CN105915284B - 一种双向传输的可见光通信装置 - Google Patents

一种双向传输的可见光通信装置 Download PDF

Info

Publication number
CN105915284B
CN105915284B CN201610256029.5A CN201610256029A CN105915284B CN 105915284 B CN105915284 B CN 105915284B CN 201610256029 A CN201610256029 A CN 201610256029A CN 105915284 B CN105915284 B CN 105915284B
Authority
CN
China
Prior art keywords
led
transmitting
functional form
apd
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610256029.5A
Other languages
English (en)
Other versions
CN105915284A (zh
Inventor
滕东东
刘立林
王钢
孙振坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN201610256029.5A priority Critical patent/CN105915284B/zh
Publication of CN105915284A publication Critical patent/CN105915284A/zh
Application granted granted Critical
Publication of CN105915284B publication Critical patent/CN105915284B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/1143Bidirectional transmission

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提供一种双向传输的可见光通信装置,包括功能型LED收发模组,PIN/APD并LED收发模组,接收端滤波模块、放大器;功能型LED收发模组由N个在LED外延结构上加了功能型材料的双功能LED器件组成,双功能LED能够分别工作于发光模式和光电探测模式;PIN/APD并LED收发模组由PIN或APD光电探测器及LED组成;接收端滤波、放大器由滤波电桥、自动增益放大器或运算放大器组成。所述装置的下行系统包括功能型收发模组中的LED发射端,PIN/APD光电探测器接收端,放大器;上行系统包括PIN/APD并LED收发模组中的LED发射端、功能型收发模组中LED接收端、滤波电路、放大器。所述双向通信装置能同时实现下载和上传数据信息,上行通信峰值波长与下行通信峰值波长相差20‑100nm,可有效避免信号窜扰。

Description

一种双向传输的可见光通信装置
技术领域
本发明涉及可见光通信技术领域,更具体的,涉及一种可双向传输的可见光通信装置。
背景技术
可见光通信兼具照明、通信和控制定位等功能,具有能耗低、购置设备少等优势,符合国家节能减排战略。此外,可见光通信无电磁污染,可见光波段和射频信号不相互干扰,对人眼安全,频谱无需授权即可使用。同时它也适合信息安全领域应用,只要遮挡住可见光,照明信息网内的信息就不会外泄,具有高度保密性。可见光通信被评为2011年全球50大科技发明之一,也是未来5G通信的备用方案。
在可见光通信系统中,原始的二进制比特流经过预处理和编码调制之后,驱动LED,对LED进行强度调制,将电信号转换为光信号。光电探测器将接收到的光信号转换为电信号,对信号进行信号处理、解调制和解码等过程之后,恢复出原始的发送信号,实现通信。
可见光通信是照明与通信的深度耦合,推动下一代照明和接入网的发展与技术进步。而LED替代白炽灯和荧光灯用于通用照明已是大势所趋,固态照明的普及将使可见光通信的光源无处不在。无论从国家战略层面,还是节能减排的迫切需求,或者巨大的市场潜力来考虑,可见光通信技术已成为国际竞争的焦点和制高点。
然而可见光通信领域技术点多,涉及面广,可参考的方案少。现行商用LED光源有限的调制带宽、可见光波段探测器技术不成熟(商用光电探测器响应的峰值波长在红外波段,其在可见光波段的响应度低)及滤波配置、光传输的多径效应、双向通信中的光串扰、集成模块的缺失等严重制约着可见光通信系统容量的提升与小型集成化的发展,阻碍了可见光通信的商用化进程。当前,可见光通信技术研究主要集中在先进调制和高速传输技术方面,而对发射与接收端关键器件、专用收发集成模块的研发,国内外都还处于起步阶段,因此在器件和装置技术上的突破,对可见光通信技术真正商用化的进程具有重要推进作用。
发明内容
有鉴于此,本发明提供一种双向传输的可见光通信装置,包括功能型LED收发模组、PIN/APD并LED收发模组,实现双向通信,有利于可见光通信小型集成化的发展;其上行通信链路中的LED发射端的工作峰值波长与下行通信链路中的LED发射端的工作峰值波长相差20-100nm,能同时实现下载和上传数据信息,避免信号串扰,提升系统容量。
为了实现上述目的,本发明的技术方案如下:
一种双向传输的可见光通信装置,能够在可见光波段范围内同时实现下载和上传数据,包括上行通信链路和下行通信链路,具体包括放大器,偏置树,功能型LED收发模组,PIN/APD并LED收发模组和滤波电路模块;功能型LED收发模组包括工作于发光模式的LED发射端和工作于光电探测模式的LED接收端,PIN/APD并LED收发模组包括PIN/APD光电探测器和LED发射端;
所述上行通信链路由放大器,偏置树,PIN/APD并LED收发模组中的LED发射端、功能型LED收发模组中的工作于光电探测模式的LED接收端、滤波电路模块和放大器组成,实现LED到LED的通信;其中PIN/APD并LED收发模组中LED发射端的工作峰值波长为370nm-410nm,功能型LED收发模组中的工作于光电探测模式的LED接收端为加了功能型材料的双功能LED(功能型LED接收端),其响应曲线的峰值波长在360nm-420nm,接收到的信号进一步经过滤波和放大处理,实现LED到LED的通信;
所述下行通信链路由放大器、偏置树、功能型LED收发模组中工作于发光模式的LED发射端、PIN/APD并LED收发模组中的PIN/APD光电探测器和放大器组成;其中功能型LED收发模组中工作于发光模式的LED发射端的工作峰值波长为430-470nm,接收端为PIN/APD并LED收发模组中的商用Si-PIN光电探测器或Si-APD光电探测器,接收到的信号进一步经过放大处理,实现LED到PIN/APD光电探测器的通信。
上行通信链路中的发射端LED的工作峰值波长与下行通信链路中的发射端LED的工作峰值波长相差20-100nm;
功能型LED收发模组由N个在LED外延结构上加了功能型材料的双功能LED器件组成,N为大于等于1的正整数,可同时发射和接收信号。
优选的,上述功能型LED收发模组是在LED外延结构最上层外延生长一层功能型材料,该功能型材料为重掺杂的n型ZnO层,即n+-ZnO,其掺杂的载流子浓度在1018cm-3到1021cm-3量级范围内,其厚度为10纳米至400纳米;具体为掺Al的ZnO(AZO)或掺Ga的ZnO(GZO)层,该双功能LED可以作为信号发射端(工作于发光模式)也可以作为信号接收端(工作于光电探测模式),称为功能型LED收发模组。
为了提高功能型LED收发模组中工作于发光模式的LED发射端的光功率-电压曲线的线性度和通信质量,其LED发光面为圆形状,或者为长宽比小于或等于5:1的矩形,优选3:1;
功能型LED收发模组中工作于光电探测模式的LED接收端:其结构为:
n+-ZnO/InGaN/p-GaN/MQW/n-GaN基因结构单元,光响应曲线的峰值波长在360nm-420nm范围,可探测到近紫外-蓝光波段的信号,其峰值响应度大于0.1A/W。
优选的,上述功能型LED收发模组中N个LED器件是串联或并联模式,或是串联加并联的级联模式;
功能型LED收发模组是通过芯片工艺层面将N个LED器件集成于同一个外延片上实现级联,或通过COB形式实现级联,或是分立的LED器件组合;
LED器件的封装形式是正装或倒装。
优选的,上行通信链路,其通信过程为:调制的信号经过放大器和偏置树,驱动PIN/APD并LED收发模组中的LED发射端,实现电光转换,发射信号,经过自由空间,到功能型LED收发模组中工作于光电探测模式的LED接收端接收信号,实现光电转换,再经过滤波电路模块和放大器放大信号,并最终做信号解调处理,实现LED到LED的通信。
优选的,上行通信链路的PIN/APD并LED收发模组中的LED发射端,其工作的峰值波长为370nm-410nm,LED接收端是加了功能型材料的双功能LED,即功能型LED接收端工作于光电探测模式的LED,其响应曲线的峰值波长为360nm-420nm,接收到的信号进一步经过滤波和放大处理。
优选的,所述的下行通信链路,其通信过程为:调制的信号经过放大器和偏置树,驱动功能型LED收发模组中工作于发光模式的LED发射端,实现电光转换,发射信号,经过自由空间,到PIN/APD并LED收发模组中的PIN/APD探测器接收实现光电转换,进一步经过放大器放大信号,并最终做信号解调处理。
优选的,下行通信链路的功能型LED收发模组中的功能型LED发射端,工作于发光模式,其工作的峰值波长为430-470nm,接收端为PIN/APD并LED收发模组中的PIN/APD探测器,接收到的信号进一步经过放大处理。
该发明提出的一种可双向传输的可见光通信装置,可能同时实现下载和上传数据信息。功能型LED收发模组可促进可见光通信系统往小型集成化方向发展,上行通信波长与下行通信波长相差20-100nm,可避免信号串扰,提升系统容量。
附图说明
图1是本发明提出的一种双向传输的可见光通信装置的示意图。
图2是本发明提出的双向传输可见光通信装置的LED光谱曲线及探测器光响应曲线图示例。
图3是本发明提出的双功能LED结构示意图。
图4是本发明提出的一种双功能LED外延结构图。
图5是一种基于芯片层面通过侧壁保护工艺实现高压串联的双功能LED结构图。
图6是一种基于芯片层面通过空气桥工艺实现高压串联的双功能LED结构图。
图7是一种基于芯片层面并联的双功能LED结构图。
图8是分立封装的双功能LED器件模型示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,因此,本发明将不会被限制于本文所示的这些实施例。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提出的一种双向传输的可见光通信装置,可在可见光波段范围内同时实现下载和上传数据,其装置包括功能型LED收发模组,PIN/APD并LED收发模组,接收端滤波模块、放大器。
如图1所示的双向传输的可见光通信系统中,下行通信过程为:调制信号经放大器放大信号,和直流电压一同通过偏置树加载在功能型LED收发模组中工作于发光模式的LED发射端上,使得LED发出光强交替变化的光信号,经由自由空间传输到PIN或者APD光电探测器,接下来探测到的信号经过放大器放大,并进一步解调,实现通信。上行通信过程为:调制信号经放大器放大信号,和直流电压一同通过偏置树加载在LED发射端上,使得LED发出光强交替变化的光信号,经由自由空间传输到功能型LED收发模组中工作于光电探测模式的LED接收端,接下来探测到的信号经过滤波电路及放大器实现有用信号的放大,最后进行信号解调,实现通信。
发射端的光谱曲线和接收端的光谱响应曲线直接影响通信质量,所述的一种双向传输的可见光通信方法及装置包含2条发射端光谱曲线和2条接收端光谱响应曲线,优选的实施例中(图2),下行通信链路中,LED发射端的工作峰值波长在430-470nm范围内,接收端商用光电探测器光谱响应范围覆盖可见光到红外,其峰值波长在800nm附近;上行通信链路中,LED发射端的工作峰值波长在370nm-410nm范围内,接收端LED响应曲线的峰值波长在360nm-420nm范围内(其在正向偏置时发光的峰值波长与下行通信链路中LED发射端的一样,为430-470nm)。
下行通信链路可以通过采用OFDM、DMT、CAP调制等高级调制方式实现高速通信,可达到Gbps量级;优选的,上行通信链路可以采用OOK、PPM等调制格式实现基本通信,可达到Mbps量级。
双功能LED的结构模型(图3),优选的,主要包含n型GaN半导体材料、InGaN/GaN基多量子阱(MQW)结构、p型GaN半导体材料、InGaN半导体材料、顶层功能型材料。
双功能LED外延结构(图4),包含蓝宝石衬底,AlN成核层,不掺杂的GaN(u-GaN)层,重掺杂的n型GaN层(n+-GaN),InGaN/GaN基MQW层,掺杂的p型GaN层(p+-GaN),InGaN接触层,功能型的重掺ZnO层(n+-ZnO)。优选的,n+-ZnO层掺杂的载流子浓度在1018cm-3到1021cm-3量级范围内,其厚度为10纳米至400纳米,具体为掺Al的ZnO(AZO)或掺Ga的ZnO(GZO)层。该双功能LED可以作为信号发射端(工作于发光模式)也可以作为信号接收端(工作于光电探测模式)。
双功能LED的级联方式可以在芯片层面实现,优选的,通过电感耦合等离子体(ICP)刻蚀技术实现双功能LED子芯片之间的电学隔离,通过绝缘层SiO2等材料实现器件侧壁隔离(图5),使用金属互联线连接相邻LED的p极和n极,形成高压级联LED,或者通过空气桥工艺(图6),使用金属互联线连接相邻LED的p极和n极,形成高压级联LED。优选的,通过共n极实现芯片层面并联的LED结构(图7)。
在同一模块上级联N个LED,例如N=9(图8),可实现功能型LED收发模组的制备。
所述的功能型LED收发模组可以通过芯片层面级联实现,也可以通过分立的双功能LED器件串并联实现,其封装模式是正装或是倒装的。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均包含在本发明的保护范围之内。

Claims (6)

1.一种双向传输的可见光通信装置,能够在可见光波段范围内同时实现下载和上传数据,包括上行通信链路和下行通信链路,其特征在于,具体包括放大器,偏置树,功能型LED收发模组,PIN/APD并LED收发模组和滤波电路模块;功能型LED收发模组包括工作于发光模式的LED发射端和工作于光电探测模式的LED接收端,PIN/APD并LED收发模组包括PIN/APD光电探测器和工作于发光模式的LED发射端;
所述上行通信链路由放大器,偏置树,PIN/APD并LED收发模组中的LED发射端、功能型LED收发模组中的工作于光电探测模式的LED接收端、滤波电路模块和放大器组成,实现LED到LED的通信;
所述下行通信链路由放大器、偏置树、功能型LED收发模组中的工作于发光模式的LED发射端、PIN/APD并LED收发模组中的PIN/APD光电探测器、放大器组成;
上行通信链路中的发射端LED的工作峰值波长与下行通信链路中的发射端LED的工作峰值波长相差20-100nm;
功能型LED收发模组由N个在LED外延结构上加了功能型材料的双功能LED器件组成,N为大于等于1的正整数,双功能LED能够分别工作于发光模式和光电探测模式,可同时发射和接收信号;
上述功能型LED收发模组是在LED外延结构最上层外延生长一层功能型材料,该功能型材料为重掺杂的n型ZnO外延薄膜,即n+-ZnO,具体为掺Al的ZnO(AZO)或掺Ga的ZnO(GZO)层,其掺杂的载流子浓度在1018cm-3到1021cm-3量级范围内,其厚度为10纳米至400纳米;
功能型LED收发模组中LED发射端的LED芯片形状为圆形,或者为长宽比小于或等于5:1的矩形;
功能型LED收发模组中工作于光电探测模式的LED接收端:其结构为:
n+-ZnO/InGaN/p-GaN/InGaN-GaN多层量子阱(MQW)/n-GaN基因结构单元;InGaN-GaN多层量子阱(MQW)周期数1至15个,量子阱中铟含量原子百分比12%至20%,使光响应曲线的峰值波长在360nm-420nm范围,可探测到近紫外-蓝光波段的信号,其峰值响应度大于0.1A/W。
2.根据权利要求1所述的装置,其特征在于,上述功能型LED收发模组中N个LED器件串联或并联连接,或是串联加并联的级联模式;
功能型LED收发模组是通过芯片工艺层面将N个双功能LED器件集成于同一个外延片上实现级联,或通过COB形式实现级联,或是分立的双功能LED器件组合;
双功能LED器件的封装形式是正装或倒装。
3.根据权利要求2所述的装置,其特征在于,上行通信链路,其通信过程为:调制的信号经过放大器和偏置树,驱动PIN/APD并LED收发模组中的LED发射端,实现电光转换,发射信号,经过自由空间,到功能型LED收发模组中的工作于光电探测模式的LED接收端接收信号,实现光电转换,再经过滤波电路模块和放大器放大信号,并最终做信号解调处理,实现LED到LED的通信。
4.根据权利要求3所述的装置,其特征在于,上行通信链路的PIN/APD并LED收发模组中的LED发射端,其工作的峰值波长为370nm-410nm,LED接收端是加了功能型材料的工作于光电探测模式的LED,即功能型LED接收端,其响应曲线的峰值波长为360nm-420nm,接收到的信号进一步经过滤波和放大处理。
5.根据权利要求4所述的装置,其特征在于:所述的下行通信链路,其通信过程为:调制的信号经过放大器和偏置树,驱动功能型LED收发模组中工作于发光模式的LED发射端,实现电光转换,发射信号,经过自由空间,到PIN/APD并LED收发模组中的PIN/APD光电探测器接收实现光电转换,进一步经过放大器放大信号,并最终做信号解调处理。
6.根据权利要求1或5所述的装置,其特征在于:下行通信链路的功能型LED收发模组中工作于发光模式的LED发射端,其工作的峰值波长为430-470nm,接收端为PIN/APD并LED收发模组中的PIN/APD光电探测器,接收到的信号进一步经过滤波、放大处理。
CN201610256029.5A 2016-04-22 2016-04-22 一种双向传输的可见光通信装置 Expired - Fee Related CN105915284B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610256029.5A CN105915284B (zh) 2016-04-22 2016-04-22 一种双向传输的可见光通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610256029.5A CN105915284B (zh) 2016-04-22 2016-04-22 一种双向传输的可见光通信装置

Publications (2)

Publication Number Publication Date
CN105915284A CN105915284A (zh) 2016-08-31
CN105915284B true CN105915284B (zh) 2018-10-23

Family

ID=56752518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610256029.5A Expired - Fee Related CN105915284B (zh) 2016-04-22 2016-04-22 一种双向传输的可见光通信装置

Country Status (1)

Country Link
CN (1) CN105915284B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201903864PA (en) 2016-11-23 2019-05-30 Agency Science Tech & Res Light emitting diode communication device, method of forming and operating the same
CN107195690A (zh) * 2017-03-28 2017-09-22 南京邮电大学 基于p‑n结量子阱二极管器件的全双工通信芯片及制备方法
CN106953691B (zh) * 2017-04-20 2020-02-28 上海第二工业大学 一种上下行时分复用的可见光全双工通信系统及方法
CN106961309B (zh) * 2017-05-31 2019-06-21 中国科学技术大学 一种可见光通信收发器与可见光通信系统
CN107968679B (zh) * 2017-11-20 2021-11-05 南京艾凯特光电科技有限公司 可见光通信装置
CN108234021A (zh) * 2017-12-28 2018-06-29 南京邮电大学 一种基于量子阱二极管器件的音频接收系统
CN108429583A (zh) * 2018-05-25 2018-08-21 南京艾凯特光电科技有限公司 可见光无线双工通信装置
CN108809421A (zh) * 2018-05-25 2018-11-13 南京艾凯特光电科技有限公司 可见光双工通信装置
CN108873932A (zh) * 2018-06-13 2018-11-23 西安理工大学 基于无线紫外光的无人机蜂群攻击引导系统及引导方法
CN110166120A (zh) * 2019-04-08 2019-08-23 中山大学 适用于多种水质的智能双向可见光通信系统
CN112234123A (zh) * 2020-09-30 2021-01-15 深圳第三代半导体研究院 一种用于双向通信的集成器件及其制备方法
CN112583486B (zh) * 2020-12-21 2022-04-01 南京先进激光技术研究院 一种可见光双向高速通信系统及通信方法
CN113162688B (zh) * 2021-04-13 2023-03-28 中山大学 一种可见光双向通信与定位系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448082A (en) * 1994-09-27 1995-09-05 Opto Diode Corporation Light emitting diode for use as an efficient emitter or detector of light at a common wavelength and method for forming the same
CN103152102A (zh) * 2013-01-10 2013-06-12 广东工业大学 全双工自由空间无线光通信终端机
CN103312412A (zh) * 2012-03-06 2013-09-18 财团法人工业技术研究院 可见光通信收发器与系统
CN204615832U (zh) * 2015-05-27 2015-09-02 衡阳师范学院 一种基于led灯的通信系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448082A (en) * 1994-09-27 1995-09-05 Opto Diode Corporation Light emitting diode for use as an efficient emitter or detector of light at a common wavelength and method for forming the same
CN103312412A (zh) * 2012-03-06 2013-09-18 财团法人工业技术研究院 可见光通信收发器与系统
CN103152102A (zh) * 2013-01-10 2013-06-12 广东工业大学 全双工自由空间无线光通信终端机
CN204615832U (zh) * 2015-05-27 2015-09-02 衡阳师范学院 一种基于led灯的通信系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Demonstration of a Bi-directional Visible Light Communication with an overall Sum-rate of 110 Mb/s using LEDs as Emitter and Detector;Hyunchae Chun 等;《Photonics Conference (IPC), 2014 IEEE》;20141229;第132-133页 *
Monolithic integration of nitride light emitting diodes and photodetectors for bi-directional optical communication;Zhenyu Jiang 等;《OPTICS LETTERS》;20141001;第5657-5660页 *

Also Published As

Publication number Publication date
CN105915284A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
CN105915284B (zh) 一种双向传输的可见光通信装置
US11594572B2 (en) III-nitride multi-wavelength LED for visible light communication
Lin et al. InGaN micro‐LED array enabled advanced underwater wireless optical communication and underwater charging
CN107968679B (zh) 可见光通信装置
US9685577B2 (en) Light emitting diodes and photodetectors
CN109920786B (zh) 同质集成光电子装置
CN108809421A (zh) 可见光双工通信装置
CN104078520A (zh) 一种具有窄带光谱响应的电子输运可见光光电探测器
CN108429583A (zh) 可见光无线双工通信装置
Lu et al. Full-duplex visible light communication system based on single blue Mini-LED acting as transmitter and photodetector simultaneously
CN107104169A (zh) 基于异质键合的微型水下可见光通信双工器件及制备方法
CN106653896B (zh) 一种用于可见光通信的InGaN量子点光电探测器及其制备方法
CN206370429U (zh) 一种用于可见光通信的InGaN量子点光电探测器
CN114937720A (zh) 一种基于Micro-LED的车载可见光通信系统及应用
CN108682714B (zh) 光互联数据读写装置
CN113178504B (zh) 同步上下行光照明通信单芯片器件及制造方法和应用
CN103996737B (zh) 一种吸收、倍增层分离且具有滤波功能的可见光雪崩光电探测器
Xiao et al. Optical and Communication Performance Investigation of UV and DUV Light-Stimulated Quantum Dots
CN108566246A (zh) 一种基于led光源室内通信系统
Wang et al. A Novel Monolithic Integration Of HEMT And Micro-LED Performing As A Photodetector
Zhou et al. Multifunctional GaN-based device for solid state lighting, display, and duplex visible light communication
Yuan et al. Mirco Signal Wireless-communication Device based on GaN-on-Silicon platform with light emitting Diodes
Liu et al. GaN-Based Generic Bifunction LED for Potential Duplex Free-Space VLCs
Lu et al. Transceiver performance enhanced green micro-LED based on pre-layer structure enable multifunctional applications in underwater visible light communication.
CN118076182A (zh) 用于片上光通信的光学有源器件、制备方法、及片上光通信系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181023