CN112034550A - 基于悬空波导结构的氮化硅相控阵芯片 - Google Patents

基于悬空波导结构的氮化硅相控阵芯片 Download PDF

Info

Publication number
CN112034550A
CN112034550A CN202010870062.3A CN202010870062A CN112034550A CN 112034550 A CN112034550 A CN 112034550A CN 202010870062 A CN202010870062 A CN 202010870062A CN 112034550 A CN112034550 A CN 112034550A
Authority
CN
China
Prior art keywords
waveguide
silicon nitride
output
section
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010870062.3A
Other languages
English (en)
Other versions
CN112034550B (zh
Inventor
曾和平
冯吉军
胡梦云
李小军
谭庆贵
葛锦蔓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Langyan Technology Co ltd
East China Normal University
Chongqing Institute of East China Normal University
Shanghai Langyan Optoelectronics Technology Co Ltd
Yunnan Huapu Quantum Material Co Ltd
Chongqing Huapu Intelligent Equipment Co Ltd
Original Assignee
East China Normal University
Chongqing Institute of East China Normal University
Shanghai Langyan Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University, Chongqing Institute of East China Normal University, Shanghai Langyan Optoelectronics Technology Co Ltd filed Critical East China Normal University
Priority to CN202010870062.3A priority Critical patent/CN112034550B/zh
Publication of CN112034550A publication Critical patent/CN112034550A/zh
Priority to US17/337,969 priority patent/US11598917B2/en
Application granted granted Critical
Publication of CN112034550B publication Critical patent/CN112034550B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12014Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the wavefront splitting or combining section, e.g. grooves or optical elements in a slab waveguide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12016Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the input or output waveguides, e.g. tapered waveguide ends, coupled together pairs of output waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12061Silicon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/1215Splitter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种基于悬空波导结构的氮化硅相控阵芯片,包括氮化硅波导区域、悬空波导区域两部分;其中氮化硅波导区域二由硅基衬底、二氧化硅缓冲层、二氧化硅包层、基于氮化硅波导的芯层组成;芯层包括光分束单元、第一弯曲波导、热光移相器、模斑变换器;悬空波导区域包括第二弯曲波导和阵列光栅天线。本发明对于视频成像、生物荧光检测、光学相控阵光束偏转及扫描具有较好的应用前景。

