CN107170848A - 一种双面发电的太阳能电池 - Google Patents

一种双面发电的太阳能电池 Download PDF

Info

Publication number
CN107170848A
CN107170848A CN201710260851.3A CN201710260851A CN107170848A CN 107170848 A CN107170848 A CN 107170848A CN 201710260851 A CN201710260851 A CN 201710260851A CN 107170848 A CN107170848 A CN 107170848A
Authority
CN
China
Prior art keywords
gaas
gainp
type
layers
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710260851.3A
Other languages
English (en)
Other versions
CN107170848B (zh
Inventor
吴波
秦崇德
方结彬
何达能
陈刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Aiko Technology Co Ltd
Original Assignee
Guangdong Aiko Solar Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Aiko Solar Energy Technology Co Ltd filed Critical Guangdong Aiko Solar Energy Technology Co Ltd
Priority to CN201710260851.3A priority Critical patent/CN107170848B/zh
Publication of CN107170848A publication Critical patent/CN107170848A/zh
Application granted granted Critical
Publication of CN107170848B publication Critical patent/CN107170848B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68345Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开一种双面发电的太阳能电池,包括GaInP子电池、隧道结、GaAs子电池、键合层、单晶硅N型电池,通过MOCVD生长GaAs子电池和GaInP子电池,两者通过隧道结连接,将薄膜电池键合到单晶硅N型电池背面,然后剥离GaAs子电池和GaInP子电池薄膜。本发明利用GaAs子电池和GaInP子电池组成的叠层电池在直射光下发电效率高、单晶硅在弱光下发电效率高的优点,感光面发电,不感光的电池可视为一个反向PN结,受光面产生的电流只能从键合层流出(薄膜电池和单晶硅电池的面积不一样大,键合层裸露),通过改变电池的吸光面,在有限面积上可以充分利用太阳光,从而大大提升单位面积太阳能电池的转换效率。

Description

一种双面发电的太阳能电池
技术领域
本发明涉及一种太阳能电池,具体涉及一种双面发电的太阳能电池,属于太阳能电池技术领域。
背景技术
晶体硅太阳能电池因低廉的成本、成熟的制造工艺,未来一二十年仍是太阳能电池的主流产品,但晶硅是间接带隙材料,电池的转换效率受到制约,且可挠性差。目前主流的薄膜电池有(铜铟镓硒)GIGS电池和GaAs电池,据报道GaAs单结薄膜电池的转换效率已达28.8%,双结GaAs薄膜电池实现31.6%的转换效率。但是成本高是一直以来的诟病。对于叠层电池来说,弱光性不好也是该项技术发展掣肘之一。主要原因是弱光下,以吸收短波为主的GaInP电池,电流会急剧下降,由于电池是串联的原因,整个电池电流下降明显。而晶硅太阳能电池的弱光性好于叠层电池。
发明内容
针对上述现有技术存在的问题,本发明提供一种双面发电的太阳能电池,可大大提升电池在有限面积上的转换效率。
为了实现上述目的,本发明采用的一种双面发电的太阳能电池,该太阳能电池包括单晶硅N型电池、键合层和GaInP/GaAs双结叠层电池,所述GaInP/GaAs双结叠层电池通过键合层键合在单晶硅N型电池的背面;
所述GaInP/GaAs双结叠层电池包括GaInP子电池、隧道结和GaAs子电池,所述隧道结位于GaInP子电池的一侧,所述GaAs子电池位于隧道结和键合层之间;
采用GaAs或Ge作为支撑衬底,通过MOCVD或MBE生长与GaAs晶格匹配的GaInP/GaAs双结叠层电池,键合到单晶硅N型电池,剥离生长的GaInP/GaAs双结叠层电池,即得所需太阳能电池。
作为改进,所述的单晶硅N型电池包括N型单晶硅,所述N型单晶硅上设有扩散形成的发射区、等离子体增强化学气相沉积镀的减反膜、及丝网印刷的电极。
作为改进,所述隧道结采用宽带隙材料,带隙选择范围为1.45-2.0ev,选用材料为GaInP或AlGaAs,N型掺杂为Si/Te共掺,浓度2E19cm-3-5E19cm-3,P型掺杂为C掺杂,浓度为1E20cm-3-3E20cm-3
作为改进,所述键合层包括设置在GaAs子电池下方的上层Au、及设置在单晶硅N型电池上方的下层Au,所述上层Au与下层Au配合形成Au/Au键合。
作为改进,当生长GaInP/GaAs双结叠层电池时,采用325μm N型GaAs作为支撑衬底。
作为进一步改进,在N型GaAs衬底上,依次由下至上成长GaAs缓冲层、AlAs牺牲层、GaAs接触层(16)、AlInP窗口层、GaInP发射区层、GaInP基区层、AlGaInP背场层、隧道结、GaInP窗口层、GaAs发射区层、GaAs基区层和GaInP背场层。
作为改进,所述GaAs缓冲层的厚度为300-500nm;所述AlAs牺牲层的厚度为10-15nm;所述GaAs接触层采用欧姆接触层,厚度为300-500nm,N型掺杂元素为Si,掺杂浓度5E18cm-3-8E18cm-3
作为改进,所述AlInP窗口层厚度为20-100nm,N型掺杂元素为Si;所述GaInP发射区层厚度为50-350nm,N型掺杂元素为Si。
作为改进,所述GaInP基区层厚度为350-1500nm,P型掺杂元素为Zn;
所述AlGaInP背场层厚度为50-200nm,P型掺杂元素为Zn;
所述GaInP窗口层厚度为20-100nm,N型掺杂元素为Si。
作为改进,所述GaAs发射区层厚度为40-200nm,N型掺杂元素为Si;
所述GaAs基区层厚度为2-5μm,P型掺杂元素为Zn;
所述GaInP背场层厚度为50-200nm,P型掺杂元素为Zn。
本发明的双面发电的太阳能电池,通过将GaInP/GaAs双结叠层电池键合到单晶硅N型电池背面,然后从衬底上剥离下来,光照在受光面时,不受光面则是一个反向的PN结,受光面产生的电流不可以从反向PN结流过,受光面产生的电流从键合层流出。根据光照情况,调整受光面,可以在有限的面积实现尽可能高的转换效率。
一般常规外延用GaAs衬底为325μm,而本发明采用的先键合后剥离GaAs子电池和GaInP子电池叠层电池技术,一方面使薄膜得到有效支撑,另一方面使得每个衬底片可以进行至少30次外延,大大节省了GaAs衬底的消耗;而且采用Si作为双面电池的支撑衬底大大提升了电池的机械性能。
本发明的太阳能电池不仅拥有叠层薄膜电池高的转换效率,弱光性条件下,单晶硅电池也保证了一定转换效率。因此可以在有限面积上实现很高的转换效率。
附图说明
图1为本发明的太阳能电池的结构示意图;
图2为本发明中太阳能电池键合示意图;
图3为太阳能电池中叠层薄膜电池部分的结构示意图;
图中:1、GaInP子电池,2、隧道结,3、GaAs子电池,4、键合层,5、单晶硅N型电池,6、上层Au,7、下层Au,8、GaInP背场层,9、GaAs基区层,10、GaAs发射区层,11、GaInP窗口层,12、AlGaInP背场层,13、GaInP基区层,14、GaInP发射区层,15、AlInP窗口层,16、GaAs接触层,17、AlAs牺牲层,18、GaAs缓冲层,19、GaAs-N型衬底。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面通过附图及实施例,对本发明进行进一步详细说明。但是应该理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限制本发明的范围。
除非另有定义,本文所使用的所有的技术术语和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同,本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
如图1所示,一种双面发电的太阳能电池,该太阳能电池包括单晶硅N型电池5、键合层4和GaInP/GaAs双结叠层电池,所述GaInP/GaAs双结叠层电池通过键合层4键合在单晶硅N型电池5的背面,晶硅电池应当选择N型单晶电池,当受光面发电时,非受光面需呈现出反向PN结特性,阻挡载流子从非受光面流出;
所述GaInP/GaAs双结叠层电池包括GaInP子电池1、隧道结2和GaAs子电池3,所述隧道结2位于GaInP子电池1的一侧,所述GaAs子电池3位于隧道结2和键合层4之间;
采用GaAs或Ge作为支撑衬底,通过MOCVD或MBE生长与GaAs晶格匹配的GaInP/GaAs双结叠层电池,将其键合到单晶硅N型电池5上,再剥离生长的GaInP/GaAs双结叠层电池(采用先键合后剥离,以GaAs子电池作为底电池),即得所需太阳能电池。GaAs子电池3和GaInP子电池1的吸光材料为直接带隙材料,故3-10μm就可以实现很好的载流子吸收。所以GaAs子电池3一般选取的厚度为2.5-5μm,优选为3μm;考虑到光谱划分问题,GaInP子电池1一般选取的厚度为700-2000nm,优选为1400nm。隧道结2采用为宽带隙材料,带隙选择范围为1.45-2.0ev,且需要考虑晶格匹配问题,材料优选为GaInP或铝镓砷(AlGaAs)。N型掺杂优选为Si/Te共掺,浓度2E19cm-3以上,P型掺杂优选为C掺杂,浓度1E20cm-3以上。隧道结2可实现子电池之间电流的传输。
作为实施例的改进,所述的单晶硅N型电池5包括N型单晶硅,所述N型单晶硅上设有扩散形成的发射区、等离子体增强化学气相沉积镀的减反膜、及丝网印刷的电极。
作为实施例的进一步改进,所述隧道结2采用宽带隙材料,带隙选择范围为1.45-2.0ev,选用材料为GaInP或AlGaAs,N型掺杂为Si/Te共掺,浓度2E19cm-3-5E19cm-3,P型掺杂为C掺杂,浓度为1E20cm-3-3E20cm-3
键合可以很好的将薄膜电池和晶硅电池粘接在一起,还可以起到电流传输作用。Au与半导体的粘合较差,晶硅电池N型欧姆接触可采用Au/镍(Ni)合金。所述的键合层可以有很多选择组合,如图2所示,键合层4包括设置在GaAs子电池3下方的上层Au 6、及设置在单晶硅N型电池5上方的下层Au 7,所述上层Au 6与下层Au7配合形成Au/Au键合,Au/Au键合是最优的键合方式。键合层需解决两个问题:薄膜电池的P型欧姆接触问题和单晶硅电池的N型欧姆接触问题,良好的导电能力。而Au/Au键合可以解决这两个问题。
如图3所示,所述的GaAs子电池3和GaInP子电池1组成的薄膜电池的内部结构按照剥离前依次是:GaAs-N型衬底19或者Ge-N型衬底,优选为325μm GaAs-N型衬底19,由于Ge-N型衬底生长GaAs或者GaInP材料存在反向畴问题(Ge是金刚石结构,GaAs和GaInP为闪锌矿结构);GaAs缓冲层18的厚度为300-500nm,为后续材料生长提供良好的界面,过滤位错;AlAs牺牲层17厚度为10-15nm,优选为10nm,根据溶液的选择性腐蚀,可以剥离上面的薄膜;N型GaAs接触层16采用欧姆接触层,厚度为300-500nm,优选为360nm,由于GaAs-N型掺杂很容易做的很高,器件制作过程中,电极下面的GaAs欧姆接触层保留,其他地方腐蚀掉,故一般选为欧姆接触层,N型掺杂元素为Si,掺杂浓度5E18cm-3以上;AlInP(铝铟磷)窗口层15厚度选取为20-100nm,N型掺杂元素为Si,主要是降低界面复合;GaInP发射区层14厚度为50-350nm,N型掺杂元素为Si;GaInP基区层13的厚度为350-1500nm,P型掺杂元素为Zn(锌);AlGaInP(铝镓铟磷)背场层12的厚度为50-200nm,P型掺杂元素为Zn;GaAs/GaAs隧道结2;GaInP窗口层11厚度选取为20-100nm,N型掺杂元素为Si,主要是降低界面复合;GaAs发射区层10的厚度为40-200nm,N型掺杂元素为Si;GaAs基区层9的厚度为2-5μm,P型掺杂元素为Zn;GaInP背场层8的厚度为50-200nm,P型掺杂元素为Zn。
本发明利用GaAs子电池和GaInP子电池组成的叠层电池在直射光下发电效率高、单晶硅在弱光下发电效率高的优点,感光面发电,不感光的电池可视为一个反向PN结,受光面产生的电流只能从键合层流出(薄膜电池和单晶硅电池的面积不一样大,键合层裸露),通过改变电池的吸光面,在有限面积上可以充分利用太阳光,从而大大提升单位面积太阳能电池的转换效率。
本发明的太阳能电池,在光线好的情况下,薄膜电池发电,光线弱的情况下,单晶硅电池发电,克服了叠层薄膜电池弱光下发电效率差和单晶硅电池转换效率低的问题,可以在有限面积上实现很高的转换效率。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种双面发电的太阳能电池,其特征在于,该太阳能电池包括单晶硅N型电池(5)、键合层(4)和GaInP/GaAs双结叠层电池,所述GaInP/GaAs双结叠层电池通过键合层(4)键合在单晶硅N型电池(5)的背面;
所述GaInP/GaAs双结叠层电池包括GaInP子电池(1)、隧道结(2)和GaAs子电池(3),所述隧道结(2)位于GaInP子电池(1)的一侧,所述GaAs子电池(3)位于隧道结(2)和键合层(4)之间;
采用GaAs或Ge作为支撑衬底,通过MOCVD或MBE生长与GaAs晶格匹配的GaInP/GaAs双结叠层电池,键合到单晶硅N型电池(5)上,然后剥离生长的GaInP/GaAs双结叠层电池,即得所需太阳能电池。
2.根据权利要求1所述的一种双面发电的太阳能电池,其特征在于,所述的单晶硅N型电池(5)包括N型单晶硅,所述N型单晶硅上设有扩散形成的发射区、等离子体增强化学气相沉积镀的减反膜、及丝网印刷的电极。
3.根据权利要求1所述的一种双面发电的太阳能电池,其特征在于,所述隧道结(2)采用宽带隙材料,带隙选择范围为1.45-2.0ev,选用材料为GaInP或AlGaAs,N型掺杂为Si/Te共掺,浓度为2E19cm-3-5E19cm-3,P型掺杂为C掺杂,浓度为1E20cm-3-3E20cm-3
4.根据权利要求1所述的一种双面发电的太阳能电池,其特征在于,所述键合层(4)包括设置在GaAs子电池(3)下方的上层Au(6)、及设置在单晶硅N型电池(5)上方的下层Au(7),所述上层Au(6)与下层Au(7)配合形成Au/Au键合。
5.根据权利要求1所述的一种双面发电的太阳能电池,其特征在于,当生长GaInP/GaAs双结叠层电池时,采用325μm N型GaAs作为支撑衬底。
6.根据权利要求5所述的一种双面发电的太阳能电池,其特征在于,在N型GaAs衬底上,依次由下至上成长GaAs缓冲层(18)、AlAs牺牲层(17)、GaAs接触层(16)、AlInP窗口层(15)、GaInP发射区层(14)、GaInP基区层(13)、AlGaInP背场层(12)、隧道结(2)、GaInP窗口层(11)、GaAs发射区层(10)、GaAs基区层(9)和GaInP背场层(8)。
7.根据权利要求6所述的一种双面发电的太阳能电池,其特征在于,所述GaAs缓冲层(18)的厚度为300-500nm;所述AlAs牺牲层(17)的厚度为10-15nm;所述GaAs接触层(16)采用欧姆接触层,厚度为300-500nm,N型掺杂元素为Si,掺杂浓度5E18cm-3-8E18cm-3
8.根据权利要求7所述的一种双面发电的太阳能电池,其特征在于,所述AlInP窗口层(15)厚度为20-100nm,N型掺杂元素为Si;所述GaInP发射区层(14)厚度为50-350nm,N型掺杂元素为Si。
9.根据权利要求8所述的一种双面发电的太阳能电池,其特征在于,所述GaInP基区层(13)厚度为350-1500nm,P型掺杂元素为Zn;
所述AlGaInP背场层(12)厚度为50-200nm,P型掺杂元素为Zn;
所述GaInP窗口层(11)厚度为20-100nm,N型掺杂元素为Si。
10.根据权利要求9所述的一种双面发电的太阳能电池,其特征在于,所述GaAs发射区层(10)厚度为40-200nm,N型掺杂元素为Si;
所述GaAs基区层(9)厚度为2-5μm,P型掺杂元素为Zn;
所述GaInP背场层(8)厚度为50-200nm,P型掺杂元素为Zn。
CN201710260851.3A 2017-04-20 2017-04-20 一种双面发电的太阳能电池 Active CN107170848B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710260851.3A CN107170848B (zh) 2017-04-20 2017-04-20 一种双面发电的太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710260851.3A CN107170848B (zh) 2017-04-20 2017-04-20 一种双面发电的太阳能电池

Publications (2)

Publication Number Publication Date
CN107170848A true CN107170848A (zh) 2017-09-15
CN107170848B CN107170848B (zh) 2019-07-12

Family

ID=59812863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710260851.3A Active CN107170848B (zh) 2017-04-20 2017-04-20 一种双面发电的太阳能电池

Country Status (1)

Country Link
CN (1) CN107170848B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111554763A (zh) * 2020-04-01 2020-08-18 南开大学 一种高开压高效钙钛矿/晶硅叠层电池
CN114122180A (zh) * 2020-08-31 2022-03-01 隆基绿能科技股份有限公司 叠层光伏器件及生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101241945A (zh) * 2008-02-04 2008-08-13 苏州纳米技术与纳米仿生研究所 硅基高效多结太阳电池及其制备方法
CN101901854A (zh) * 2010-06-08 2010-12-01 华中科技大学 一种InGaP/GaAs/InGaAs三结薄膜太阳能电池的制备方法
CN103311354A (zh) * 2013-05-30 2013-09-18 中国科学院苏州纳米技术与纳米仿生研究所 Si衬底三结级联太阳电池及其制作方法
CN105185860A (zh) * 2015-09-25 2015-12-23 郑州轻工业学院 一种键合连接的硅基与砷化镓基的太阳电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101241945A (zh) * 2008-02-04 2008-08-13 苏州纳米技术与纳米仿生研究所 硅基高效多结太阳电池及其制备方法
CN101901854A (zh) * 2010-06-08 2010-12-01 华中科技大学 一种InGaP/GaAs/InGaAs三结薄膜太阳能电池的制备方法
CN103311354A (zh) * 2013-05-30 2013-09-18 中国科学院苏州纳米技术与纳米仿生研究所 Si衬底三结级联太阳电池及其制作方法
CN105185860A (zh) * 2015-09-25 2015-12-23 郑州轻工业学院 一种键合连接的硅基与砷化镓基的太阳电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111554763A (zh) * 2020-04-01 2020-08-18 南开大学 一种高开压高效钙钛矿/晶硅叠层电池
CN114122180A (zh) * 2020-08-31 2022-03-01 隆基绿能科技股份有限公司 叠层光伏器件及生产方法

Also Published As

Publication number Publication date
CN107170848B (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
CN102683479B (zh) 形成砷化镓基光伏器件的方法和砷化镓基光伏器件
CN105097977B (zh) 多结太阳能电池外延结构
JPS61502020A (ja) ソ−ラ−セルと光検出器
CN106067493A (zh) 一种微晶格失配量子阱太阳能电池及其制备方法
CN104393098A (zh) 基于半导体量子点的多结太阳能电池及其制作方法
CN104241452B (zh) 柔性量子点太阳能电池及其制作方法
CN107123697A (zh) 一种硅基高效太阳能电池
CN105355670B (zh) 一种含dbr结构的五结太阳能电池
CN102931275A (zh) 一种具有超晶格结构的新型薄膜太阳电池
CN103094378B (zh) 含有变In组分InGaN/GaN多层量子阱结构的背入射太阳能电池
CN107170848A (zh) 一种双面发电的太阳能电池
JP2010267934A (ja) 太陽電池およびその製造方法
JP5548878B2 (ja) 多接合型光学素子
CN106653926B (zh) 一种等离激元增强GaAs基多结太阳电池及其制备方法
TW201140875A (en) A semiconductor epitaxial structure and apparatus comprising the same
CN102214721B (zh) 一种iii族氮化物双异质结太阳能光伏电池
CN104241416B (zh) 一种含量子阱结构的三结太阳能电池
CN207233757U (zh) 硅基高效太阳能电池
CN102738292A (zh) 多结叠层电池及其制备方法
CN110534612A (zh) 一种反向生长三结太阳电池的制备方法
CN105938855B (zh) 一种蓝宝石衬底单结太阳能电池结构及其制备方法
CN104685641B (zh) 光伏装置及其制造方法
CN105355668A (zh) 一种具有非晶态缓冲层结构的In0.3Ga0.7As电池及制备方法
CN109755340A (zh) 一种正向晶格失配三结太阳电池
JP2001085718A (ja) 太陽電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 528000 No.3, South Qili Avenue, Leping Town, Sanshui District, Foshan City, Guangdong Province (application for residence)

Patentee after: Guangdong aixu Technology Co.,Ltd.

Address before: No.69, area C, Sanshui Industrial Park, Foshan City, Guangdong Province 528000

Patentee before: GUANGDONG AIKO SOLAR ENERGY TECHNOLOGY Co.,Ltd.

Address after: No.69, area C, Sanshui Industrial Park, Foshan City, Guangdong Province 528000

Patentee after: GUANGDONG AIKO SOLAR ENERGY TECHNOLOGY Co.,Ltd.

Address before: 528100, Sanshui District, Guangdong City, Foshan Industrial Park, No. C District, No. 69

Patentee before: GUANGDONG AIKO SOLAR ENERGY TECHNOLOGY Co.,Ltd.

CP03 Change of name, title or address