-15 2012-02-15 郑州大学 一种用蓝晶石制备莫来石均质料的制备方法
CN103951393A (zh) * 2014-04-01 2014-07-30 浙江立鑫高温耐火材料有限公司 高铝质阻流块
CN104496432A (zh) * 2014-12-29 2015-04-08 阳泉金隅通达高温材料有限公司 一种改性烧结刚玉的制备方法

Also Published As

Publication number Publication date
CN107188547A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
CN107188547B (zh) 一种高铝质可塑料及其制备方法
CN101462886A (zh) 一种Al2O3-MgO系耐火材料浇注料及其制备方法
CN107266052B (zh) 矾土-钛铝酸钙-碳化硅复相耐火材料及其制备方法
WO2022062293A1 (zh) 一种高性能节能型镁基原料及其制备方法
CN102827455A (zh) 高粘接强度聚醚醚酮基口腔专用材料及其制备方法
CN106518043B (zh) 低成本铝钙硅质锡槽底砖的制备方法
CN106187218A (zh) 一种氧化铬耐火材料及其制备方法
CN111718184A (zh) 一种煅烧高温烤箱用氧化镁粉、其制备方法及用途
CN111718198A (zh) 一种用于陶瓷材料制备的多元烧结助剂添加方法
CN111393174A (zh) 利用粉煤灰制造m47耐火材料的方法
KR20130107941A (ko) 복합재료 강화재용 탄소나노튜브의 제조방법
CN106830955A (zh) 一种微波干燥制备不烧改性高纯镁铝尖晶石复合砖的方法
WO2022062292A1 (zh) 一种低导热低热膨胀镁基原料及其制备方法
CN103351490A (zh) 一种丁腈橡胶/纳米氮化铝复合橡胶密封垫及其制备方法
CN113264544A (zh) 一种降低氧化铝吸油值和粘度的方法
CN108359235A (zh) 一种新型绝缘复合材料及其制备方法
CN105218081B (zh) 一种以非金属硼化物为烧结助剂硅酸钙生物陶瓷的制备方法
CN110128133B (zh) 钛酸钡钙基无铅压电陶瓷及其制备方法
CN108178615B (zh) 一种微波陶瓷介质烧结粉体材料、微波介质陶瓷及其应用
CN108658611B (zh) 一种堇青石结合六铝酸钙匣钵及其制备方法
CN106396704A (zh) 一种富镁不定形耐火材料及其制备方法
CN104016690B (zh) 一种高强度低膨胀镁尖晶石砖的制备方法
CN107056254B (zh) 一种镁质可塑料及其制备方法
JPWO2019124147A1 (ja) ガラス被覆窒化アルミニウム粒子、その製造方法およびそれを含む放熱性樹脂組成物
CN110627490B (zh) 一种环保自流铝硅质耐火压注料的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220915

Address after: 556000 southwest of No. 15 road, Lushan Industrial Park, Kaili City, Qiandongnan Miao and Dong Autonomous Prefecture, Guizhou Province

Patentee after: Guizhou Huaxin New Material Co.,Ltd.

Address before: 430081 No. 947 Heping Avenue, Qingshan District, Hubei, Wuhan

Patentee before: WUHAN University OF SCIENCE AND TECHNOLOGY