Description

基于悬空波导结构的氮化硅相控阵芯片
技术领域
本发明属于集成光子芯片技术领域,具体涉及一种1550nm波段基于悬空波导结构的氮化硅相控阵芯片。
背景技术
随着硅基光电子集成技术的迅猛发展,硅基光子学技术已被广泛研究,在一个芯片上可以集成成千上万个光电子器件,此技术适用于制作激光雷达的光发射模块,称为光学相控阵。大量以硅材料为衬底制作的红外光光束扫描芯片,广泛应用于激光雷达系统以及光通信系统中,并且展现了低损耗,高精度,高稳定性,抗干扰,小尺寸和快速扫描等特性。硅基光电子技术是利用互补金属氧化物半导体(CMOS)工艺实现光子器件的集成制备,该技术结合了CMOS技术超大规模逻辑、超高精度制造的特性和超高速率、超低损耗的优势,成本相对低廉、集成度高,在制作光束扫描芯片邻域有着重要应用。
利用硅基光电子集成技术制作的光控相控阵芯片,工作在光通信波段(约1550nm),此工作波段对人眼安全,有利于激光雷达产品进入民生领域。同时由于硅基光电子技术与集成电路技术完全兼容,可在单片上同时集成光束扫描器件和控制集成电路,有利于实现智能化控制和神经网络集成等。
光学相控阵是一种光束指向技术。激光光源经过光分束器后进入光波导阵列,在波导上通过外加控制的方式改变光波的相位,利用波导间的光波相位差来实现光束扫描,其原理类似于多缝干涉。光波导阵列中的每根波导都相当于一个光发射源,每个光发射源都相当于多缝干涉中的狭缝。光在空间中传播并干涉,其结果是光在某一方向上因干涉加强而集中,在其他方向上因干涉相消而减弱,从而改变光束的传播方向,实现扫描。
相控阵的一维扫描主要分为两种方式:一种为利用热光相位调制实现光束扫描,这种方法只需要单色的激光源,扫描角度较大,缺点是片上需要集成电极,复杂度增加;另一种为利用波长实现光束扫描,这种方法需要可调谐的激光源,扫描角度较小。
氮化硅作为一种新型的光子平台材料,具有优良的光电特性,绝缘耐压性能以及机械性能,广泛运用于光电子和微电子集成中。氮化硅光波导具有芯包层折射率差适中、器件尺寸小、集成度高、性能稳定性高等优点,较之于目前的绝缘衬底上硅(SOI)技术,其制作成本低且制备工艺简单,且具有可见到红外的宽透射光谱范围。在可见光相控阵应用方面,视频成像、生物荧光检测等都有涉及。由于氮化硅材料的优良特性,国内外对于氮化硅波导的光器件研究广泛,例如微环谐振腔,光栅耦合器,光束分束器等。氮化硅波导平台也可用于相控阵光束偏转【在先技术:Nicola A.Tyler,et al.,"SiN integrated opticalphased arrays for two-dimensional beam steering at a single near-infraredwavelength,"Opt.Express 27,5851-5858(2019)】。
但受限于氮化硅芯层与氧化硅包层的折射率差,波导阵元间距小时,相邻波导间易发生耦合串扰,使得远场出射光束质量恶化。故而,目前已报道的氮化硅相控阵光束偏转芯片通常波导阵元间距较大,导致旁瓣离主峰位置较近,限制了光束扫描范围。降低小间距氮化硅波导阵元间的耦合串扰,解决远场光束扫描范围小的瓶颈,一直都是氮化硅相控阵芯片应用所需解决的重大难点问题。
发明内容
本发明的目的在于提供一种基于悬空波导结构的氮化硅相控阵芯片,可实现1550nm波段光的均匀分束和宽视场大角度光束扫描。为了达到扫描角度大则要求光栅出射天线栅瓣距离远,阵元天线间距小(可实现左右±45°光束偏转),在本发明中即相邻氮化硅直波导间距小,但是过小的阵元间距会发生串扰,波导之间耦合现象严重,为解决串扰问题并实现大角度光束扫描,本发明所采用的技术方案为:
一种基于悬空波导结构的氮化硅相控阵芯片,包括:氮化硅波导区域、悬空波导区域;所述氮化硅波导区域,由硅基衬底、二氧化硅缓冲层、二氧化硅包层、基于氮化硅波导的芯层组成;所述基于氮化硅波导的芯层包括光分束单元、第一弯曲波导、热光移相器、模斑变换器;
所述悬空波导区域包括第二弯曲波导和阵列光栅天线;所述光分束单元、第一弯曲波导、移相器和模斑变换器都位于所述二氧化硅包层内且位于所述二氧化硅缓冲层上;所述悬空波导区域包括第二弯曲波导和阵列光栅天线;
波长为1550nm光束依次经过光分束单元、第一弯曲波导、热光移相器、模斑变换器、第二弯曲波导和阵列光栅天线;
优选的,所述光分束单元包括多个基于氮化硅波导的分束器;所述分束器的工作波长是1550nm;所述光分束单元包括1个输入1x2分束器、2个1x2分束器和4个并联的输出1x2分束器;所述输入分束器和输出分束器串联;所述输入分束器和输出分束器设有1个输入端口和2个输出端口;
优选的,,所述分束器包括依次连接的输入段、多模干涉耦合段和输出段;所述输入段包括输入直波导段和与所述输入直波导段连接的输入锥形波导段;所述输入锥形波导段的大端连接所述多模干涉耦合段;
所述输出段包括2个输出锥形波导段和与所述输出锥形波导段分别连接的输出直波导段;所述输出锥形波导段的大端与所述多模干涉耦合段连接;
优选的,,所述多模干涉耦合段的宽度10μm;所述多模干涉耦合段的长度为58.4μm;
所述分束器的工作波长为中心波长1550nm处,在所述制作容差范围内,所述分束器的俩端口输出功率均大于49.5%;
所述分束器的输入锥形波导段长度为2.5μm,输入锥形波导段的大端的宽度为2.5μm;输入波导段的小端的宽度为2μm;所述输入直波导段和输出直波导段的宽度为2μm,长度均为10μm;输出直波导段之间的间隔为2.5μm;所述输出锥形波导段的大端宽度为2.5μm;输出锥形波导段的小端宽度为2μm;所述输出锥形波导段的长度为2.5μm;所述分束器厚度为700nm;
优选的,,所述热光移相器为金属加热器;所述热光移相器置于所述光分束单元的输出通道上;
优选的,,所述阵列光栅天线为5个平行氮化硅直波导,宽度依次是0.6μm、0.8μm、1.0μm、0.6μm和0.8μm,相邻直波导间距均为1.2μm,直波导长度均为100μm,厚度均为0.7μm;
所述氮化硅直波导悬空立于二氧化硅缓冲层上,氮化硅波导四周为空气介质,底部有一个二氧化硅支柱;所述二氧化硅支柱厚度为0.2μm,宽度依此为0.6μm、0.8μm、1.0μm、0.6μm和0.8μm,相邻间距为1.2μm;
优选的,,所述二氧化硅包层的厚度为2μm,二氧化硅缓冲层的厚度为2μm。
优选的,所述芯片在光束偏转方面可实现左右±45°的角度。与现有技术相比。
本发明的优点为:(1)本发明基于新型半导体材料氮化硅制作,尺寸小,结构紧凑且加工简单,制作容差大,产品良率高;(2)器件工作波段在可见光至红外波段,此工作波段对人眼安全,有利于激光雷达产品进入民生领域;(3)本发明可实现1550nm波段光的均匀分束、相位调制和光束扫描,可达到左右±45°光束偏转。
附图说明
图1为本发明的基于悬空波导结构的氮化硅相控阵芯片的结构图;
图2为本发明分束器的结构图;
图3为本发明氮化硅波导区域结构图;
图4为本发明基于时域有限差分法使用仿真软件Lumerical FDTD Solutions模拟在中心波长为1550nm光入射时,分束器中光传输的场分布图;
图5为本发明阵列光栅天线的结构图;
图6为本发明阵列光栅天线的截面图;
图7为本发明未使用悬空波导结构的基于时域有限差分法使用仿真软件Lumerical FDTD Solutions模拟在中心波长为1550nm,光从w=0.6μm、w=0.8μm和w=1.0μm波导中心入射时,光的场分布图;
图8为本发明使用悬空波导结构的基于时域有限差分法使用仿真软件LumericalFDTD Solutions模拟在中心波长为1550nm,光从w=0.6μm、w=0.8μm和w=1.0μm波导中心入射时,光的场分布图;
图9为本发明基于时域有限差分法使用仿真软件Lumerical FDTD Solutions模拟的远场光束扫描范围图;
图10为本发明实施例的1550nm波段的基于悬空波导结构的氮化硅相控阵芯片的制作流程图。
具体实施方式
以下实施例将结合附图对本发明做一进步说明,本实施例制备了基于悬空波导结构的氮化硅相控阵芯片,但本实施例不能用于限制本发明,凡是采用本发明的相似方法及其相似变化,均应列入本发明的保护范围。
(一)器件设计
对于基于悬空波导结构的氮化硅相控阵芯片,本发明采用波长为1550nm光源通过设计的氮化硅分束器到达设计的阵列光栅天线,实现宽视场的光束扫描。
对于氮化硅分束器,在1550nm波长下选定宽度w=10μm的直波导,随后通过Lumerical FDTD Solutions软件仿真得到分束器多模干涉长度为58.4μm,输入和输出锥形波导长度均为2.5μm,大端宽度均为2.5μm,小端宽度均为2μm,输出波导之间的间距为2.5μm。
对于阵列光栅天线,选定五个宽度分别为0.6μm、0.8μm、1.0μm、0.6μm和0.8μm的SIN直波导,长度均为100μm,相邻直波导间距选择1.2μm,厚度为0.7μm,氮化硅直波导均以T型悬空结构立于二氧化硅缓冲层上,氮化硅波导四周为空气介质,底部有一个二氧化硅支柱;所述二氧化硅支柱厚度为0.2μm,长度为2μm,宽度依此为0.6μm、0.8μm、1.0μm、0.6μm和0.8μm,相邻间距为1.2μm;通过Lumerical FDTD Solutions仿真软件模拟在1550nm光波长下,光分别从w=0.6μm、w=0.8μm和w=1.0μm宽度直波导中心入射情况下的场分布图。三幅图中均能发现无明显串扰,证明悬空结构解决了相邻直波导之间耦合。
如图1所示为基于悬空波导结构的氮化硅相控阵芯片,包括硅基衬底、二氧化硅包层、二氧化硅缓冲层、基于氮化硅波导的芯层以及基于氮化硅悬空波导区域;芯层包括分束器、第一弯曲波导、热光移相器、模斑变换器;悬空波导区域包括第二弯曲波导和阵列光栅天线。
如图2所示为所述氮化硅分束器的结构图,分束器包括依次连接的输入段、多模干涉耦合段和输出段;在本实施例中,输入分束器和并联的输出分束器的结构相同。
为了优化输入光束和输出光束的光耦合,提高分束器的效率,提升性能,输入段、输出段均与多模干涉耦合段连接处有锥形结构,使用锥形结构能有效提高分光比,减小插入损耗。
如图3所示为氮化硅分束器截面图,氮化硅波导厚度为700nm,在二氧化硅缓冲层上,被二氧化硅包层包覆,二氧化硅缓冲层在硅基衬底上。
如图4所示为使用仿真软件Lumerical FDTD Solutions模拟在中心波长为1550nm光入射时,分束器中光传输的场分布图。
如图5所示为所述阵列光栅天线的结构图,包括相互平行的氮化硅直波导。
如图6所示为阵列光栅天线截面图,氮化硅波导厚度为700nm,包层会空气介质,以T型悬空结构立于二氧化硅缓冲层上以免坍塌,二氧化硅缓冲层在硅基衬底上。
如图7(a)(b)(c)所示为使用仿真软件Lumerical FDTD Solutions模拟在中心波长为1550nm光入射时,光从从w=0.6μm、w=0.8μm和w=1.0μm波导中心入射时,本发明未使用悬空波导结构的光的场分布图。
如图8(a)(b)(c)所示为使用仿真软件Lumerical FDTD Solutions模拟在中心波长为1550nm光入射时,光从从w=0.6μm、w=0.8μm和w=1.0μm波导中心入射时,本发明使用悬空波导结构的光的场分布图。
如图9所示为本发明使用仿真软件Lumerical FDTD Solutions模拟的远场光束扫描范围图,可达到左右±45°光束偏转。
最终设计的基于悬空波导结构的氮化硅相控阵芯片,可实现1550nm波长光均匀分束以及宽视场扫描。整体芯片基于氮化硅,可工作在可见光至红外光波段,对于可见光相控阵方面,可用于视频成像及生物荧光检测等领域。
(二)器件制作
在350摄氏度下,通过等离子体增强化学气相沉积在硅基衬底上形成2微米的二氧化硅缓冲层。在二氧化硅缓冲层上涂覆抗蚀剂作为氮化硅光子电路的蚀刻掩模,通过等离子体增强溅射在二氧化硅缓冲层上沉积形成700纳米厚的氮化硅。使用电子束光刻和等离子蚀刻,实时监控刻蚀深度,可得到表面平坦的氮化硅波导。随后,样品经过二氧化硅腐蚀,HF腐蚀液中加入一定的氟化氨作为缓冲剂,形成腐蚀液BHF,用于除去硅波导表面的二氧化硅以及氮化硅底部的一部分二氧化硅。
对于芯片单元,样品再经过湿化学工艺清洗,去除表面杂质。使用等离子体增强化学气相沉积2微米厚的二氧化硅上包层。对于T型悬空波导结构,氮化硅波导沉积在二氧化硅支柱上,包层为空气。之后应用相应的光刻胶烘干工艺和剥离技术将Ti/Pt加热器附着到输出分束器的输出通道上,最后在加热器背面上抛光并切割以进行性能表征。
尽管上述实施例描述了本发明的优选实施方式,但是这些实施方式仅作为示例提供。本领域普通技术人员应理解,在不脱离本发明权利要求书所限定的发明构思和范围的情况下,可以对本发明做出若干变形和改进。

Claims (8)

1.一种基于悬空波导结构的氮化硅相控阵芯片,其特征在于,包括:
氮化硅波导区域、悬空波导区域;
所述氮化硅波导区域,由硅基衬底、二氧化硅缓冲层、二氧化硅包层、基于氮化硅波导的芯层组成;所述基于氮化硅波导的芯层包括光分束单元、第一弯曲波导、热光移相器、模斑变换器;所述悬空波导区域包括第二弯曲波导和阵列光栅天线;所述光分束单元、第一弯曲波导、移相器和模斑变换器都位于所述二氧化硅包层内且位于所述二氧化硅缓冲层上;
所述悬空波导区域包括第二弯曲波导和阵列光栅天线;
波长为1550nm光束依次经过光分束单元、第一弯曲波导、热光移相器、模斑变换器、第二弯曲波导和阵列光栅天线。
2.根据权利按要求1所述的基于悬空波导结构的氮化硅相控阵芯片,其特征在于,所述光分束单元包括多个基于氮化硅波导的分束器;所述分束器的工作波长是1550nm;所述光分束单元包括1个输入1x2分束器、2个1x2分束器和4个并联的输出1x2分束器;所述输入分束器和输出分束器串联;所述输入分束器和输出分束器设有1个输入端口和2个输出端口。
3.根据权利按要求2所述的基于氮化硅波导的分束器,其特征在于,所述分束器包括依次连接的输入段、多模干涉耦合段和输出段;
所述输入段包括输入直波导段和与所述输入直波导段连接的输入锥形波导段;所述输入锥形波导段的大端连接所述多模干涉耦合段;
所述输出段包括2个输出锥形波导段和与所述输出锥形波导段分别连接的输出直波导段;所述输出锥形波导段的大端与所述多模干涉耦合段连接。
4.根据权利按要求2-3所述的基于氮化硅波导的分束器,其特征在于,所述多模干涉耦合段的宽度10μm;所述多模干涉耦合段的长度为58.4μm;
所述分束器的工作波长为中心波长1550nm处,在所述制作容差范围内,所述分束器的俩端口输出功率均大于49.5%;
所述分束器的输入锥形波导段长度为2.5μm,输入锥形波导段的大端的宽度为2.5μm;输入波导段的小端的宽度为2μm;所述输入直波导段和输出直波导段的宽度为2μm,长度均为10μm;输出直波导段之间的间隔为2.5μm;所述输出锥形波导段的大端宽度为2.5μm;输出锥形波导段的小端宽度为2μm;所述输出锥形波导段的长度为2.5μm;所述分束器厚度为700nm。
5.根据权利按要求1所述的基于悬空波导结构的氮化硅相控阵芯片,其特征在于,所述热光移相器为金属加热器;所述热光移相器置于所述光分束单元的输出通道上。
6.根据权利按要求1所述的基于悬空波导结构的氮化硅相控阵芯片,其特征在于,所述阵列光栅天线为5个平行氮化硅直波导,宽度依次是0.6μm、0.8μm、1.0μm、0.6μm和0.8μm,相邻直波导间距均为1.2μm,直波导长度均为100μm,厚度均为0.7μm;
所述氮化硅直波导悬空立于二氧化硅缓冲层上,氮化硅波导四周为空气介质,底部有一个二氧化硅支柱;所述二氧化硅支柱厚度为0.2μm,宽度依此为0.6μm、0.8μm、1.0μm、0.6μm和0.8μm,相邻间距为1.2μm。
7.根据权利按要求1基于悬空波导结构的氮化硅相控阵芯片,其特征在于,所述二氧化硅包层的厚度为2μm,二氧化硅缓冲层的厚度为2μm。
8.根据权利按要求1基于悬空波导结构的氮化硅相控阵芯片,其特征在于,所述芯片在光束偏转方面可实现左右±45°的角度。
CN202010870062.3A 2020-08-26 2020-08-26 基于悬空波导结构的氮化硅相控阵芯片 Active CN112034550B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010870062.3A CN112034550B (zh) 2020-08-26 2020-08-26 基于悬空波导结构的氮化硅相控阵芯片
US17/337,969 US11598917B2 (en) 2020-08-26 2021-06-03 Silicon nitride phased array chip based on a suspended waveguide structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010870062.3A CN112034550B (zh) 2020-08-26 2020-08-26 基于悬空波导结构的氮化硅相控阵芯片

Publications (2)

Publication Number Publication Date
CN112034550A true CN112034550A (zh) 2020-12-04
CN112034550B CN112034550B (zh) 2022-10-14

Family

ID=73581514

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010870062.3A Active CN112034550B (zh) 2020-08-26 2020-08-26 基于悬空波导结构的氮化硅相控阵芯片

Country Status (2)

Country Link
US (1) US11598917B2 (zh)
CN (1) CN112034550B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113703244A (zh) * 2021-08-19 2021-11-26 扬州大学 一种大规模集成的电光微环光学相控阵
WO2023217153A1 (zh) * 2022-05-09 2023-11-16 北京万集科技股份有限公司 一种移相器
CN117434777A (zh) * 2023-12-20 2024-01-23 中国工程物理研究院流体物理研究所 光子集成光学相控阵、单波长二维角度扫描装置及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112034550B (zh) * 2020-08-26 2022-10-14 华东师范大学重庆研究院 基于悬空波导结构的氮化硅相控阵芯片
CN114609723A (zh) * 2022-02-25 2022-06-10 浙江大学 一种无需复杂相位较正的光调控器
CN114578585B (zh) * 2022-03-22 2024-06-25 吉林大学 一种基于功能化聚合物片上集成的多层光互连波导开关矩阵
EP4386456A1 (en) * 2022-12-16 2024-06-19 Imec VZW A low-loss optical bent waveguide core

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180883A (zh) * 2017-05-04 2017-09-19 南京邮电大学 基于InGaN光子单片集成的多维空间可见光通信系统
CN108398842A (zh) * 2018-04-18 2018-08-14 中国科学院西安光学精密机械研究所 一种基于串联式光学天线的光学相控阵芯片
CN109270628A (zh) * 2018-09-28 2019-01-25 上海理工大学 一种可见光波段氮化硅光束偏转芯片
CN109462145A (zh) * 2017-12-28 2019-03-12 南京邮电大学 集成谐振光栅微腔的GaN基悬空波导激光器及制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6928200B2 (en) * 2002-10-07 2005-08-09 Intel Corporation Ultra-thin polarization mode converters based on liquid crystal materials
JP2007065562A (ja) * 2005-09-02 2007-03-15 Furukawa Electric Co Ltd:The アレイ導波路回折格子
WO2017151843A1 (en) * 2016-03-02 2017-09-08 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Naval Chip-scale two-dimensionai optical phased array with simplified controls
US20180081112A1 (en) * 2016-09-20 2018-03-22 Honeywell International Inc. Acoustic ridge or rib waveguides in low-loss integrated optical platforms
CN209728158U (zh) 2018-12-29 2019-12-03 国科光芯(海宁)科技股份有限公司 一种相控阵集成光学芯片和光学相控阵发射装置
CN109991582B (zh) 2019-03-13 2023-11-03 上海交通大学 硅基混合集成激光雷达芯片系统
CN112034550B (zh) * 2020-08-26 2022-10-14 华东师范大学重庆研究院 基于悬空波导结构的氮化硅相控阵芯片

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180883A (zh) * 2017-05-04 2017-09-19 南京邮电大学 基于InGaN光子单片集成的多维空间可见光通信系统
CN109462145A (zh) * 2017-12-28 2019-03-12 南京邮电大学 集成谐振光栅微腔的GaN基悬空波导激光器及制备方法
CN108398842A (zh) * 2018-04-18 2018-08-14 中国科学院西安光学精密机械研究所 一种基于串联式光学天线的光学相控阵芯片
CN109270628A (zh) * 2018-09-28 2019-01-25 上海理工大学 一种可见光波段氮化硅光束偏转芯片

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
翟珊 等: "基于集成氮化硅微腔的光学传感芯片研究", 《计测技术》, 28 February 2018 (2018-02-28) *
颜跃武 等: "硅基二氧化硅波导阵列相位控制芯片", 《光子学报》, vol. 48, no. 4, 30 April 2019 (2019-04-30) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113703244A (zh) * 2021-08-19 2021-11-26 扬州大学 一种大规模集成的电光微环光学相控阵
CN113703244B (zh) * 2021-08-19 2023-12-19 扬州大学 一种大规模集成的电光微环光学相控阵
WO2023217153A1 (zh) * 2022-05-09 2023-11-16 北京万集科技股份有限公司 一种移相器
CN117434777A (zh) * 2023-12-20 2024-01-23 中国工程物理研究院流体物理研究所 光子集成光学相控阵、单波长二维角度扫描装置及方法
CN117434777B (zh) * 2023-12-20 2024-03-19 中国工程物理研究院流体物理研究所 光子集成光学相控阵、单波长二维角度扫描装置及方法

Also Published As

Publication number Publication date
US20210294032A1 (en) 2021-09-23
CN112034550B (zh) 2022-10-14
US11598917B2 (en) 2023-03-07

Similar Documents

Publication Publication Date Title
CN112034550B (zh) 基于悬空波导结构的氮化硅相控阵芯片
Chang et al. An ultracompact multimode waveguide crossing based on subwavelength asymmetric Y-junction
US6253015B1 (en) Planar waveguides with high refractive index
CN109270628B (zh) 一种可见光波段氮化硅光束偏转芯片
EP0981771A2 (en) Optical devices and methods of fabrication thereof
CN109581586B (zh) 一种结构紧凑型氮化硅波分复用光子芯片
CN109324372B (zh) 一种硅光波导端面耦合器
CN112180506B (zh) 一种基于微纳隔离结构的高密度低串扰波导阵列
CN102200613A (zh) 一种利用弯曲波导实现偏振分束器和慢光器件集成的实现方法
US20240012202A1 (en) Metasurface-based optical signal manipulation devices for optical fiber communications
CN116027483B (zh) 一种基于铌酸锂薄膜脊型波导的偏振分束器
Jiang et al. Design and analysis of a two-dimensional large-scale silicon-photonic optical phased array
CN102759776B (zh) 一种具有高耦合效率的光子晶体槽波导结构
Snyder et al. Broadband, polarization-insensitive lensed edge couplers for silicon photonics
CN116400453A (zh) 一种基于稀疏矩阵结构的高分辨率低串扰相控阵扫描芯片
Wang et al. A compact 1× 64 optical power splitter using silica-based PLC on quartz substrate
Hu et al. Mach–Zehnder modulator based on a tapered waveguide and carrier plasma dispersion in photonic crystal
CN113703244B (zh) 一种大规模集成的电光微环光学相控阵
CN112099139B (zh) 一种棋盘式成像仪及实现方法
CN115769022A (zh) 光学装置
Jiang et al. Nano-photonic crystal waveguides for ultra-compact tunable true time delay lines
D’Mello et al. Numerical Analysis and Optimization of a Multi-Mode Interference Based Polarization Beam Splitter
JP2008281639A (ja) 光偏向素子、光偏向モジュール及び光スイッチモジュール、並びに光偏向方法
Ren et al. Mid-infrared waveguide-integrated dielectric metalens by bigradient slots on silicon
CN109407211B (zh) 一种波导元件及分合束器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220914

Address after: 401123 rooms 1 and 2, floor 1-2, building 1, No.2, Huizhu Road, Yubei District, Chongqing

Applicant after: Chongqing Research Institute of East China Normal University

Applicant after: EAST CHINA NORMAL University

Applicant after: SHANGHAI LANGYAN OPTOELECTRONICS TECHNOLOGY Co.,Ltd.

Applicant after: Chongqing Huapu Scientific Instrument Co.,Ltd.

Applicant after: Chongqing Huapu Intelligent Equipment Co.,Ltd.

Applicant after: Yunnan Huapu quantum Material Co.,Ltd.

Applicant after: GUANGDONG LANGYAN TECHNOLOGY Co.,Ltd.

Address before: 401123 rooms 1 and 2, floor 1-2, building 1, No.2, Huizhu Road, Yubei District, Chongqing

Applicant before: Chongqing Research Institute of East China Normal University

Applicant before: EAST CHINA NORMAL University

Applicant before: SHANGHAI LANGYAN OPTOELECTRONICS TECHNOLOGY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant