CN107169299B - 一种编队目标分散机动模式下的跟踪方法 - Google Patents

一种编队目标分散机动模式下的跟踪方法 Download PDF

Info

Publication number
CN107169299B
CN107169299B CN201710386479.0A CN201710386479A CN107169299B CN 107169299 B CN107169299 B CN 107169299B CN 201710386479 A CN201710386479 A CN 201710386479A CN 107169299 B CN107169299 B CN 107169299B
Authority
CN
China
Prior art keywords
measurement
formation
track
interconnection
extrapolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710386479.0A
Other languages
English (en)
Other versions
CN107169299A (zh
Inventor
王海鹏
董凯
潘新龙
刘瑜
林雪原
夏沭涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Naval Aeronautical University
Original Assignee
Naval Aeronautical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naval Aeronautical University filed Critical Naval Aeronautical University
Priority to CN201710386479.0A priority Critical patent/CN107169299B/zh
Publication of CN107169299A publication Critical patent/CN107169299A/zh
Application granted granted Critical
Publication of CN107169299B publication Critical patent/CN107169299B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明提出了一种编队目标分散机动模式下的跟踪方法,该方法利用四帧量测数据,基于航迹起始中修正的3/4逻辑法实现编队内目标的点‑航互联。传统的机动目标跟踪算法因对回波复杂性考虑不足,难以取得理想的跟踪效果,且现有机动编队目标跟踪算法只简单的基于编队整体进行了研究,无法准确、实时的完成分散机动编队内各目标的状态更新,本发明弥补上述不足。

Description

一种编队目标分散机动模式下的跟踪方法
本申请是申请日为2014年9月18日、申请号为2014104784959、发明名称为“典型机动编队目标跟踪建模方法”的专利申请的分案申请。
技术领域
本发明属于雷达信息融合技术领域,提供了几种典型机动编队目标跟踪建模方法。
背景技术
近年来,随着传感器性能尤其是分辨率的提高,越来越多的学者开始关注如何利用多个传感器获得的综合信息改善编队目标的跟踪性能,这使得编队目标跟踪领域出现许多有待解决的关键问题。在编队目标运动过程中,基于特定的战术或目的,编队目标随时会发生转弯、爬升、俯冲等整体机动,还会出现分裂、合并、分散等编队目标特有的机动模式,在这种情况下,编队内目标结构将发生变化,导致多传感器对编队内个体目标的分辨状态更为复杂,杂波环境下多传感器机动编队目标的精确跟踪问题变得十分困难。传统的多传感器机动目标跟踪技术难以跟踪机动编队目标,主要原因为:(1)当编队目标发生分裂、合并或分散时,传统的机动目标跟踪模型不再匹配;(2)编队内目标一般相距较近,因而回波交叉影响严重,再加上杂波的影响,当编队发生机动时,易出现跟丢、跟错等现象;(3)利用组网传感器探测编队目标时,因传感器与编队内目标的角度不同,各传感器对同一机动编队目标的探测状态可能不一致,实现多传感器信息的互补和剔除更加困难。现有机动编队目标跟踪算法大多基于编队整体对分裂、合并进行研究,对多传感器探测下发生机动时编队内目标的航迹更新问题尚未有文献报道,已不能满足目标跟踪领域的实际工程需求。
针对上述问题,有必要深入分析多传感器探测下编队发生机动时编队内目标的量测特性,研究如何建立编队整体机动、分裂、合并、分散等典型编队机动模式下的编队跟踪模型,以实现各机动模式下编队内目标的状态更新。
发明内容
要解决的技术问题
在航迹维持阶段,编队目标会发生各种机动,此时编队内目标回波的相对位置结构发生缩放、剪切、旋转等仿射变换,传统的机动目标跟踪算法因对机动编队目标回波复杂性考虑不足,难以取得理想的跟踪效果,且现有机动编队目标跟踪算法只简单的基于编队整体进行了研究,无法准确、实时的完成机动编队内各目标的状态更新。为弥补上述不足,本发明基于编队机动时的量测特性,建立整体机动、分裂、合并、分散四种典型的机动编队目标跟踪模型。
技术方案
本发明所述的典型机动编队目标跟踪模型的建立,包括以下技术流程:编队整体加速度的求取、编队内目标的外推、关联波门的建立、杂波剔除模型及点迹合并模型的建立、互联点迹的获取、编队内目标的状态估计。
有益效果
(1)基于多帧关联模型,充分利用了k-1时刻中各目标的状态更新值,节省了一个周期,缩短航迹确认及点-航关联的时间;
(2)以U1(k-1)中的各目标为航迹头,保证了分散后航迹的个数与原U1(k-1)中的目标个数吻合;
(3)对杂波鲁棒性较好,利用3/4航迹起始模型剔除了绝大部分杂波,保证了编队内目标跟踪的精确性。
附图说明
图1是编队整体、分裂、合并、分散机动跟踪模型流程图;
具体实施方式
以下结合说明书附图对本发明作进一步详细描述。参照说明书附图,本发明的具体实施方式分以下几个内容:
一、编队整体机动跟踪模型的建立
(1)计算装置1接受k时刻探测设备所得量测集
Figure BDA0001306493140000021
利用循环阈值模型获得Z1(k),并利用U(k-1),求出编队目标U(k)因发生整体机动而产生的加速度
Figure BDA0001306493140000022
Figure BDA0001306493140000023
式中,T为采样周期。
(2)计算装置2接受来自计算装置1的输出结果
Figure BDA0001306493140000024
求出U(k-1)中各目标航迹的一步预测值集合
Figure BDA0001306493140000025
其中,TU(k)为编队U(k)中的目标个数,一般情况下TU(k)=TU(k-1);则
Figure BDA0001306493140000026
式中,F(k)∈Rn,n为状态转移矩阵;
Figure BDA0001306493140000031
(3)计算装置3接受来自计算装置2的输出结果,以
Figure BDA0001306493140000032
为中心建立关联波门,若Z1(k)中的量测zi(k)满足式(4),则判定zi(k)落入
Figure BDA0001306493140000033
的波门中。
Figure BDA0001306493140000034
式中,l为常量系数,主要受量测噪声和杂波密度的影响,量测噪声和杂波密度越大,l越大。(4)计算装置4接受计算装置3的输出结果,设落入
Figure BDA0001306493140000035
关联波门的量测集合为
Figure BDA0001306493140000036
按照传感器的来源不同对
Figure BDA0001306493140000037
进行分类,则
Figure BDA0001306493140000038
可写为
Figure BDA0001306493140000039
式中,
Figure BDA00013064931400000310
Figure BDA00013064931400000311
中来源于传感器s的量测个数;Ni
Figure BDA00013064931400000312
中量测来源的传感器个数。
因各传感器上报到融合中心的点迹集合中包括编队内目标的真实回波和杂波,在此根据Ni分为以下三种情况剔除杂波,确定
Figure BDA00013064931400000313
的关联量测
Figure BDA00013064931400000314
①若Ni≥2,首先需要建立点迹合并模型,本小节利用广义S-D分配的原则进行静态互联,根据静态关联结果对各传感器量测进行组合,消除多个传感器对应同一目标的冗余信息,并对各组合进行有效性判断,然后将被接受组合中所有量测点进行点迹压缩以获得一个等效量测点,实现多传感器点迹互联,同时剔除
Figure BDA00013064931400000315
中的其他点迹,达到消除杂波的目的,最后选取等效量测点为互联量测
Figure BDA00013064931400000316
②若Ni=1,不需要建立点迹合并模型,在此选取
Figure BDA00013064931400000317
中与
Figure BDA00013064931400000318
空间距离最近的量测
Figure BDA00013064931400000319
为关联量测
Figure BDA00013064931400000320
其中
Figure BDA00013064931400000321
③若Ni=0,基于
Figure BDA00013064931400000322
获取虚拟量测为关联量测
Figure BDA00013064931400000323
Figure BDA00013064931400000324
式中,H(k)为量测矩阵。
(5)计算装置5接受计算装置4的输出结果
Figure BDA00013064931400000325
后,利用交互多模型算法对编队U(k)中的第i个目标进行滤波。
Figure BDA0001306493140000041
Figure BDA0001306493140000042
式中,M为模型个数;
Figure BDA0001306493140000043
为k时刻对编队U(k)中的目标i滤波的模型j的概率;
Figure BDA0001306493140000044
Pij(k|k)分别为基于模型j的状态更新值和协方差更新值。
(6)存储装置6存储计算装置5输出的状态更新值和协方差更新值。
二、编队分裂跟踪模型的建立
计算装置7接受k时刻存储装置6的数据U(k-1),因对U(k-1)与U1(k)或U2(k)而言,编队发生了整体机动,所以U1(k)和U2(k)内各目标的状态更新可基于编队机动跟踪模型直接获得。因为U1(k)和U2(k)由U(k-1)分裂而来,所以一般情况下
Figure BDA0001306493140000045
但此处在k时刻分别基于Z1(k)和Z2(k)对U(k-1)中的所有航迹均进行了延续,所以U1(k)和U2(k)中必然存在虚假航迹,需要进一步删除。然而虚假航迹的删除过程在一个探测周期内很难完成,因此通过对各时刻航迹建立航迹质量,利用多帧互联模式终结虚假航迹并完成编队的分裂,具体描述为:
(1)设
Figure BDA0001306493140000046
为k时刻编队U1(k)中的目标i的状态更新值,定义其航迹质量为
Figure BDA0001306493140000047
式中,
Figure BDA0001306493140000048
为k-1时刻编队U1(k)中的目标i的航迹质量,若k时刻为编队开始发生分裂的时刻,定义
Figure BDA0001306493140000049
Ni为编队U1(k)中目标i关联波门内量测来源的传感器个数。
(2)滑窗的建立
建立一个[k,k+h]的滑窗,若
Figure BDA00013064931400000410
则判断编队U1(k)中航迹i为虚假航迹,将其删除;a为删除参数,与杂波密度有关,杂波密度越大,a的取值越小。
(3)设在k+h时刻,若
Figure BDA00013064931400000411
则停止虚假航迹的判断;否则增加窗口长度继续判别。
三、编队合并跟踪模型的建立
计算装置8接受存储装置6的数据U1(k-1)和U2(k-1),基于Z(k),分别对编队U1(k-1)和U2(k-1)中的所有目标航迹进行状态更新,获得
Figure BDA0001306493140000051
Figure BDA0001306493140000052
当编队U1(k-1)和U2(k-1)合并成U(k)后,U1(k)和U2(k)中的目标属于同一个编队,各目标间的空间距离和运动方式应该满足编队的定义,所以首先需要基于U1(k)和U2(k)重新进行编队的分割。设
Figure BDA0001306493140000053
Figure BDA0001306493140000054
为U1(k)和U2(k)中任意两个目标的状态更新值,若
Figure BDA0001306493140000055
则判定这两个目标属于同一个编队。式中,d0为常数阈值;γ为服从自由度为nx的χ2分布的门限值,这里nx为状态估计向量的维数;且
Figure BDA0001306493140000056
式中,
Figure BDA0001306493140000057
Figure BDA0001306493140000058
为两目标的状态估计误差协方差。
在此基于编队分割中的循环阈值模型完成k时刻编队的重新识别,设识别后得到一个新的编队
Figure BDA0001306493140000059
Figure BDA00013064931400000510
则编队的合并完结;否则利用k+1时刻的关联编队量测重复上述步骤,继续进行编队的合并判别。
四、编队分散跟踪模型的建立
(1)计算装置9接受存储装置8的数据U1(k-1),以U1(k-1)作为航迹起始过程第一次扫描所得到的量测集合,
Figure BDA00013064931400000511
分别为后三次扫描得到的量测集合;以
Figure BDA00013064931400000512
为中心建立波门,若
Figure BDA00013064931400000513
满足
d′ij[Ri(k-1)+Rj(k)]-1dij≤γ (16)
则判定
Figure BDA0001306493140000061
可与zj(k)互联,并建立可能航迹D1。式中,Rj(k)为对应于zj(k)的量测噪声协方差;γ为常数阈值,可由χ2分布表查。
Figure BDA0001306493140000062
式中,
Figure BDA0001306493140000063
Figure BDA0001306493140000064
分别为目标i在x、y方向上的速度最大值和最小值;
Figure BDA0001306493140000065
Figure BDA0001306493140000066
的协方差。
(2)计算装置10接受计算装置9的输出结果,对可能航迹D1进行直线外推,并以外推点为中心,建立关联波门Ω(k+1),其由航迹外推误差协方差确定。若量测zi(k+1)落入关联波门Ω(k+1)内,假设zi(k+1)与zj(k)的连线与该航迹的夹角为α,若α≤σ(σ一般由测量精度决定,为了保证以很高的概率起始目标的航迹,可以选择较大的σ),则认为zi(k+1)可与D1互联。若存在多个点满足要求,则选取离外推点最近的量测互联。
若没有量测落入Ω(k+1)中,则将D1继续直线外推,以外推点为中心,建立后续关联波门Ω(k+2),其大小由航迹外推误差协方差确定。若量测zi(k+2)落入关联波门Ω(k+2)内,假设zi(k+2)与zi(k+1)的连线与该航迹的夹角为β,若β≤σ,则判定zi(k+2)可与D1互联。若存在多个点满足要求,则选取离外推点最近的量测互联。
若在第四次扫描中,没有量测落入后续关联波门Ω(k+2)中,则删除该可能航迹。
(3)在各个周期中不与任何航迹互联的量测用来开始一条新的可能航迹,转步骤(1)。
设在k+2时刻以
Figure BDA0001306493140000067
为起点的量测集合为{
Figure BDA0001306493140000068
zj(k)、zm(k+1)},则说明目标i在k时刻和k+1时刻的互联量测为zj(k)和zm(k+1)。
(4)计算装置11接受计算装置10的输出结果——目标i在k时刻的互联量测为zj(k)后,利用IMM模型的思想对目标进行滤波。

Claims (1)

1.一种编队目标分散机动模式下的跟踪方法,其特征在于,利用四帧量测数据,基于航迹起始中修正的3/4逻辑法实现编队内目标的点-航互联,具体分为以下五步进行:
(1)以U1(k-1)作为航迹起始过程第一次扫描所得到的量测集合,
Figure FDA0002890742390000011
Figure FDA0002890742390000012
分别为后三次扫描得到的量测集合;以
Figure FDA0002890742390000013
为中心建立波门,若量测集合Z(k)中第j个量测
Figure FDA0002890742390000014
满足
d′ij[Ri(k-1)+Rj(k)]-1dij≤γ
则判定
Figure FDA0002890742390000015
可与zj(k)互联,并建立可能航迹D1;式中,Rj(k)为对应于zj(k)的量测噪声协方差;γ为常数阈值,由χ2分布表查得;
Figure FDA0002890742390000016
式中,
Figure FDA0002890742390000017
Figure FDA0002890742390000018
分别为目标i在x、y方向上的速度最大值和最小值;
Figure FDA0002890742390000019
为k时刻第j个量测与k-1时刻第i条航迹状态更新值在x方向上的差值;
Figure FDA00028907423900000110
为k时刻第j个量测与k-1时刻第i条航迹状态更新值在x方向上的差值的负数;
Figure FDA00028907423900000111
为k时刻第j个量测与k-1时刻第i条航迹状态更新值在y方向上的差值;
Figure FDA00028907423900000112
为k时刻第j个量测与k-1时刻第i条航迹状态更新值在y方向上的差值的负数;Ri(k-1)表示k-1时刻第i条航迹在x和y方向上的位置协方差;
Figure FDA00028907423900000113
Figure FDA00028907423900000114
的协方差;
(2)对可能航迹D1进行直线外推,并以外推点为中心,建立关联波门Ω(k+1),其由航迹外推误差协方差确定;若量测zi(k+1)落入关联波门Ω(k+1)内,假设zi(k+1)与zj(k)的连线与该航迹的夹角为α,若α≤σ,则认为zi(k+1)可与D1互联,其中σ由测量精度决定;若存在多个点满足要求,则选取离外推点最近的量测互联;
(3)若没有量测落入Ω(k+1)中,则将D1继续直线外推,以外推点为中心,建立后续关联波门Ω(k+2),其大小由航迹外推误差协方差确定;若量测zi(k+2)落入关联波门Ω(k+2)内,假设zi(k+2)与zi(k+1)的连线与该航迹的夹角为β,若β≤σ,则判定zi(k+2)可与D1互联;若存在多个点满足要求,则选取离外推点最近的量测互联;
(4)若在第四次扫描中,没有量测落入后续关联波门Ω(k+2)中,则删除该可能航迹;
(5)在各个周期中不与任何航迹互联的量测用来开始一条新的可能航迹,转步骤(1);
设在k+2时刻以
Figure FDA0002890742390000021
为起点的量测集合为
Figure FDA0002890742390000022
则说明目标i在k时刻和k+1时刻的互联量测为zj(k)和zm(k+1)。
CN201710386479.0A 2014-09-18 2014-09-18 一种编队目标分散机动模式下的跟踪方法 Active CN107169299B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710386479.0A CN107169299B (zh) 2014-09-18 2014-09-18 一种编队目标分散机动模式下的跟踪方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710386479.0A CN107169299B (zh) 2014-09-18 2014-09-18 一种编队目标分散机动模式下的跟踪方法
CN201410478495.9A CN104182652B (zh) 2014-09-18 2014-09-18 典型机动编队目标跟踪建模方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201410478495.9A Division CN104182652B (zh) 2014-09-18 2014-09-18 典型机动编队目标跟踪建模方法

Publications (2)

Publication Number Publication Date
CN107169299A CN107169299A (zh) 2017-09-15
CN107169299B true CN107169299B (zh) 2021-06-15

Family

ID=51963687

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201710386479.0A Active CN107169299B (zh) 2014-09-18 2014-09-18 一种编队目标分散机动模式下的跟踪方法
CN201410478495.9A Active CN104182652B (zh) 2014-09-18 2014-09-18 典型机动编队目标跟踪建模方法
CN201710385783.3A Active CN107092808B (zh) 2014-09-18 2014-09-18 一种编队目标合并机动模式下的跟踪方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201410478495.9A Active CN104182652B (zh) 2014-09-18 2014-09-18 典型机动编队目标跟踪建模方法
CN201710385783.3A Active CN107092808B (zh) 2014-09-18 2014-09-18 一种编队目标合并机动模式下的跟踪方法

Country Status (1)

Country Link
CN (3) CN107169299B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110134139B (zh) * 2019-05-08 2022-04-08 合肥工业大学 一种对抗环境下无人机编队的战术决策方法和装置
CN110517294A (zh) * 2019-08-29 2019-11-29 中国科学院长春光学精密机械与物理研究所 一种多目标编批方法、多目标编批装置及多目标编批设备
CN112068121A (zh) * 2020-09-09 2020-12-11 中国航空工业集团公司雷华电子技术研究所 基于随机有限集的编队目标跟踪方法
CN112711020A (zh) * 2020-12-08 2021-04-27 中国人民解放军海军航空大学 基于循环阈值距离分割的群目标跟踪方法
CN115420293A (zh) * 2022-08-31 2022-12-02 中国人民解放军海军航空大学 一种自动目标跟踪方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101290350A (zh) * 2008-05-21 2008-10-22 覃征 地面集群目标跟踪方法
CN103471591A (zh) * 2013-04-15 2013-12-25 中国人民解放军海军航空工程学院 基于逻辑法、全局最近邻和目标航向信息的机动多目标数据互联算法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7194111B1 (en) * 2003-07-10 2007-03-20 The United States Of America As Represented By The Secretary Of The Navy Hyperspectral remote sensing systems and methods using covariance equalization
AU2007259030B2 (en) * 2006-06-13 2011-08-04 Bae Systems Plc Improvements relating to target tracking
CN101984560A (zh) * 2010-04-27 2011-03-09 中国人民解放军海军航空工程学院 集中式多源联合维特比数据互联跟踪器
CN102148921B (zh) * 2011-05-04 2012-12-12 中国科学院自动化研究所 基于动态群组划分的多目标跟踪方法
CN102621542B (zh) * 2012-04-02 2014-10-22 中国人民解放军海军航空工程学院 基于多模粒子滤波和数据关联的机动微弱目标检测前跟踪方法
CN103853908B (zh) * 2012-12-04 2017-11-14 中国科学院沈阳自动化研究所 一种自适应交互式多模型的机动目标跟踪方法
CN103648108B (zh) * 2013-11-29 2017-02-08 中国人民解放军海军航空工程学院 传感器网络分布式一致性目标状态估计方法
CN104050368B (zh) * 2014-06-09 2017-04-12 中国人民解放军海军航空工程学院 系统误差下基于误差补偿的群航迹精细关联算法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101290350A (zh) * 2008-05-21 2008-10-22 覃征 地面集群目标跟踪方法
CN103471591A (zh) * 2013-04-15 2013-12-25 中国人民解放军海军航空工程学院 基于逻辑法、全局最近邻和目标航向信息的机动多目标数据互联算法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Multitarget Initiation, Tracking and Termination Using Bayesian Monte Carlo Methods;WILLIAM NG et al.;《THE COMPUTER JOURNAL》;20071231;第50卷(第6期);第674-693页 *
修正的逻辑航迹起始算法;苏峰 等;《现代防御技术》;20041031;第32卷(第5期);第66-68页 *
多传感器多目标航迹跟踪与融合算法研究;严康;《中国优秀硕士学位论文全文数据库 信息科技辑》;20120715(第07期);论文摘要、第10-12页 *

Also Published As

Publication number Publication date
CN107169299A (zh) 2017-09-15
CN107092808A (zh) 2017-08-25
CN104182652B (zh) 2017-06-23
CN104182652A (zh) 2014-12-03
CN107092808B (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
Michelmore et al. Uncertainty quantification with statistical guarantees in end-to-end autonomous driving control
CN107169299B (zh) 一种编队目标分散机动模式下的跟踪方法
CN103729859B (zh) 一种基于模糊聚类的概率最近邻域多目标跟踪方法
CN107247259B (zh) 基于神经网络的k分布海杂波形状参数估计方法
CN109633590B (zh) 基于gp-vsmm-jpda的扩展目标跟踪方法
CN105093198B (zh) 一种分布式外辐射源雷达组网探测的航迹融合方法
CN111695299B (zh) 一种中尺度涡轨迹预测方法
US20220156965A1 (en) Multi-modal 3-d pose estimation
CN104199022A (zh) 一种基于目标模态估计的临近空间高超声速目标跟踪方法
CN104715154B (zh) 基于kmdl准则判据的核k‑均值航迹关联方法
CN107340516B (zh) 基于多普勒速度的联合逻辑快速航迹起始方法
CN108320051B (zh) 一种基于gru网络模型的移动机器人动态避碰规划方法
CN114998276B (zh) 一种基于三维点云的机器人动态障碍物实时检测方法
CN107292039B (zh) 一种基于小波聚类的uuv巡岸轮廓构建方法
US10935938B1 (en) Learning from operator data for practical autonomy
CN111929676A (zh) 一种基于密度聚类的x波段雷达目标检测与跟踪方法
CN108010066A (zh) 基于红外目标灰度互相关和角度信息的多假设跟踪方法
CN114814820A (zh) 一种基于毫米波雷达的多扩展目标跟踪方法及其设备
CN110210326A (zh) 一种基于光纤振动信号的在线列车识别及速度估计方法
CN117724059A (zh) 基于卡尔曼滤波算法的多源传感器融合航迹校正方法
CN113581260A (zh) 一种基于gnss的列车轨道占用判别方法
CN108320302A (zh) 基于随机超曲面的CBMeMBer多目标跟踪方法
CN116663428A (zh) 一种基于神经网络的面波成像联合反演方法
CN116226640A (zh) 一种针对隧道物探反演数据的不良地质特征提取方法
CN113703025B (zh) 一种面向gnss多种失效状态的车辆定位误差智能预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210519

Address after: 264001 scientific research office, two Road 188, Zhifu District, Yantai, Shandong

Applicant after: NAVAL AERONAUTICAL University

Address before: 264001 scientific research department, 188 road two, Zhifu District, Yantai, Shandong

Applicant before: NAVAL AERONAUTICAL AND ASTRONAUTICAL University PLA

GR01 Patent grant
GR01 Patent grant