CN107180883A - 基于InGaN光子单片集成的多维空间可见光通信系统 - Google Patents

基于InGaN光子单片集成的多维空间可见光通信系统 Download PDF

Info

Publication number
CN107180883A
CN107180883A CN201710308064.1A CN201710308064A CN107180883A CN 107180883 A CN107180883 A CN 107180883A CN 201710308064 A CN201710308064 A CN 201710308064A CN 107180883 A CN107180883 A CN 107180883A
Authority
CN
China
Prior art keywords
ingan
visible light
hyperspace
photons
quantum well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710308064.1A
Other languages
English (en)
Inventor
王永进
蒋燕
杨永超
高绪敏
袁佳磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201710308064.1A priority Critical patent/CN107180883A/zh
Publication of CN107180883A publication Critical patent/CN107180883A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/165Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the semiconductor sensitive to radiation being characterised by at least one potential-jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by at least one potential or surface barrier
    • H01L31/173Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by at least one potential or surface barrier formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了基于InGaN光子单片集成的多维空间可见光通信系统,该系统的InGaN光子集成芯片是由四个InGaN多量子阱器件和三个波导组成。InGaN多量子阱器件的发射光可以在片内耦合,也可以在片外透射,并且传输的光信号能被检测。集成芯片中的InGaN多量子阱器件既可作为发光源,散发出的平行于平面的光,通过波导耦合传输到另一个多量子阱器件中,也可作为光电探测器,将接收到的光信号转化为电信号,实现片内一对多的全双工光通信。集成芯片上器件发的光除了耦合到波导中,其余的发散到空间中,用商用光电探测器探测所传输的光信号,所探测到的信号与计算信号相符合。本发明实现了基于InGaN光子单片集成的多维空间可见光通信,为多维可见光通信研究奠定了基础。

Description

基于InGaN光子单片集成的多维空间可见光通信系统
技术领域
本发明涉及基于InGaN光子单片集成的多维空间可见光通信系统,属于可见光通信的技术领域。
背景技术
目前,可见光无线通信技术(LightFidelity,Lifi)利用电信号控制发光二极管发出的肉眼看不到的高速闪烁信号来传输信息,但存在着无法反向通信的问题;现有全双工通信系统采用频分复用或波分复用等技术实现单信道全双工,占用的频谱和光谱资源较多。
而InGaN材料具有良好的光电效应,具有更高的禁带宽度,更大的电子饱和漂移速度,更强的临近击穿电场,更高的热导率以及热稳定性等特性,是制备高频、高温、高压、大功率器件的理想材料。研究表明InGaN材料具有发光、导光以及探测光等多种特性,可以利用光子集成技术可以将InGaN材料制成的光源、波导和探测器集成于一体。这为发展微纳可见光通信、光子互联及光学微电子器件提供了新的方向。
发明内容
本发明目的在于针对上述现有技术的不足,提出了基于InGaN光子单片集成的多维空间可见光通信系统,该系统的InGaN光子集成芯片是由四个InGaN多量子阱器件和三个波导组成。InGaN多量子阱器件的发射光可以在片内耦合,也可以在片外透射,并且传输的光信号能被检测,因此实现多维空间可见光通信。集成芯片中的InGaN多量子阱器件既可作为发光源,散发出的平行于平面的光,通过波导耦合传输到另一个多量子阱器件中,也可作为光电探测器,将接收到的光信号转化为电信号,实现片内一对多的全双工光通信。集成芯片上器件发的光除了耦合到波导中,其余发散到空间中,用商用光电探测器探测所传输的光信号,所接收到的信号与计算信号相符合,该系统实现了基于InGaN光子单片集成的多维空间可见光通信,为多维可见光通信研究奠定了基础。
本发明解决其技术问题所采取的技术方案是:一种基于InGaN光子单片集成的多维空间可见光通信系统,该系统的芯片以硅基氮化物材料为基底,从下往上一次为硅衬底层1、外延缓冲层2、纯GaN层3、n-电极5、悬空p-n结量子阱器件;所述p-n结量子阱器件包括从下至上依次为n-GaN层4、InGaN/GaN多量子阱6和p-GaN层7,p-电极8。在所述n-GaN层4上表面有刻蚀出的阶梯状台面,所述阶梯状台面包括下台面和上台面,所述n-电极5设置在下台面,所述上台面与InGaN/GaN多量子阱6的底面相连接;在所述n-GaN层4经过背后衬底层1剥离,减薄后获得所述悬空薄膜区15。所述悬空薄膜区15包括悬空n电极区11、悬空p电极区14、和悬空波导17,所述悬空波导17中间是用于隔离两个p区的隔离槽16。所述p-电极8包括依次连接的p-电极引线区12、p-电极导电区13和悬空p-电极区14;所述n-电极5包括一次连接的n-电极引线区9、n-电极导电区10和悬空n电极区11。
进一步的,本发明基于InGaN光子单片集成的多维空间可见光通信系统中,光子集成的量子阱结构芯片,以硅基氮化物晶片为载体,从下至上的结构依次为硅衬底层、外延缓冲层、纯GaN层、四个悬空p-n结量子阱器件以及三个悬空波导;所述p-n结量子阱器件从下至上依次为n-GaN层、InGaN/GaN多量子阱、p-GaN层和p-电极,在所述n-GaN层上表面有刻蚀出的阶梯状台面,所述阶梯状台面包括下台面和上台面,所述n-电极设置在下台面上,所述上台面与InGaN/GaN多量子阱的底面相连接。所述n-GaN层经过背后衬底层剥离,减薄后获得所述悬空薄膜区。
进一步的,本发明的p-n结量子阱结构位于悬空薄膜区上,所述悬空薄膜区包括悬空p电极区、悬空波导和悬空n电极区,所述悬空波导中间是用于隔离两个p区的隔离槽。所述p-电极包括依次连接的悬空p-电极区、p-电极导电区和p-电极引线区;所述n-电极包括依次连接的悬空n电极区、n-电极导电区和n-电极引线区。对于悬空波导、p电极和n电极,除了p电极引线区、n电极引线区以及部分导电区以外的其他结构都位于悬空薄膜区上。每个p-n结之间都有隔离区来隔离p-n结,防止p-n结之间的电学影响。
进一步的,本发明的基于InGaN光子单片集成的多维空间可见光通信系统中包括片内全双工通信系统和片外通信系统。所述的片内全双工通信系统中,InGaN多量子阱器件作为发光源的同时也探测另一个InGaN多量子阱器件通过悬空波导传输过来的光信号,通过自干扰消除方法提取出有效叠加信号。所述片外通信系统中,多个InGaN多量子阱器件发光,通过物镜,汇聚到商用光电探测器上,接收的信号与理论计算的信号相符合。
本发明包括片内全双工通信系统和片外通信系统,基于InGaN光子集成芯片,该集成芯片采用光子作为信息传输的载体,使信息在传输中所造成的信息畸变和失真极小,光传输、转换时能量消耗和散发热量极低。同时,InGaN多量子阱器件既可作为光源,也可作为光电探测器使用,实现晶体管源、漏极的双向利用。
本发明的多维空间可见光通信系统中,InGaN多量子阱器件同时发光并作为光探测器时,根据提取的传输信号,通过自干扰消除的方法提取出有效的叠加信号,实现片内全双工通信。多个InGaN多量子阱器件同时发光,除了耦合到波导中的光,发散出来的光通过物镜、平面透镜聚集到商用光电探测器上,探测到多个InGaN多量子阱器件所发送的信号,接收到的信号与理论上计算的多个发送信号叠加在一起的信号相符合。
本发明的芯片是基于悬空p-n结量子阱的光致晶体管。基于硅衬底的氮化物材料的光致晶体管,利用各向异性硅刻蚀技术,并采用背后减薄刻蚀技术,获得超薄的悬空光子集成器件。
本发明是在空间上的多维可见光通信,不同于单向和双向的可见光通信系统,本发明中片内一对多的全双工通信,片外多维通信均能实现。
有益效果:
1、本发明是基于InGaN光子单片集成的多维空间可见光通信系统,相较于单一信道可见光通信系统,利用多维空间传输光信息,实现多路信道并行传输,克服调制带宽限制,提升可见光通信系统传输容量。
2、本发明提出的多维空间可见光通信系统基于InGaN光子集成芯片,该集成芯片相较于其他光致晶体管集成芯片,其中的悬空波导作为一个桥梁将光致晶体管的发射极与集电极相连,且波导两边与悬空薄膜完全隔开,即发射极的光是通过波导耦合进集电极的,不受悬空薄膜的影响。
3、本发明是基于InGaN光子单片集成的多维空间可见光通信系统,相较于现有的将下链路隔离实现全双工的可见光通信系统,利用基于InGaN的p-n结量子阱器件具有同时发光、探测光信号的特性,将光源、光波导和光探测器集成在一起,因此只需一对器件就可以完成全双工,从而节省一半的设备资源损耗。
附图说明
图1是本发明基于InGaN光子单片集成的多维空间光通信系统的器件前视图。
图2是本发明基于InGaN光子单片集成的多维空间光通信系统的器件结构示意图。
图3是本发明基于InGaN光子单片集成的多维空间光通信系统的通信系统结构图。
图4是本发明基于InGaN光子单片集成的多维空间光通信系统中片内双工通信和片外通信的信号示意图。
标识说明:1-硅衬底层;2-外延缓冲层;3-纯GaN层;4-n-GaN;5-n-电极;6-InGaN/GaN多量子阱;7-p-GaN层;8-p-电极;9-n-电极引线区;10-n-电极导电区;11-悬空n-电极区;12-p-电极引线区;13-p-电极导电区;14-悬空p-电极区;15-悬空薄膜区;16-隔离槽;17-悬空波导;18-隔离区。
具体实施方式
下面结合说明书附图对本发明创造作进一步的详细说明。
图1给出了本发明基于InGaN的多维空间可见光通信的芯片前视图。该芯片以硅基氮化物材料为基底,从下往上一次为硅衬底层1、外延缓冲层2、纯GaN层3、n-电极5、悬空p-n结量子阱器件;所述p-n结量子阱器件包括从下至上依次为n-GaN层4、InGaN/GaN多量子阱6和p-GaN层7,p-电极8。在所述n-GaN层4上表面有刻蚀出的阶梯状台面,所述阶梯状台面包括下台面和上台面,所述n-电极5设置在下台面,所述上台面与InGaN/GaN多量子阱6的底面相连接;在所述n-GaN层4经过背后衬底层1剥离,减薄后获得所述悬空薄膜区15。所述悬空薄膜区15包括悬空n电极区11、悬空p电极区14、和悬空波导17,所述悬空波导17中间是用于隔离两个p区的隔离槽16。所述p-电极8由依次连接的p-电极引线区12、p-电极导电区13和悬空p-电极区14组成;所述n-电极5由一次连接的n-电极引线区9、n-电极导电区10和悬空n电极区11组成。
图2给出了本发明基于InGaN光子单片集成的多维空间光通信系统的器件结构示意图。本发明基于InGaN的多维空间可见光通信芯片中有四个p-n结光量子阱器件,器件1和器件2是其中一对p-n结光量子阱器件。为了达到更好的电学隔离效果,在波导中间都添加了隔离槽16,使得p区与p区之间有足够的隔离间隔,防止p区间电学导通,并且p-n结光量子阱器件之间添加了隔离区18,防止p-n结光量子阱器件之间有电学影响。图2中所示的三个发射极的p-n结光量子阱器件不仅结构一致,材料和特性也是完全一致的,这不仅降低了芯片单片集成的难度,也是实现本发明中片内全双工通信的基础。
图3给出了系统通信示意图。本发明基于InGaN的多维空间可见光通信系统,包括片内全双工通信系统和片外通信系统。所述片内全双工通信系统中,用50Mbps传输速率的伪随机码序列驱动两个InGaN多量子阱器件,即图2中的器件1和器件2,同时发光,器件1和器件2发出的光均耦合到悬空波导中,探测器件1和器件2接收到的信号,通过自干扰消除方法提取出有效的叠加信号。所述片外通信系统中,50Mbps的伪随机码序列驱动器件1和器件2同时发光,光发散到空间中,通过二十倍放大物镜变成平行光,再经过四倍的物镜汇集起来,用Hamamatsu C12702-12的商用光电探测器接收光信号,并转换为电信号。
图4(a)给出了上所述器件1和器件2片内全双通信时接收的50Mbps传输速率的信号。图4(b)(c)分别给出了上所述片内全双工通信系统选中,根据器件1和器件2发送的信号,通过自干扰消除发,提取出的有效叠加信号。本发明中基于InGaN光子单片集成上的p-n结光致晶体管不仅能发送光信号,也能探测光信号,是实现片内全双工的基础。图4(d)给出了上述片外商用探测器接收到的信号,接收到的信号与理论计算的接收的信号相符合,所以片外通信通过信号的叠加,实现多维的通信。
根据上述,本发明基于InGaN光子单片集成的多维空间可见光通信系统,实现片内一对多的全双工通信,片外多维通信,促进了光子单片集成和可见光通信的发展。
上述实施例仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,根据说明书中的技术方案,能直接实现,所以在不脱离本发明原理的前提下,还可以做出若干改进和等同替换,这些对本发明权利要求进行改进和等同替换后的技术方案,均落入本发明的保护范围。

Claims (5)

1.基于InGaN光子单片集成的多维空间可见光通信系统,其特征在于,所述系统的芯片以硅基氮化物材料为基底,从下往上一次为硅衬底层(1)、外延缓冲层(2)、纯GaN层(3)、n-电极(5)、悬空p-n结量子阱器件,所述p-n结量子阱器件包括从下至上依次为n-GaN层(4)、InGaN/GaN多量子阱(6)和p-GaN层(7),p-电极(8),在所述n-GaN层(4)上表面有刻蚀出的阶梯状台面,所述阶梯状台面包括下台面和上台面,所述n-电极(5)设置在下台面,所述上台面与InGaN/GaN多量子阱(6)的底面相连接,在所述n-GaN层(4)经过背后衬底层(1)剥离,减薄后获得所述悬空薄膜区(15),所述悬空薄膜区(15)包括悬空n电极区(11)、悬空p电极区(14)、和悬空波导(17),所述悬空波导(17)中间是用于隔离两个p区的隔离槽(16),所述p-电极(8)包括依次连接的p-电极引线区(12)、p-电极导电区(13)和悬空p-电极区(14),所述n-电极(5)包括一次连接的n-电极引线区(9)、n-电极导电区(10)和悬空n电极区(11)。
2.根据权利要求1所述的基于InGaN光子单片集成的多维空间可见光通信系统,其特征在于:所述系统的InGaN光子集成芯片,该芯片是基于悬空p-n结量子阱的光致晶体管,基于硅衬底的氮化物材料的光致晶体管,利用各向异性硅刻蚀技术,并采用背后减薄刻蚀技术,获得超薄的悬空光子集成器件。
3.根据权利要求1所述的基于InGaN光子单片集成的多维空间可见光通信系统,其特征在于:所述系统的InGaN多量子阱器件同时发光并作为光探测器时,根据提取的传输信号,通过自干扰消除的方法提取出有效的叠加信号,实现片内全双工通信,多个InGaN多量子阱器件同时发光,除了耦合到波导中的光,发散出来的光通过物镜、平面透镜聚集到商用光电探测器上,探测到多个InGaN多量子阱器件所发送的信号,接收到的信号与理论上计算的多个发送信号叠加在一起的信号相符合。
4.根据权利要求1所述的基于InGaN光子单片集成的多维空间可见光通信系统,其特征在于:所述系统是在空间上的多维可见光通信。
5.根据权利要求1所述的基于InGaN光子单片集成的多维空间可见光通信系统,其特征在于:所述系统中片内一对多的全双工通信,片外多维通信均能实现。
CN201710308064.1A 2017-05-04 2017-05-04 基于InGaN光子单片集成的多维空间可见光通信系统 Pending CN107180883A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710308064.1A CN107180883A (zh) 2017-05-04 2017-05-04 基于InGaN光子单片集成的多维空间可见光通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710308064.1A CN107180883A (zh) 2017-05-04 2017-05-04 基于InGaN光子单片集成的多维空间可见光通信系统

Publications (1)

Publication Number Publication Date
CN107180883A true CN107180883A (zh) 2017-09-19

Family

ID=59832089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710308064.1A Pending CN107180883A (zh) 2017-05-04 2017-05-04 基于InGaN光子单片集成的多维空间可见光通信系统

Country Status (1)

Country Link
CN (1) CN107180883A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107968679A (zh) * 2017-11-20 2018-04-27 南京艾凯特光电科技有限公司 可见光通信装置
CN108038549A (zh) * 2017-12-05 2018-05-15 姜年权 一种通用量子计算机中央处理器及其操纵方法
CN108809421A (zh) * 2018-05-25 2018-11-13 南京艾凯特光电科技有限公司 可见光双工通信装置
CN109906517A (zh) * 2016-12-30 2019-06-18 德州仪器公司 光学隔离系统和电路以及具有延伸横向p-n结的光子检测器
CN110716260A (zh) * 2019-09-12 2020-01-21 南京工程学院 同质集成激光器、反射镜和探测器的通信芯片及制备方法
CN112034550A (zh) * 2020-08-26 2020-12-04 华东师范大学重庆研究院 基于悬空波导结构的氮化硅相控阵芯片
CN113178504A (zh) * 2021-03-10 2021-07-27 厦门大学 同步上下行光照明通信单芯片器件及制造方法和应用
CN113314561A (zh) * 2021-05-27 2021-08-27 复旦大学 一种深紫外波段发光单片集成器件及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638511A (zh) * 2013-11-08 2015-05-20 南京大学科技园发展有限公司 基于重构-等效啁啾以及串联/并联混合集成技术的低成本可调谐半导体激光器的方法及装置
CN105428305A (zh) * 2015-11-20 2016-03-23 南京邮电大学 悬空led光波导光电探测器单片集成器件及其制备方法
CN105742383A (zh) * 2016-02-25 2016-07-06 南京邮电大学 悬空p-n结量子阱器件和光波导单片集成系统及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638511A (zh) * 2013-11-08 2015-05-20 南京大学科技园发展有限公司 基于重构-等效啁啾以及串联/并联混合集成技术的低成本可调谐半导体激光器的方法及装置
CN105428305A (zh) * 2015-11-20 2016-03-23 南京邮电大学 悬空led光波导光电探测器单片集成器件及其制备方法
CN105742383A (zh) * 2016-02-25 2016-07-06 南京邮电大学 悬空p-n结量子阱器件和光波导单片集成系统及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WEI CAI: ""On-chip integration of suspended InGaN/GaN multiple-quantum-well devices with versatile functionalities"", 《OPTICS EXPRESS》 *
YONGCHAO YANG: ""Multi-dimensional spatial light communication made with on-chip InGaN photonic integration"", 《OPTICAL MATERIALS》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109906517A (zh) * 2016-12-30 2019-06-18 德州仪器公司 光学隔离系统和电路以及具有延伸横向p-n结的光子检测器
CN107968679A (zh) * 2017-11-20 2018-04-27 南京艾凯特光电科技有限公司 可见光通信装置
CN108038549A (zh) * 2017-12-05 2018-05-15 姜年权 一种通用量子计算机中央处理器及其操纵方法
CN108038549B (zh) * 2017-12-05 2021-11-02 姜年权 一种通用量子计算机中央处理器及其操纵方法
CN108809421A (zh) * 2018-05-25 2018-11-13 南京艾凯特光电科技有限公司 可见光双工通信装置
CN110716260A (zh) * 2019-09-12 2020-01-21 南京工程学院 同质集成激光器、反射镜和探测器的通信芯片及制备方法
CN110716260B (zh) * 2019-09-12 2020-07-07 南京工程学院 同质集成激光器、反射镜和探测器的通信芯片及制备方法
CN112034550A (zh) * 2020-08-26 2020-12-04 华东师范大学重庆研究院 基于悬空波导结构的氮化硅相控阵芯片
CN113178504A (zh) * 2021-03-10 2021-07-27 厦门大学 同步上下行光照明通信单芯片器件及制造方法和应用
CN113314561A (zh) * 2021-05-27 2021-08-27 复旦大学 一种深紫外波段发光单片集成器件及制备方法

Similar Documents

Publication Publication Date Title
CN107180883A (zh) 基于InGaN光子单片集成的多维空间可见光通信系统
US11081622B2 (en) III-nitride multi-wavelength LED for visible light communication
CN107195690A (zh) 基于p‑n结量子阱二极管器件的全双工通信芯片及制备方法
US10514500B2 (en) Device integrating suspended LED, optical waveguide and photoelectric detector on same chip, and fabrication method thereof
CN105915284B (zh) 一种双向传输的可见光通信装置
JP3465017B2 (ja) 照明光送信装置、照明光受信装置及び蛍光体タイプ照明光通信システム
CN109906517B (zh) 光学隔离系统和电路以及具有延伸横向p-n结的光子检测器
Shi et al. Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics
US9417396B2 (en) Optoelectronic switch
CN105742383B (zh) 悬空p‑n结量子阱器件和光波导单片集成系统及其制备方法
CN103872168B (zh) 用于硅基光电集成电路芯片中的光电探测器及制备方法
CN105633194B (zh) 基于悬空p‑n结量子阱的光致晶体管及其制备方法
Wang et al. Simultaneous light emission and detection of InGaN/GaN multiple quantum well diodes for in-plane visible light communication
EP2490263A3 (en) Optocoupler circuit
CN109920786B (zh) 同质集成光电子装置
CN112234118B (zh) 一种可见光通信的微型阵列光收发集成芯片及制作方法
CN107968679A (zh) 可见光通信装置
WO2019112206A1 (ko) 엘이디 디스플레이 패널 및 그 제조방법
CN110364090A (zh) 微型发光二极管显示器及其制作方法
CN110379818A (zh) 微型发光二极管显示器及其制作方法
CN108809421A (zh) 可见光双工通信装置
JP2004501502A (ja) 光学的な送信・受信装置を製造する方法、およびこれに基づいて製造された光学的な送信・受信装置
CN113125005A (zh) 一种光电感应装置和光电系统
Goosen et al. A high-speed 0.35 µm CMOS optical communication link
CN108566246A (zh) 一种基于led光源室内通信系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170919