CN107176286A - 基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器 - Google Patents

基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器 Download PDF

Info

Publication number
CN107176286A
CN107176286A CN201710343539.0A CN201710343539A CN107176286A CN 107176286 A CN107176286 A CN 107176286A CN 201710343539 A CN201710343539 A CN 201710343539A CN 107176286 A CN107176286 A CN 107176286A
Authority
CN
China
Prior art keywords
wing
duct
folding
ducted fan
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710343539.0A
Other languages
English (en)
Other versions
CN107176286B (zh
Inventor
裴海龙
程子欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710343539.0A priority Critical patent/CN107176286B/zh
Publication of CN107176286A publication Critical patent/CN107176286A/zh
Priority to SG11201910744WA priority patent/SG11201910744WA/en
Priority to US16/613,930 priority patent/US11634222B2/en
Priority to PCT/CN2017/111341 priority patent/WO2018209911A1/zh
Application granted granted Critical
Publication of CN107176286B publication Critical patent/CN107176286B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/001Shrouded propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0025Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/02Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/06Aircraft not otherwise provided for having disc- or ring-shaped wings
    • B64C39/068Aircraft not otherwise provided for having disc- or ring-shaped wings having multiple wings joined at the tips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/20Vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/26Ducted or shrouded rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/40Undercarriages foldable or retractable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • B64U30/12Variable or detachable wings, e.g. wings with adjustable sweep
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • B64U50/14Propulsion using external fans or propellers ducted or shrouded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Abstract

本发明公开了一种基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器,采用置于机身尾部、横列式、尾推布局的双涵道风扇动力系统,为飞行器提供垂直起降的升力和水平飞行的推力;通过偏转置于涵道出口处的控制舵面提供矢量推力,实现快速姿态转换;机翼采用折叠翼构型,飞行器垂直起降/低速飞行时机翼折叠以减小侧风迎风面积,水平飞行时机翼展开以获得较大升力;涵道—机翼组合优化,机翼置于特定涵道气流区内,涵道抽吸在机翼后缘产生康达效应,以提高机翼的性能。本发明实现飞行器的垂直起降与高速巡航等多模态飞行作业;垂直起降飞行器悬停/低速飞行时的气动效率高;起降/悬停抗扰动能力强;能耗低、噪声小、安全可靠性高。

Description

基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞 行器
技术领域
本发明涉及飞行器技术领域,具体涉及一种基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器。
背景技术
垂直起降飞行器一直都是航空工程研究的热点,近年来,由于材料、能源、动力和控制技术的进步,许多先进的方案被应用于垂直起降飞行器上。目前主要的几类可实现舰载垂直起降飞行器构型设计主要有:倾转动力机构(含倾转翼等)、辅助垂直升力和尾座式结构。
(1)倾转旋翼是目前最为典型的一种垂直起降方案,通过旋转旋翼轴使其兼具直升机旋翼和固定翼螺旋桨的功能,最典型的飞机是美国的V-22“鱼鹰”。然而,倾转机构需要复杂的转动机构设计,其结构往往要承受动力旋转桨/翼产生的陀螺交变力矩等不利因素产生损伤,而且在低速和过渡过程中倾转翼面难以达到稳定的气动效果,目前实用过程中出现了大量的事故甚至经常坠毁(V-22鱼鹰坠毁的报道时有发生),同时转动机构利用率低,在巡航飞行时成为了不必要的负载,影响了整机飞行性能。
(2)另一种可行的方案是采用辅助垂直升力系统,在传统固定翼飞机上加装垂直方向上的旋翼或动力风扇,依靠垂直方向上直接产生旋翼拉力来垂直起降和控制姿态。固定翼与四旋翼复合型飞机由于其结构简单,易于设计和控制,近年来成为了一热点。美国Latitude Engineering LLC.公司是目前世界复合四旋翼技术领域领先者。其HQ-20复合无人机全机重量11kg,可以装载0.9kg载荷。最大巡航速度达到约74km/h,最大续航时间15小时。辅助垂直升力系统固定翼飞行器,其两套动力系统在垂直起降和水平飞行模态中各自单独启用,造成了整机动力装置效率低下从而影响飞行器的飞行时间/距离/机动性等作战性能,同时暴露的旋翼也在平飞时有较大的气动阻力,难以实现高速巡航飞行。
(3)尾座式垂直起降飞行器是区别于倾转旋翼的另一种垂直起降方案,与倾转旋翼不同,尾座式飞行器旋翼一般不可倾转,而是直接使用螺旋桨动力垂直起降,在空中依靠飞行控制系统变化飞行姿态达到垂直起降与巡航飞行的转换。采用尾座式的垂直起降飞行器能有效克服冗余动力/倾转系统带来的性能下降,在垂直起降和水平飞行时均能最大限度地利用机载系统。其缺点在于飞行状态过渡过程控制困难,受风扰动较大。另外,其动力系统由于需要达到至少1以上的全机推重比,桨盘半径较大,转速较高,平飞时气动阻力大,难以达到较高的巡航速度。同时飞翼结构在垂直起降和过渡过程中有较大的迎风面积,受阵风干扰大。
现有的垂直起降飞行器构型大都面临着起降过程中操作翼面气动作用小因而易受不稳定气流影响,暴露在外的大尺寸的旋转翼同样也会受到阵风的作用(同时机头安装往往影响电子舱通讯与传感设备);倾转动力机构复杂易损控制稳定性差,辅助冗余动力效率低不适合大载荷长航程设计。
发明内容
本发明的目的是为了解决现有技术中的上述缺陷,提供一种基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器。
本发明的目的可以通过采取如下技术方案达到:
一种基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器,所述飞行器包括机身、可折叠式机翼3、涵道风扇动力系统7、可伸缩式起落架9,所述机身分为机头1、前机身2、中机身5与后机身6,所述涵道风扇动力系统7采用横列式布局对称分布于所述后机身6两侧,所述可折叠式机翼3采用上单翼布局,并通过机翼折叠轴4固定于所述中机身5前部,所述可伸缩式起落架9置于所述后机身6前部,飞行器采用无尾式布局,飞机重心位于前机身2后部、中机身5之前,涵道与机翼之间采用特定位置关系实现组合优化。
进一步地,所述机头1为电子舱,用于内置多种传感器和光电设备;所述前机身2为主负载舱,用于搭载主要能源和载荷;所述中机身5为次负载舱,用于搭载航电系统、次要能源、机翼折叠轴4的驱动机构、可伸缩式起落架9的驱动机构;所述后机身6的前部置有可伸缩式起落架,中部两侧对称安置所述涵道风扇动力系统7,后部为锥形整流体。
进一步地,所述可折叠式机翼3采用可折叠式构型,机翼为二段式折叠翼,可沿纵向轴线向机腹折叠36°~180°,机翼后缘靠近翼梢处安置有副翼8。
进一步地,所述双涵道风扇动力系统7采用横列式、尾推布局对称分布于所述后机身6两侧,其数量为2,其旋转轴位于机翼下表面以下。
进一步地,所述涵道风扇动力系统7包括:涵道体10、动力风扇11、风扇驱动机构12、控制舵面13、控制舵面驱动机构14;其中,所述动力风扇11位于所述涵道体10中,通过所述风扇驱动机构12与所述涵道体10相连接;所述控制舵面13位于涵道出口处,数量为4,呈“十字”型环绕涵道旋转轴;所述控制舵面13的旋转轴与涵道旋转轴垂直,其一端与涵道体相连,一端连接置于涵道体中的所述控制舵面驱动机构14。
进一步地,所述涵道与机翼之间实现组合优化的特定相对位置关系满足:
所述可折叠式机翼3的后缘距涵道入口平面距离l1与涵道入口直径d关系为:
0.35d≤l1≤0.45d;
所述可折叠式机翼3的弦线平面距涵道中心轴线距离l2与涵道入口直径d关系为:
0.25d≤l2≤0.4d。
进一步地,所述飞行器采用无尾式布局,全机无常规水平尾翼、垂直尾翼、升降舵与方向舵。
进一步地,所述可伸缩式起落架9的数量为4,单个起落架长度可实时调节。
进一步地,所述控制舵面13为可活动的,通过偏转所述控制舵面13提供姿态控制力矩,实现飞行姿态的稳定与控制。
本发明相对于现有技术具有如下的优点及效果:
1、本发明使用涵道风扇作为动力系统,其优势在于:涵道的外廓作用优化了风扇的气动性能、涵道壁阻挡了风扇桨尖涡的形成、降低了风扇桨尖动力损失、同时涵道自身能在风扇抽吸作用下产生升力。因此,与孤立螺旋桨相比,相同半径的涵道风扇在相同能耗功率的情况下其升力重量比更高(一般高出27%左右)。同时,涵道在飞行器水平飞行时能产生部分升力(占机翼升力10%左右)。因此,采用涵道风扇作为垂直起降飞行器的动力系统能提高飞行器的起降、悬停和飞行效率,有效降低能耗;单一涵道风扇动力源满足多模态升力/推力要求,效率高适合垂直起降/远距离飞行;同时涵道风扇系统气动噪声小,安全性,可靠性高。
2、涵道姿态控制舵面置于涵道内稳定高速滑流中,减少外部气动操作面(尾翼等),避免常规设计低速(起降)气动扰动失效不稳定因素以及大尺寸外露螺旋桨的阵风扰动;涵道动力构型无需倾转机构增加系统可靠性,同时外形简洁有效减少雷达反射面积。
3、尾推式动力布局保证了机头不受螺旋桨干扰,可方便安装多种传感器及通讯设备;尾推式涵道风扇能够获得最大的姿态(俯仰、滚转)控制力臂,能够最大限度地提升其抗扰动能力。
4、本发明采用特定的涵道-机翼相对位置,实现组合优化。涵道风扇动力系统位于机翼后缘下方,通过涵道风扇的抽吸作用,在机翼附近产生康达效应,有效改善机翼上表面的逆压梯度,减缓机翼附面层气流分离,使得机翼气动性能大幅增强。与传统固定翼结构相比,机翼的升力系数提高25%,失速迎角提高至40°,全机升阻比提高15%。该技术提高了切换过程的稳定安全性。因此本发明飞行器可进一步减少起降过程的动力损耗延长飞行时间,在极端恶劣不适合垂直起降的状态下可进行短距滑跑起降。
5、折叠翼在垂直起降时收起,能减小机翼的侧风迎风面积,增强飞行器抗风能力,在平飞时机翼展开,能够获得较大的升力。
6、涵道风扇在运转时受侧风影响会在涵道入口平面处产生一动量阻力,该阻力在飞行器低速飞行时为主要阻力。由于飞行器重心位置较为靠前(垂直放置时为高位),涵道风扇及其控制舵面较为靠后(垂直放置时为低位),全机在垂直起降和悬停时受侧风阻力对重力形成一低头力矩。因此,在较强侧风环境下,飞行器能够以小倾角自动迎风达到稳定状态。该作用机理使得本发明飞行器能在垂直起降时大大提高其抗扰动能力。同时可伸缩式起落架可调整飞行器着陆角度,以配合飞行器实现倾斜抗风起降,进一步提高其稳定性。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
图1是本发明飞行器的三维示意图;
图2(a)是本发明飞行器的主视图(起落架收起);
图2(b)是本发明飞行器的左视图(起落架收起);
图2(c)是本发明飞行器的侧视图(起落架收起);
图3是本发明飞行器之所述涵道风扇动力系统的结构示意图;
图4(a)是本发明飞行器水平飞行机翼展开时的三维示意图;
图4(b)是本发明飞行器垂直起降时机翼折叠时的三维示意图;
图5是本发明所述飞行器多模态飞行(垂直起降、水平飞行)及其过渡过程转换示意图;
图6(a)是本发明所述涵道—机翼组合优化特征尺寸示意图1;
图6(b)是本发明所述涵道—机翼组合优化特征尺寸示意图2;
图7是本发明实施例的系统示意图;
图8(a)和图8(b)是本发明所述涵道—机翼组合优化与传统固定翼在40°迎角飞行时的流场CFD仿真比较图,其中:
图8(a)为传统单独机翼发生失速的流场CFD仿真图;
图8(b)为涵道—机翼组合优化下无失速的流场CFD仿真图;
图9是本发明飞行器抗侧风原理示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
如图1所示,本实施例飞行器各主要部件三维示意图,包括:机身、可折叠式机翼3、涵道风扇动力系统7、可伸缩式起落架9,所述机身分为机头1、前机身2、中机身5与后机身6,所述涵道风扇动力系统7采用横列式布局对称分布于所述后机身6两侧,所述可折叠式机翼3采用上单翼布局置于所述中机身5前部,所述可伸缩式起落架9置于所述后机身6前部,飞行器采用无尾式布局,飞机重心位于所述前机身2后部,涵道与机翼之间采用特定位置关系实现组合优化。
本实施例飞行器采用的气动布局为:可折叠式矩形上单翼、双尾推涵道风扇动力系统、可伸缩式起落架布局,如图2(a)(b)(c)所示。全机主要尺寸包括:
机翼展长:1.5m
展弦比:7.5
机身尺寸:0.16m×0.16m×1.2m
涵道外径:0.33m
风扇半径:0.116m采用可变距4叶桨风扇
全机总重:20kg(含5Kg有效载荷)
飞行时间:1h
全机主要尺寸和系统分布如图7所示。
本实施例飞行器采用电动力,使用电机作为动力源,锂电池作为能量源。
本实施例机头1部分搭载电子舱及载荷舱1,安置多种传感器,包括空速管,雷达,可见光/红外摄像头及电子罗盘。
本实施例前机身2放置载荷舱2、主动力电池和机载航电系统(包括传感器、主控计算机、导航飞控模块、通讯模块、能源管理模块),机腹挂载主要任务载荷,该部分也是全机重量集中之处。
本实施例中机身5放置副动力电池,折叠机构、起落架的作动机构和驱动电机,机腹挂载次要载荷,该部分是全机次要重量集中之处。
本实施例可折叠式机翼3布局采用上单翼、矩形平直翼、Clark-Y翼型以提高其中速性能(低速性能利用机翼/涵道组合系统设计保证),所述可折叠式机翼3采用上单翼布局置于中机身5前部,采用可折叠式构型。可折叠式机翼3为二段式折叠翼,可沿纵向轴线向机腹折叠36°~180°。机翼后缘靠近翼梢处安置有副翼8。
本实施例双涵道风扇动力系统7采用横列式、尾推布局对称分布于后机身6两侧,其数量为2,其旋转轴位于机翼下表面以下。双涵道风扇动力系统7包括:涵道体10、动力风扇11、风扇驱动机构12(本实施例为电机)、控制舵面13、控制舵面驱动机构14(本实施例为电动舵机),如图3所示。
所述双涵道风扇动力系统7,其动力风扇11位于涵道中,采用可变距4叶风扇,通过风扇驱动机构12与涵道体10相连接;控制舵面13位于涵道出口处,数量为4,呈“十字”型环绕涵道旋转轴。控制舵面13旋转轴与涵道旋转轴垂直,其一端与涵道体相连,一端连接置于涵道体中的控制舵面驱动机构14。
所述涵道体10剖面采用特定流线形设计,采用该结构布局能提高垂直起降的性能,提高悬停效率和抗扰动能力,同时涵道在平飞时也能产生部分升力;由于上单翼的结构,受机翼后缘脱体涡及机翼位置影响,即使在0°迎角的情况下涵道仍能产生部分升力(占机翼升力10%左右),从而提高整机效率。可活动的控制舵面13置于涵道出口处,通过舵面倾转实现飞行器的姿态控制。重心位置按常规固定翼布局置于前机身与机翼前缘之间的区域,控制舵面13能对重心产生较大控制力矩,从而使飞行器获得优秀的控制性能。
本实施例采用特定涵道—机翼相对位置实现组合优化。如图6(a)、(b)所示,本实施例机翼与涵道相对位置采用l1=0.4d、l2=0.35d。涵道抽吸能够在机翼后缘产生康达效应,减缓附面层气流分离,增大翼型失速迎角,同时在机翼上部产生低压区,提高机翼升力系数。本实施例飞行器与传统固定翼飞行器在40°迎角以30m/s速度飞行时的流场CFD仿真如,8所示,仿真结果表明,该构型与传统固定翼结构相比,机翼的升力系数提高25%,失速迎角提高至40°,全机升阻比提高15%。
本实施例飞行器采用无尾式布局。全机无常规水平尾翼、垂直尾翼、升降舵与方向舵。通过偏转控制舵面13提供姿态控制力矩,实现飞行姿态的稳定与控制。
所述可伸缩式起落架9置于后机身6前部,数量为4,单个起落架长度可实时调节。
本发明的工作原理及过程:
如图4(b)所示,可折叠式机翼3在垂直起降时收起,能减小机翼的侧风迎风面积,增强飞行器抗风能力;如图4(a)所示,在平飞时机翼展开,能够获得较大的升力。
如图5所示,本发明飞行器在地面停靠时采用竖直姿态,起落架放下。当涵道风扇运转时,产生的升力竖直向上,从而实现飞行器的垂直起降。同时可折叠式机翼3收起,减小起降时飞行器对侧风的迎风面积,提高其抗扰动能力。通过控制舵面13的偏转产生控制力矩控制飞行器的姿态。当飞行器脱离竖直姿态时,涵道风扇动力系统7产生的升力将在水平方向上产生分量,从而实现飞行器的水平飞行。当飞行姿态与速度达到一定范围后,可折叠式机翼3展开,机身进入水平飞行状态,在该状态下,飞行器各项特性与传统固定翼飞机类似,可以较高的速度和较低的能耗进行巡航飞行。
如图9所示,图中G为重力,T为涵道升力,Fd为动量阻力,F为舵面控制力,α为抗风平衡倾角,本发明飞行器在侧风环境下的抗扰动机制为:
a.涵道风扇对侧风的稳定作用。涵道的动力风扇11在侧风中能够在涵道体10近入口上方处产生一动量阻力Fd,该阻力在起降工况下为主要阻力,本发明采用高(前)重心位置设计,使得动量阻力对重心产生低头力矩,涵道能够自动迎风倾斜α角度,达到自稳状态;
b.控制舵面13置于涵道高速滑流中,受飞行状况干扰较小,能够产生稳定控制力F,该力对飞行器重心有较大的力矩。通过舵面控制,使得涵道能够在侧风下以小倾角迎风达到稳定状态,并保持该姿态在一定范围内。对于不大于16m/s的侧风,本发明飞行器最大平衡角度为14.8°。
c.起落架配合飞行器倾斜角度进行伸缩,使得起落架着陆平面始终与起降平台保持平行,本实施例中,起落架平面可调节的最大角度为25°,飞行器最大需要的抗风角度为15°,因此飞行器可以实现倾斜降落。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器,所述飞行器包括机身、可折叠式机翼(3)、涵道风扇动力系统(7)、可伸缩式起落架(9),所述机身分为机头(1)、前机身(2)、中机身(5)与后机身(6),其特征在于,
所述涵道风扇动力系统(7)采用横列式布局对称分布于所述后机身(6)两侧,所述可折叠式机翼(3)采用上单翼布局,并通过机翼折叠轴(4)固定于所述中机身(5)前部,所述可伸缩式起落架(9)置于所述后机身(6)前部,飞行器采用无尾式布局,飞机重心位于前机身(2)后部、中机身(5)之前,涵道与机翼之间采用特定位置关系实现组合优化。
2.根据权利要求1所述的基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器,其特征在于,
所述机头(1)为电子舱,用于内置多种传感器和光电设备;所述前机身(2)为主负载舱,用于搭载主要能源和载荷;所述中机身(5)为次负载舱,用于搭载航电系统、次要能源、机翼折叠轴(4)的驱动机构、可伸缩式起落架(9)的驱动机构;所述后机身(6)的前部置有可伸缩式起落架,中部两侧对称安置所述涵道风扇动力系统(7),后部为锥形整流体。
3.根据权利要求1所述的基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器,其特征在于,
所述可折叠式机翼(3)采用可折叠式构型,机翼为二段式折叠翼,可沿纵向轴线向机腹折叠36°~180°,机翼后缘靠近翼梢处安置有副翼(8)。
4.根据权利要求1所述的基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器,其特征在于,
所述双涵道风扇动力系统(7)采用横列式、尾推布局对称分布于所述后机身(6)两侧,其数量为2,其旋转轴位于机翼下表面以下。
5.根据权利要求4所述的基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器,其特征在于,
所述涵道风扇动力系统(7)包括:涵道体(10)、动力风扇(11)、风扇驱动机构(12)、控制舵面(13)、控制舵面驱动机构(14);其中,所述动力风扇(11)位于所述涵道体(10)中,通过所述风扇驱动机构(12)与所述涵道体(10)相连接;所述控制舵面(13)位于涵道出口处,数量为4,呈“十字”型环绕涵道旋转轴;所述控制舵面(13)的旋转轴与涵道旋转轴垂直,其一端与涵道体相连,一端连接置于涵道体中的所述控制舵面驱动机构(14)。
6.根据权利要求1所述的基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器,其特征在于,
所述涵道与机翼之间实现组合优化的特定相对位置关系满足:
所述可折叠式机翼(3)的后缘距涵道入口平面距离l1与涵道入口直径d关系为:
0.35d≤l1≤0.45d;
所述可折叠式机翼(3)的弦线平面距涵道中心轴线距离l2与涵道入口直径d关系为:
0.25d≤l2≤0.4d。
7.根据权利要求1所述的基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器,其特征在于,
所述飞行器采用无尾式布局,全机无常规水平尾翼、垂直尾翼、升降舵与方向舵。
8.根据权利要求1所述的基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器,其特征在于,
所述可伸缩式起落架(9)的数量为4,单个起落架长度可实时调节。
9.根据权利要求5所述的基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器,其特征在于,
所述控制舵面(13)为可活动的,通过偏转所述控制舵面(13)提供姿态控制力矩,实现飞行姿态的稳定与控制。
CN201710343539.0A 2017-05-16 2017-05-16 基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器 Active CN107176286B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201710343539.0A CN107176286B (zh) 2017-05-16 2017-05-16 基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器
SG11201910744WA SG11201910744WA (en) 2017-05-16 2017-11-16 Vertical take-off and landing unmanned aerial vehicle having foldable fixed wing and based on twin-ducted fan power system
US16/613,930 US11634222B2 (en) 2017-05-16 2017-11-16 Vertical take-off and landing unmanned aerial vehicle having foldable fixed wing and based on twin-ducted fan power system
PCT/CN2017/111341 WO2018209911A1 (zh) 2017-05-16 2017-11-16 基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710343539.0A CN107176286B (zh) 2017-05-16 2017-05-16 基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器

Publications (2)

Publication Number Publication Date
CN107176286A true CN107176286A (zh) 2017-09-19
CN107176286B CN107176286B (zh) 2023-08-22

Family

ID=59831169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710343539.0A Active CN107176286B (zh) 2017-05-16 2017-05-16 基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器

Country Status (4)

Country Link
US (1) US11634222B2 (zh)
CN (1) CN107176286B (zh)
SG (1) SG11201910744WA (zh)
WO (1) WO2018209911A1 (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107826247A (zh) * 2017-11-15 2018-03-23 江苏航空职业技术学院 一种带固定机翼两倾转涵道四旋翼无人飞行器
CN108786143A (zh) * 2018-05-30 2018-11-13 林洪烨 一种机身通用化的抗坠毁固定翼航模飞机
WO2018209911A1 (zh) * 2017-05-16 2018-11-22 华南理工大学 基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器
CN109353505A (zh) * 2018-09-21 2019-02-19 清华大学 一种气动力/推力矢量复合控制的尾座式无人机
CN109878710A (zh) * 2019-04-04 2019-06-14 北京零偏科技有限责任公司 一种碟形涵道式无人机
CN109941426A (zh) * 2019-03-29 2019-06-28 成都云鼎智控科技有限公司 飞行器尾部总成
CN110641695A (zh) * 2019-09-20 2020-01-03 南京航空航天大学 一种适用于小型垂直起降固定翼飞行器的动力系统
CN110775250A (zh) * 2019-11-19 2020-02-11 南京航空航天大学 一种变体倾转旋翼机及其工作方法
CN111086625A (zh) * 2019-12-23 2020-05-01 航天神舟飞行器有限公司 双涵道可变座舱尾座式垂直起降载人固定翼飞行器
CN111169621A (zh) * 2019-12-18 2020-05-19 中国航空工业集团公司成都飞机设计研究所 一种可旋转至垂直状态安全分离的多功能机翼
CN111572756A (zh) * 2020-05-14 2020-08-25 中国空气动力研究与发展中心 一种涵道风扇动力低成本高速长航时布局的飞行器
CN112124569A (zh) * 2020-09-17 2020-12-25 西安电子科技大学 一种基于发射筒的垂直起降及稳定无人机系统
CN112937851A (zh) * 2021-02-01 2021-06-11 河北利翔航空科技有限公司 一种使用康达效应增升的垂直起降固定翼飞行器
CN113049211A (zh) * 2021-06-01 2021-06-29 中国空气动力研究与发展中心低速空气动力研究所 一种风洞试验装置
CN113104195A (zh) * 2021-05-19 2021-07-13 涵涡智航科技(玉溪)有限公司 一种双涵道复合翼飞行器
CN113120223A (zh) * 2021-05-13 2021-07-16 成都航空职业技术学院 一种可垂直起降的涵道扇翼无人机及其控制方法
CN113232826A (zh) * 2021-05-07 2021-08-10 南京航空航天大学 一种机尾坐立式的垂直起降飞行器及其控制方法
CN113443134A (zh) * 2021-06-22 2021-09-28 南京航空航天大学 升力桨叶可变体收放的机尾坐立式垂直起降飞行器
CN113602478A (zh) * 2021-02-02 2021-11-05 中国空气动力研究与发展中心高速空气动力研究所 一种基于环量控制和垂直微喷流的流体控制舵面
CN113911334A (zh) * 2021-11-12 2022-01-11 北京航空航天大学 一种倾转涵道式飞行器的气动布局
CN114030603A (zh) * 2021-10-27 2022-02-11 南京航空航天大学 一种变涵道尾座式高速无人机及其工作方法
CN114560073A (zh) * 2021-12-30 2022-05-31 中国航空工业集团公司西安飞机设计研究所 一种螺旋桨飞机滑流预感知方向舵偏转控制方法及其系统
CN115056967A (zh) * 2022-06-29 2022-09-16 浙江大学 一种双轴旋转折叠的刚性机翼及使用方法
CN115180175A (zh) * 2022-06-22 2022-10-14 南京航空航天大学 一种火星无人飞行器

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018116147A1 (de) * 2018-07-04 2020-01-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Luftfahrzeug
CN110065352A (zh) * 2019-05-24 2019-07-30 上海应用技术大学 一种倾转涵道式结构的飞行汽车
CN111942584A (zh) * 2020-07-01 2020-11-17 中国航空研究院 一种积木式空中组合/分离无人飞行器
US20220177109A1 (en) * 2020-12-09 2022-06-09 Bell Textron Inc. Detect and avoid sensor integration
KR20220087212A (ko) * 2020-12-17 2022-06-24 현대자동차주식회사 에어 모빌리티
CN112623183B (zh) * 2020-12-29 2023-01-17 中国民航大学 一种便携式垂直起降的斜置翼飞行器
CN112960106B (zh) * 2021-04-06 2023-01-24 上海工程技术大学 一种可变形机翼及变形方法
US11541999B2 (en) 2021-06-01 2023-01-03 Hoversurf, Inc. Methods of vertical take-off/landing and horizontal straight flight of aircraft and aircraft for implementation
US11383831B1 (en) * 2021-06-01 2022-07-12 Hoversurf, Inc. Methods of vertical take-off/landing and horizontal straight flight of aircraft and aircraft for implementation
EP4105125B1 (en) * 2021-06-18 2023-09-06 Leonardo S.p.a. Series of convertible aircrafts capable of hovering and method for configuring a convertible aircraft capable of hovering
US11377220B1 (en) 2021-09-27 2022-07-05 Hoversurf, Inc. Methods of increasing flight safety, controllability and maneuverability of aircraft and aircraft for implementation thereof
CN113753229A (zh) * 2021-10-09 2021-12-07 吉林大学 一种可折叠式固定翼四旋翼复合无人机及其控制方法
CN113911330A (zh) * 2021-11-12 2022-01-11 北京航空航天大学 一种油动涵道飞行器
CN114486149B (zh) * 2022-01-19 2023-11-24 山东交通学院 一种基于无人机测试的风场模拟发生装置及方法
CN115489716B (zh) * 2022-09-22 2023-12-29 中国商用飞机有限责任公司 集成有分布式涵道风扇的机翼和电动飞机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5086993A (en) * 1989-02-09 1992-02-11 Aca Industries Airplane with variable-incidence wing
CN102673780A (zh) * 2012-06-07 2012-09-19 李建波 双构型飞行器
CN105346715A (zh) * 2015-09-29 2016-02-24 上海圣尧智能科技有限公司 一种垂直起降无人机
CN205633014U (zh) * 2016-05-25 2016-10-12 江苏数字鹰科技发展有限公司 一种折叠机翼垂直起降飞机
US20160378120A1 (en) * 2014-05-08 2016-12-29 Northrop Grumman Systems Corporation Vertical takeoff and landing (vtol) unmanned aerial vehicle (uav)
WO2017035503A1 (en) * 2015-08-27 2017-03-02 Martin Uav, Llc Vertical take off aircraft
CN207208447U (zh) * 2017-05-16 2018-04-10 华南理工大学 基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8720814B2 (en) * 2005-10-18 2014-05-13 Frick A. Smith Aircraft with freewheeling engine
CN101857086A (zh) 2010-06-03 2010-10-13 哈尔滨盛世特种飞行器有限公司 双涵道垂直起降无人飞行器
FR2964944B1 (fr) 2010-09-20 2013-05-24 Snecma Dispositif d'etancheite a soufflet pour la traversee de cloison par une biellette d'un systeme de commande de l'orientation des pales de soufflante d'un turbopropulseur
US20130206921A1 (en) * 2012-02-15 2013-08-15 Aurora Flight Sciences Corporation System, apparatus and method for long endurance vertical takeoff and landing vehicle
CN202966660U (zh) 2012-09-05 2013-06-05 刘笠浩 一种安全的高速飞行包装置
CN103231805B (zh) 2013-05-21 2015-09-16 吉林大学 涵道式折翼机
US9567088B2 (en) * 2013-10-15 2017-02-14 Swift Engineering, Inc. Vertical take-off and landing aircraft
US9567079B2 (en) * 2014-09-10 2017-02-14 Jonathon Thomas Johnson VTOL symmetric airfoil fuselage of fixed wing design
CN106494608A (zh) 2015-09-06 2017-03-15 陈康 多涵道螺旋桨可变机翼电动飞行器
CN105711837B (zh) 2016-01-28 2017-12-15 襄阳宏伟航空器有限责任公司 一种双涵道无人飞行器
CN105947192A (zh) 2016-06-01 2016-09-21 中国航空工业集团公司西安飞机设计研究所 一种倾转双涵道无人机
CN107176286B (zh) * 2017-05-16 2023-08-22 华南理工大学 基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器
CN111051197B (zh) * 2017-07-18 2023-04-04 新科宇航 不对称飞行器
US10583924B2 (en) * 2017-10-01 2020-03-10 Petru A. Simionescu Vertical takeoff and landing unmanned aerial vehicle (VTOL-UAV)

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5086993A (en) * 1989-02-09 1992-02-11 Aca Industries Airplane with variable-incidence wing
CN102673780A (zh) * 2012-06-07 2012-09-19 李建波 双构型飞行器
US20160378120A1 (en) * 2014-05-08 2016-12-29 Northrop Grumman Systems Corporation Vertical takeoff and landing (vtol) unmanned aerial vehicle (uav)
WO2017035503A1 (en) * 2015-08-27 2017-03-02 Martin Uav, Llc Vertical take off aircraft
CN105346715A (zh) * 2015-09-29 2016-02-24 上海圣尧智能科技有限公司 一种垂直起降无人机
CN205633014U (zh) * 2016-05-25 2016-10-12 江苏数字鹰科技发展有限公司 一种折叠机翼垂直起降飞机
CN207208447U (zh) * 2017-05-16 2018-04-10 华南理工大学 基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634222B2 (en) 2017-05-16 2023-04-25 South China University Of Technology Vertical take-off and landing unmanned aerial vehicle having foldable fixed wing and based on twin-ducted fan power system
WO2018209911A1 (zh) * 2017-05-16 2018-11-22 华南理工大学 基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器
CN107826247A (zh) * 2017-11-15 2018-03-23 江苏航空职业技术学院 一种带固定机翼两倾转涵道四旋翼无人飞行器
CN108786143A (zh) * 2018-05-30 2018-11-13 林洪烨 一种机身通用化的抗坠毁固定翼航模飞机
CN109353505A (zh) * 2018-09-21 2019-02-19 清华大学 一种气动力/推力矢量复合控制的尾座式无人机
CN109941426A (zh) * 2019-03-29 2019-06-28 成都云鼎智控科技有限公司 飞行器尾部总成
CN109941426B (zh) * 2019-03-29 2024-01-09 成都云鼎智控科技有限公司 飞行器尾部总成
CN109878710A (zh) * 2019-04-04 2019-06-14 北京零偏科技有限责任公司 一种碟形涵道式无人机
CN110641695A (zh) * 2019-09-20 2020-01-03 南京航空航天大学 一种适用于小型垂直起降固定翼飞行器的动力系统
CN110775250A (zh) * 2019-11-19 2020-02-11 南京航空航天大学 一种变体倾转旋翼机及其工作方法
CN111169621A (zh) * 2019-12-18 2020-05-19 中国航空工业集团公司成都飞机设计研究所 一种可旋转至垂直状态安全分离的多功能机翼
CN111086625A (zh) * 2019-12-23 2020-05-01 航天神舟飞行器有限公司 双涵道可变座舱尾座式垂直起降载人固定翼飞行器
CN111086625B (zh) * 2019-12-23 2023-09-22 航天神舟飞行器有限公司 双涵道可变座舱尾座式垂直起降载人固定翼飞行器
CN111572756A (zh) * 2020-05-14 2020-08-25 中国空气动力研究与发展中心 一种涵道风扇动力低成本高速长航时布局的飞行器
CN112124569A (zh) * 2020-09-17 2020-12-25 西安电子科技大学 一种基于发射筒的垂直起降及稳定无人机系统
CN112124569B (zh) * 2020-09-17 2022-04-01 西安电子科技大学 一种基于发射筒的垂直起降及稳定无人机系统
CN112937851A (zh) * 2021-02-01 2021-06-11 河北利翔航空科技有限公司 一种使用康达效应增升的垂直起降固定翼飞行器
CN112937851B (zh) * 2021-02-01 2022-10-18 河北利翔航空科技有限公司 一种使用康达效应增升的垂直起降固定翼飞行器
CN113602478B (zh) * 2021-02-02 2023-06-13 中国空气动力研究与发展中心高速空气动力研究所 一种基于环量控制和垂直微喷流的流体控制舵面
CN113602478A (zh) * 2021-02-02 2021-11-05 中国空气动力研究与发展中心高速空气动力研究所 一种基于环量控制和垂直微喷流的流体控制舵面
CN113232826A (zh) * 2021-05-07 2021-08-10 南京航空航天大学 一种机尾坐立式的垂直起降飞行器及其控制方法
CN113120223A (zh) * 2021-05-13 2021-07-16 成都航空职业技术学院 一种可垂直起降的涵道扇翼无人机及其控制方法
CN113104195A (zh) * 2021-05-19 2021-07-13 涵涡智航科技(玉溪)有限公司 一种双涵道复合翼飞行器
CN113049211B (zh) * 2021-06-01 2021-08-10 中国空气动力研究与发展中心低速空气动力研究所 一种风洞试验装置
CN113049211A (zh) * 2021-06-01 2021-06-29 中国空气动力研究与发展中心低速空气动力研究所 一种风洞试验装置
CN113443134B (zh) * 2021-06-22 2022-08-05 南京航空航天大学 升力桨叶可变体收放的机尾坐立式垂直起降飞行器
CN113443134A (zh) * 2021-06-22 2021-09-28 南京航空航天大学 升力桨叶可变体收放的机尾坐立式垂直起降飞行器
CN114030603A (zh) * 2021-10-27 2022-02-11 南京航空航天大学 一种变涵道尾座式高速无人机及其工作方法
CN113911334A (zh) * 2021-11-12 2022-01-11 北京航空航天大学 一种倾转涵道式飞行器的气动布局
CN114560073A (zh) * 2021-12-30 2022-05-31 中国航空工业集团公司西安飞机设计研究所 一种螺旋桨飞机滑流预感知方向舵偏转控制方法及其系统
CN114560073B (zh) * 2021-12-30 2024-01-30 中国航空工业集团公司西安飞机设计研究所 一种螺旋桨飞机滑流预感知方向舵偏转控制方法及其系统
CN115180175A (zh) * 2022-06-22 2022-10-14 南京航空航天大学 一种火星无人飞行器
CN115180175B (zh) * 2022-06-22 2024-03-12 南京航空航天大学 一种火星无人飞行器
CN115056967A (zh) * 2022-06-29 2022-09-16 浙江大学 一种双轴旋转折叠的刚性机翼及使用方法

Also Published As

Publication number Publication date
SG11201910744WA (en) 2020-01-30
WO2018209911A1 (zh) 2018-11-22
CN107176286B (zh) 2023-08-22
US20220081111A1 (en) 2022-03-17
US11634222B2 (en) 2023-04-25

Similar Documents

Publication Publication Date Title
CN107176286A (zh) 基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器
CN207208447U (zh) 基于双涵道风扇动力系统的可折叠式固定翼垂直起降无人飞行器
CN104085532B (zh) 一种倾转旋翼运输机的控制方法
CN103144769B (zh) 一种倾转涵道垂直起降飞行器的气动布局
CN105059542B (zh) 一种垂直起降的固定翼长航时飞行器
CN106741820A (zh) 一种垂直起降固定翼无人飞行器
CN106892102A (zh) 一种垂直起降无人机及其控制方法
CN205327411U (zh) 一种复合翼飞行器
CN105083550A (zh) 垂直起降固定翼飞行器
CN205076045U (zh) 可变结构的复合式飞行器
CN205022861U (zh) 垂直起降固定翼飞行器
CN106240814A (zh) 一种动力操纵的尾坐式混合布局垂直起降飞行器
CN105818980A (zh) 新型高升力垂直起降飞行器
CN108045575A (zh) 一种短距起飞垂直着陆飞行器
CN105270620A (zh) 一种升浮一体式垂直起降通用飞行器
CN106672231A (zh) 无人驾驶飞行器
CN106184741A (zh) 一种飞翼式涵道风扇垂直起降无人机
CN106828918A (zh) 一种三翼面垂直起降飞行器
CN205998126U (zh) 一种无人机飞行系统
CN107352029A (zh) 一种电动多轴倾转旋翼无人机系统
CN107140179A (zh) 一种尾座式串列翼长航时飞行器气动布局
CN111498100A (zh) 一种推力矢量倾转三旋翼无人机及其控制方法
CN107097949A (zh) 一种垂直起降固定翼无人机
CN106628115A (zh) 一种四涵道飞翼式无人机
CN110282117A (zh) 一种具备机翼折叠收纳功能的城市垂直起降飞机

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant