CN107170831A - 一种纳米纸衬底薄膜晶体管及其制备方法 - Google Patents

一种纳米纸衬底薄膜晶体管及其制备方法 Download PDF

Info

Publication number
CN107170831A
CN107170831A CN201710447559.2A CN201710447559A CN107170831A CN 107170831 A CN107170831 A CN 107170831A CN 201710447559 A CN201710447559 A CN 201710447559A CN 107170831 A CN107170831 A CN 107170831A
Authority
CN
China
Prior art keywords
nanometer paper
film transistor
room temperature
substrate film
gate insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710447559.2A
Other languages
English (en)
Inventor
宁洪龙
曾勇
姚日晖
郑泽科
章红科
方志强
陈港
彭俊彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710447559.2A priority Critical patent/CN107170831A/zh
Publication of CN107170831A publication Critical patent/CN107170831A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明属于显示器件技术领域,公开了一种纳米纸衬底薄膜晶体管及其制备方法。所述纳米纸衬底薄膜晶体管由依次层叠的硬质衬底、纳米纸衬底、缓冲层、栅极、栅极绝缘层、有源层和源/漏电极构成。其制备方法为:在硬质衬底上旋涂纳米纤维素溶液,制备纳米纸衬底,然后依次通过射频磁控溅射室温制备缓冲层,通过直流磁控溅射室温制备栅极,通过射频磁控溅射室温制备栅极绝缘层,然后在栅极绝缘层上室温沉积制备有源层,再通过真空蒸发镀膜室温制备源/漏电极,得到所述纳米纸衬底薄膜晶体管。本发明采用纳米纸衬底并使用真空沉积技术室温下制备,制备方法简单、绿色环保。所得薄膜晶体管具有高迁移率、高稳定性的优点。

Description

一种纳米纸衬底薄膜晶体管及其制备方法
技术领域
本发明属于显示器件技术领域,具体涉及一种纳米纸衬底薄膜晶体管及其制备方法。
背景技术
柔性显示具有广泛的应用前景,例如汽车仪表盘、可穿戴的腕表和可卷曲的显示屏等。柔性显示需要通过柔性衬底实现弯曲,大部分柔性衬底是塑料,例如PI、PEN和PET等。由于这些塑料衬底难以降解,随着电子器件更新周期不断降低,这些报废的塑料弃物会不断堆积而造成“白色污染”。因此,发展环境友好型的“绿色”电子器件是急需解决的难题。
发明内容
针对现有技术存在的缺点和不足之处,本发明的首要目的在于提供一种纳米纸衬底薄膜晶体管。
本发明的另一目的在于提供上述纳米纸衬底薄膜晶体管的制备方法。
本发明目的通过以下技术方案实现:
一种纳米纸衬底薄膜晶体管,由依次层叠的硬质衬底、纳米纸衬底、缓冲层、栅极、栅极绝缘层、有源层和源/漏电极构成。
优选地,所述纳米纸衬底与缓冲层铺满整个硬质衬底,栅极、栅极绝缘层、有源层和源/漏电极形成一个底栅交错型结构,即栅极下表面、栅极绝缘层外侧两端、源/漏电极外侧两端均与缓冲层连接,有源层设置在栅极绝缘层上层与源/漏电极内侧两端之间。
优选地,所述的硬质衬底是指玻璃衬底。
本发明纳米纸的基本单元是纳米纤维素,非常容易降解,而且具有成本低、透明度好、可再生和高热稳定性等优点,是一种潜在的“绿色”衬底。
优选的,所述缓冲层材料为SiO2或Al2O3。缓冲层目的是阻隔水氧,防止其从纳米纸渗入器件影响性能。
上述纳米纸衬底薄膜晶体管的制备方法,包括如下制备步骤:
(1)在硬质衬底上旋涂质量浓度为0.2%~1.5%的纳米纤维素溶液,通过热风干燥形成纳米纸衬底;
(2)通过射频磁控溅射室温制备一层缓冲层;
(3)通过直流磁控溅射室温制备栅极;
(4)通过射频磁控溅射室温制备栅极绝缘层;
(5)在栅极绝缘层上室温沉积制备有源层;
(6)通过真空蒸发镀膜室温制备源/漏电极。
本发明的制备方法及所得薄膜晶体管具有如下优点及有益效果:
(1)本发明所有薄膜晶体管部分均采用真空沉积技术制备,且在室温下制备,无需热处理;能够很好地与产业应用相兼容,同时简化制备条件。
(2)本发明的薄膜晶体管采用纳米纸衬底,纳米纸具有容易降解、成本低、透明度好和可再生等特点,是非常环保的绿色衬底。纳米纸衬底薄膜晶体管能够在室温下制备,不需要热处理,具有高的迁移率,能够满足目前显示面板的要求。
(3)本发明的薄膜晶体管具有高迁移率、高稳定性的优点。
附图说明
图1是本发明实施例的纳米纸衬底薄膜晶体管的结构示意图,其中编号说明如下:01-玻璃衬底,02-纳米纸衬底,03-缓冲层,04-栅极,05-栅极绝缘层,06-有源层,07-源/漏电极。
图2和图3分别是本发明实施例的纳米纸衬底薄膜晶体管的输出特性曲线图和转移特性曲线图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例
本实施例的一种纳米纸衬底薄膜晶体管,其结构示意图如图1所示,由依次层叠的玻璃衬底01、纳米纸衬底02、缓冲层03、栅极04、栅极绝缘层05、有源层06和源/漏电极07构成。图中纳米纸衬底02和缓冲层03不需要图形化,直接铺满整个玻璃衬底。其它部分如栅极04、栅极绝缘层05、有源层06和源/漏电极07均通过金属掩模板进行图形化,使其形成一个底栅交错型结构,即先沉积栅极,而有源层在栅极绝缘层和源/漏之间。
本实施例的纳米纸衬底薄膜晶体管通过如下方法制备:
(1)在玻璃衬底上旋涂质量浓度为0.2%~1.5%的纳米纤维素溶液,通过热风干燥形成纳米纸衬底;
(2)在室温下射频磁控溅射沉积SiO2缓冲层,阻隔水氧从纳米纸基渗透器件;
(3)在室温下直流磁控溅射沉积Al栅极;
(4)在室温下射频溅射沉积Al2O3栅极绝缘层;
(5)在室温下直流脉冲沉积一层IGZO,然后射频溅射沉积一层Al2O3,将IGZO/Al2O3叠层作为有源层;
(6)室温下,真空蒸发镀膜法生长Al源/漏电极。
本实施例所得纳米纸衬底薄膜晶体管的输出特性曲线和转移特性曲线分别如图2和图3所示。根据图2和图3的结果获得的参数结果见表1,从中可以看出,本发明器件不需要退火即可达到较好的性能。
表1
μsat 15.8cm2.v-1.s-1
Ion/Ioff 4.36×105
SS 0.66V.decade-1
Von -0.42V
综上所述,本发明的纳米纸衬底薄膜晶体管,能够在室温下制备,且不需要退火处理。所得薄膜晶体管具有非常高的迁移率。本发明能够实现在纳米纸衬底上真空制备高性能的薄膜晶体管。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (5)

1.一种纳米纸衬底薄膜晶体管,其特征在于:由依次层叠的硬质衬底、纳米纸衬底、缓冲层、栅极、栅极绝缘层、有源层和源/漏电极构成。
2.根据权利要求1所述的一种纳米纸衬底薄膜晶体管,其特征在于:所述纳米纸衬底与缓冲层铺满整个硬质衬底,栅极、栅极绝缘层、有源层和源/漏电极形成一个底栅交错型结构,即栅极下表面、栅极绝缘层外侧两端、源/漏电极外侧两端均与缓冲层连接,有源层设置在栅极绝缘层上层与源/漏电极内侧两端之间。
3.根据权利要求1或2所述的一种纳米纸衬底薄膜晶体管,其特征在于:所述的硬质衬底是指玻璃衬底。
4.根据权利要求1或2所述的一种纳米纸衬底薄膜晶体管,其特征在于:所述缓冲层材料为SiO2或Al2O3
5.权利要求1~4任一项所述的一种纳米纸衬底薄膜晶体管的制备方法,其特征在于包括如下制备步骤:
(1)在硬质衬底上旋涂质量浓度为0.2%~1.5%的纳米纤维素溶液,通过热风干燥形成纳米纸衬底;
(2)通过射频磁控溅射室温制备一层缓冲层;
(3)通过直流磁控溅射室温制备栅极;
(4)通过射频磁控溅射室温制备栅极绝缘层;
(5)在栅极绝缘层上室温沉积制备有源层;
(6)通过真空蒸发镀膜室温制备源/漏电极。
CN201710447559.2A 2017-06-14 2017-06-14 一种纳米纸衬底薄膜晶体管及其制备方法 Pending CN107170831A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710447559.2A CN107170831A (zh) 2017-06-14 2017-06-14 一种纳米纸衬底薄膜晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710447559.2A CN107170831A (zh) 2017-06-14 2017-06-14 一种纳米纸衬底薄膜晶体管及其制备方法

Publications (1)

Publication Number Publication Date
CN107170831A true CN107170831A (zh) 2017-09-15

Family

ID=59818686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710447559.2A Pending CN107170831A (zh) 2017-06-14 2017-06-14 一种纳米纸衬底薄膜晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN107170831A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113555287A (zh) * 2021-07-22 2021-10-26 吉林建筑大学 一种水分触发降解的p型瞬态薄膜晶体管制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102790166A (zh) * 2012-08-27 2012-11-21 吉林大学 一种纳米纤维基柔性高性能热电材料及其制备方法
CN102832251A (zh) * 2011-06-15 2012-12-19 广东中显科技有限公司 一种柔性半透明igzo薄膜晶体管
CN104167275A (zh) * 2014-07-25 2014-11-26 同济大学 一种柔性磁薄膜及其制备方法
US20160010279A1 (en) * 2013-12-06 2016-01-14 University Of Maryland At College Park Scalable, highly transparent paper with microsized fiber
CN105679833A (zh) * 2016-01-12 2016-06-15 华南理工大学 具有叠层有源层的薄膜晶体管及其制备方法
CN105735049A (zh) * 2016-03-31 2016-07-06 华南理工大学 一种高透明超平滑纳米纸及其快速制备方法
US20160198984A1 (en) * 2015-01-08 2016-07-14 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Nanocellulose and Nanocellulose Composites as Substrates for Conformal Bioelectronics
CN106205876A (zh) * 2016-08-31 2016-12-07 福建农林大学 一种柔性纤维素基透明导电材料的制备方法
CN207217549U (zh) * 2017-06-14 2018-04-10 华南理工大学 一种纳米纸衬底薄膜晶体管

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832251A (zh) * 2011-06-15 2012-12-19 广东中显科技有限公司 一种柔性半透明igzo薄膜晶体管
CN102790166A (zh) * 2012-08-27 2012-11-21 吉林大学 一种纳米纤维基柔性高性能热电材料及其制备方法
US20160010279A1 (en) * 2013-12-06 2016-01-14 University Of Maryland At College Park Scalable, highly transparent paper with microsized fiber
CN104167275A (zh) * 2014-07-25 2014-11-26 同济大学 一种柔性磁薄膜及其制备方法
US20160198984A1 (en) * 2015-01-08 2016-07-14 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Nanocellulose and Nanocellulose Composites as Substrates for Conformal Bioelectronics
CN105679833A (zh) * 2016-01-12 2016-06-15 华南理工大学 具有叠层有源层的薄膜晶体管及其制备方法
CN105735049A (zh) * 2016-03-31 2016-07-06 华南理工大学 一种高透明超平滑纳米纸及其快速制备方法
CN106205876A (zh) * 2016-08-31 2016-12-07 福建农林大学 一种柔性纤维素基透明导电材料的制备方法
CN207217549U (zh) * 2017-06-14 2018-04-10 华南理工大学 一种纳米纸衬底薄膜晶体管

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113555287A (zh) * 2021-07-22 2021-10-26 吉林建筑大学 一种水分触发降解的p型瞬态薄膜晶体管制备方法
CN113555287B (zh) * 2021-07-22 2022-05-24 吉林建筑大学 一种水分触发降解的p型瞬态薄膜晶体管制备方法

Similar Documents

Publication Publication Date Title
Takei et al. Quantum confinement effects in nanoscale-thickness InAs membranes
Huang et al. High-mobility solution-processed tin oxide thin-film transistors with high-κ alumina dielectric working in enhancement mode
CN104900654B (zh) 双栅极氧化物半导体tft基板的制作方法及其结构
Park et al. Flexible and transparent thin-film transistors based on two-dimensional materials for active-matrix display
KR20110053978A (ko) 전계 효과형 트랜지스터, 그의 제조 방법 및 스퍼터링 타겟
CN102832130A (zh) 一种柔性半透明igzo薄膜晶体管的制造方法
US9570694B2 (en) All printed and transparent CNT TFT
Yu et al. In/Ga-free, inkjet-printed charge transfer doping for solution-processed ZnO
CN106129122A (zh) 氧化物薄膜晶体管及其制备方法、阵列基板、显示装置
WO2018133148A1 (zh) 薄膜晶体管及其制作方法、液晶面板
TW200926309A (en) Transparent thin-film transistor and manufacturing method of the transistor
CN105514172B (zh) 一种低电压透明氧化物薄膜晶体管及其制备方法
CN103022077B (zh) 一种含氧化物薄膜晶体管的oled装置
CN103177970A (zh) 一种氧化物薄膜晶体管制备方法
CN107170831A (zh) 一种纳米纸衬底薄膜晶体管及其制备方法
CN207217549U (zh) 一种纳米纸衬底薄膜晶体管
CN107644878A (zh) 反相器及其制作方法
CN105304497B (zh) 一种薄膜晶体管、阵列基板及相关制作方法
CN109887991B (zh) 一种叠层硅掺杂氧化锡薄膜晶体管及其制备方法
CN103177969A (zh) 一种金属氧化物薄膜晶体管的制备方法
CN107785439A (zh) 一种室温脉冲直流溅射波形优化的薄膜晶体管及其制备方法
Guo et al. Short-term synaptic plasticity mimicked on ionic/electronic hybrid oxide synaptic transistor gated by nanogranular SiO2 films
CN103676357A (zh) 彩膜基板及其制造方法和液晶显示面板
WO2016179877A1 (zh) 共平面型氧化物半导体tft基板结构及其制作方法
Guo et al. Biodegradable junctionless transistors with extremely simple structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination