CN107164347A - Control Culm of Rice rugosity, tiller number, grain number per spike, mass of 1000 kernel and the ideotype gene NPT1 of yield and its application - Google Patents

Control Culm of Rice rugosity, tiller number, grain number per spike, mass of 1000 kernel and the ideotype gene NPT1 of yield and its application Download PDF

Info

Publication number
CN107164347A
CN107164347A CN201710461754.0A CN201710461754A CN107164347A CN 107164347 A CN107164347 A CN 107164347A CN 201710461754 A CN201710461754 A CN 201710461754A CN 107164347 A CN107164347 A CN 107164347A
Authority
CN
China
Prior art keywords
rice
ser
npt1
glu
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710461754.0A
Other languages
Chinese (zh)
Other versions
CN107164347B (en
Inventor
傅向东
王拴锁
吴昆�
刘倩
叶亚峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Genetics and Developmental Biology of CAS
Original Assignee
Institute of Genetics and Developmental Biology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Genetics and Developmental Biology of CAS filed Critical Institute of Genetics and Developmental Biology of CAS
Priority to CN201710461754.0A priority Critical patent/CN107164347B/en
Publication of CN107164347A publication Critical patent/CN107164347A/en
Application granted granted Critical
Publication of CN107164347B publication Critical patent/CN107164347B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/485Exopeptidases (3.4.11-3.4.19)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/19Omega peptidases (3.4.19)
    • C12Y304/19012Ubiquitinyl hydrolase 1 (3.4.19.12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites

Abstract

It can increase Culm of Rice rugosity, per fringe grain number per spike, mass of 1000 kernel and the ideotype gene NPT1 of yield and its application the invention discloses a kind of.NPT1 gene functions and its expression quantity height are with Culm of Rice rugosity, per fringe grain number per spike, grain weight and yield are closely related, one excellent allelic variation type npt1 of the gene, the gene expression amount is caused to be remarkably decreased, Culm of Rice thickening, every fringe grain number per spike is caused to increase again with grain, so as to increase yield.Further study show that NPT1 encodes the deubiquitinating enzymes of a similar mankind OTUB1 albumen, it is by regulating and controlling OsSPL14 protein stabilities, so as to realize the regulation and control to paddy rice strain (fringe) type.Npt1 is polymerize with excellent economical character controlling gene dep1 1, rice yield can be further improved.NPT1 is as the new gene for controlling important Agronomic Traits in Rice, and its clone is that rice molecular pyramiding breeding and yield improvement provide certain theory and technology and supported.

Description

Control the preferable strain of Culm of Rice rugosity, tiller number, grain number per spike, mass of 1000 kernel and yield Type gene NPT1 and its application
Technical field
The invention belongs to plant biotechnology field.In particular it relates to a kind of increase Culm of Rice rugosity, every fringe Grain number per spike, the gene of mass of 1000 kernel and yield and its application.
Background technology
Paddy rice is one of important cereal crops, has supported the population in the whole world about 1/2nd.Eighties of last century sixties, The popularization of half breeding wheat for semidwarfness causes whole world rice yield to be significantly improved.Since nearly 30 years, although rice heterosis Using and its rearing new variety achieve larger progress in terms of rice yield lifting, but the increase rate of yield is still not Demand of the growing population to grain can be met.It is expected that the year two thousand fifty size of population is up to 8,900,000,000, it means that the year two thousand fifty grain Food production needs raising 50%.In face of population sharp increase, environment constantly deteriorates, the severe shape of the continuous reduction of arable area Gesture, how to effectively improve rice yield turns into a very important task in agricultural production.
The main number of productive ear in unit area of rice yield, the factors composition such as per fringe grain number per spike and mass of 1000 kernel.Tiller Number determines number of productive ear, and tiller is that influence paddy rice spike number is how many and and then influence one of Main Agronomic Characters of its yield;One Secondary branch stalk, Secondary branch and setting percentage determine every fringe grain number per spike;Seed size (length and width, thickness) determines mass of 1000 kernel.Meanwhile, Heading stage, lodging tolerance, disease-resistant resistance to inverse characteristic also contributes to rice yield.Rice panicle type refers to size and the growth of Rice Panicle Posture, is that the important component grain number per spike of plant type of rice and fringe develop closely related, little Hua numbers determine every fringe grain number per spike;Thousand Grain weight is closely related with Grain filling in grain size and grain maturation, and these economical characters are all close with plant yield Correlation, and these Main Agronomic Characters such as plant height, tiller number, tillering angle, fringe portion form, grain type etc. are all typical complexity Economical character, is controlled by multiple quantitative trait locus (Quantitative Trait Locus, QTLs) and envirment factor.
In rice breeding, ideotype, which is moulded, has played the genetic improvement of rice varieties huge effect.Traditional Plant Height of Rice is higher, and stalk is weak, low to nitrogenous fertilizer tolerance, easily lodging, yields poorly;Semi-dwarf gene sd1 introducing, makes plant height Significantly reduce, stalk thickening, tiller number increases, resistance to fertilizer is improved with lodging tolerance, therefore yield is significantly improved.In order to enter One step improves rice yield, eighties of last century International Rice eighties institute (International Rice Research Institute, IRRI) propose ideotype (New Plant Type) breeding plan, that is, it is bred as few tiller, big fringe, stalk thick Strong ideotype paddy rice.At the same time, China's breeding man proposes the theory of Japonica Rice for Super High Yield, it is indicated that erect head breeding Be after adapting to the another important breeding Morphological evolution selection of Super-high-yielding after half breeding wheat for semidwarfness, and be bred as with " distant round-grained rice 5 " and " Shennong-265 " etc. is a collection of high-yield rice new varieties of representative, considerably improves the unit yield of China japonica rice.Early stage, this The gene DEP1 for controlling the Erect Panicle character has been cloned in laboratory from high yield japonica rice kind " Shennong-265 ", it is found that its is excellent Allele dep1-1 can increase every fringe grain number per spike and improve yield, and served in " super hybridization rice " breeding of China to Close important effect.
The content of the invention
In order to further parse the molecular regulation mechanism of rice high yield plant type, we utilize having that International Rice is cultivated The parental rice IR66167-27-5-1-6 of ideotype feature, is separated and cloned with map-based cloning by QTL positioning Control the ideotype and the key gene NPT1 of yield.On this basis, science of heredity, molecular biology, life are fully utilized The multiple means such as thing chemistry, have extensively studied the biological function of NPT1 genes and its molecular basis of adjusting and controlling rice yield, are High-yield Rice Breeding provides corresponding theoretical foundation, also provides important gene resource for rice molecular design and context.
Culm of Rice rugosity, tiller number, the preferable strain per fringe grain number per spike, mass of 1000 kernel and yield are controlled the present invention relates to a kind of Type gene NPT1 and its application.In particular it relates to which NPT1 is improving crops (for example, paddy rice, wheat, barley, jade Rice, sorghum etc.) tiller number, per fringe grain number per spike, mass of 1000 kernel, yield, the New function in terms of stalk rugosity and resistance to lodging ability and Using.More particularly it relates to NPT1 and its homologous gene from the agriculture such as paddy rice, wheat, barley, corn, sorghum Crop.
The present inventor utilizes a few tiller from International Rice Research Institute, big fringe and the sturdy parental rice of stalk IR66167-27-5-1-6 and China japonica rice variety spring river 06 hybridize constructed recombinant inbred lines, find one of strain It is that RIL52 shows ideotype feature, including the increase of stalk rugosity, tillering number is reduced, and Grain number per spike and yield are notable The characters such as increase.Hybridize constructed F to RIL52 and rice variety Zhejiang spoke 8022The field that colony has carried out completely random is real Test, tiller number has been investigated respectively, per fringe grain number per spike and stalk rugosity this 3 characters, with reference to the phenotypic number and molecule mark of each character Count evidence, and qtl analysis finds that have one on No. 8 chromosome long arms controls stalk rugosity, grain number per spike and tiller number simultaneously Main effect QTL, is named as qNPT1.The BC built followed by RIL52 and Zhejiang spoke 8022F2And BC2F3Colony, by qNPT1 essences Fine positioning is in No. eight chromosome long arm end 4.1Kbp of paddy rice physical extent, and the section only has candidate's base of a prediction Cause.On this basis, by IR66167-27-5-1-6 and in spend 11 hybridization, and spend 11 backgrounds in being constructed to objective trait (ZH11) NIL, it is found that ZH11-npt1 stalks are more sturdy, tiller number is slightly reduced, and plant height is basically unchanged, but per fringe Grain number per spike and mass of 1000 kernel are all significantly increased, and single plant yield is dramatically increased.
Paddy rice NPT1 encodes a deubiquitinating enzymes (OsOTUB1), is homologous genes of the mankind OTUB1 in paddy rice, because The gene is also referred to as OsOTUB1 genes by this, and the two terms abbreviation in the present invention is used interchangeably.Research finds paddy rice OsOTUB1(SEQ ID NO:15, the i.e. albumen of paddy rice NTP1 gene codes, also referred to as NPT1 albumen in the present invention, the two Term can also used interchangeably) there is the activity of catalysis K48 and K63 ubiquitin chain depolymerization.The present inventor is to OsOTUB1 albumen Subcellular Localization is studied, it is found that OsOTUB1-GFP fusion proteins are positioned in cytoplasm and nucleus.In addition, building The pOsOTUB1 of OsOTUB1 its own promoters driving::GUS plant expression vectors, are obtained by agriculture bacillus mediated method Transfer-gen plant.Organ and tissue to transfer-gen plant different development stage carry out GUS dyeing and find that the gene is in paddy rice Whole developmental stage has expression, the significantly high expression especially in fibrovascular system and separate living tissue.
By transgene method, OsOTUB1 gene functions are demonstrated.It was found that the gene moderately express or lose by reduction Function mutation can cause tiller number to reduce, but can increase stalk rugosity, per fringe grain number per spike, mass of 1000 kernel, and then dramatically increase production Amount.On the contrary, the overexpression gene can then produce uneven class sizes phenotype and trigger cell death.Pass through yeast two-hybrid screening interaction Albumen finds that OsOTUB1 albumen can interact with ubiquitin binding enzyme OsUBC13, and suppresses its function.Further study show that OsOTUB1 and plant type of rice and the positive regulatory factor OsSPL14 interactions between protein of yield, and by influenceing OsSPL14 protein stabilities Come controlling plant type of rice and yield.
Meanwhile, it is same that the present inventor is cloned into OsOTUB1 respectively from wheat, barley, corn, sorghum, mouse and the mankind The cDNA sequence of source gene, and demonstrating them by transgenic research has the control Culm of Rice similar with OsOTUB1 thick Degree, tiller number, grain number per spike, the biological function of mass of 1000 kernel and yield.
Excellent allele npt1 is imported in high yield japonica rice kind force fortune round-grained rice 7, production statistical is surveyed in multiple years field Analysis finds that npt1 and dep1-1 polymerizations can realize that rice yield is further lifted on the basis of main breed high yield.
It is an object of the invention to provide the reason of a controllable stalk rugosity, tiller number, grain number per spike, mass of 1000 kernel and yield Think plant type gene NPT1, the new gene resource being worth with important breeding utilization is provided for rice high yield Molecular design breeding.
Therefore, the present invention provides following:
In a first aspect, the present invention provides a kind of Ideal Rice Plant Type gene NPT1 and its allele npt1, wherein Npt1 can increase the stalk rugosity of paddy rice, per fringe grain number per spike, mass of 1000 kernel and single plant yield.The nucleosides that both genes are related to Acid sequence includes:
(1)SEQ ID NOs:Nucleotide sequence shown in any one in 1-4;
(2) hybridize with the complementary series of the nucleotide sequence of (1) in medium stringency condition, under preferably high stringent hybridization condition Nucleotide sequence;
(3) have at least 70% with the nucleotide sequence of (1), preferably at least 80%, more preferably at least 90%, especially extremely The nucleotide sequence of few 95% or 98% or 99% homogeneity;
(4) with the protein of the nucleotide sequence coded same amino acid sequence of (1) but because of the degeneracy of genetic code The different nucleotide sequence in sequence;
(5) nucleotide sequence of one of following amino acid sequence is encoded:SEQ ID NO:Amino acid sequence shown in 15, or Person, due to one or more (such as 1-25,1-20,1-15,1-10,1-5,1-3) amino acid residues replacement, Missing and/or insertion and with SEQ ID NO:The different amino acid sequence of amino acid sequence shown in 13, or, with SEQ ID NO:Amino acid sequence shown in 15 has at least 70%, preferably at least 80%, more preferably at least 90%, especially at least 95% Or 98% homogeneity amino acid sequence;
(6) active fragment of any one nucleotide sequence in (1)-(6);
(7) the complementary nucleotide sequence of any one nucleotide sequence in (1)-(6).
In second aspect, the present invention provides the promoter sequence of the gene and its allele described in first aspect, and it is such as SEQ ID NO:Shown in 5 or 6.
Table 1.SEQ ID NOs:1-6 sequence names and its source
SEQ ID NO: Title Source
1 NPT1 cDNA sequences Zhejiang spoke 802
2 Npt1 cDNA sequences IR66167-27-5-1-6
3 NPT1 gDNA sequences Zhejiang spoke 802
4 Npt1 gDNA sequences IR66167-27-5-1-6
5 NPT1 promoter sequences Zhejiang spoke 802
6 Npt1 promoter sequences IR66167-27-5-1-6
In the third aspect, the present invention provides the homologous gene of the paddy rice NPT1 genes of first aspect, and the homologous gene comes Uralensis Fisch, barley, corn, sorghum, soybean, rape, cotton or tomato are come from, it encodes SEQ ID NOs:In 16-23 Amino acid sequence shown in any one.
Specifically, the homologous gene includes SEQ ID NOs:Nucleotide sequence shown in any of 7-14.
The nucleotide sequence of the homologous gene of the paddy rice NPT1 genes of table 2.
SEQ ID NO: Title Source
7 TuNPT1 cDNA sequences Uralensis Fisch
8 HvNPT1 cDNA sequences Barley
9 ZmNPT1 cDNA sequences Corn
10 SbNPT1 cDNA sequences Sorghum
11 GmNPT1 cDNA sequences Soybean
12 BnNPT1 cDNA sequences Rape
13 GhNPT1 cDNA sequences Cotton
14 SlNPT1 cDNA sequences Tomato
In fourth aspect, the present invention provides a kind of polypeptide of separation (also referred to as albumen), and it is included from such as the following group amino acid sequence The amino acid sequence selected in row:
(1)SEQ ID NOs:Amino acid sequence shown in any one in 15-23,
(2) due to one or more (such as 1-25,1-20,1-15,1-10,1-5,1-3) amino acid The replacement of residue, missing and/or insertion and with SEQ ID NO:The different ammonia of amino acid sequence shown in any one in 15-23 Base acid sequence,
(3) with SEQ ID NOs:Amino acid sequence shown in any one in 15-23 has at least 70%, preferably at least 80%th, the amino acid sequence of more preferably at least 90%, especially at least 95% or 98% or 99% homogeneity,
(4) active fragment of (1) or (2) or (3) described amino acid sequence,
(5) the present invention relates to polynucleotide molecule coding amino acid sequence.
Wherein, OsNPT1 encodes homologous proteins of the OTUB1 in paddy rice, therefore is named as OsOTUB1 to its encoding proteins, The amino acid sequence of protein sequence and its homologous protein is by SEQ ID NOs:Shown in 15-23, referring specifically to table 3 below.
The title and its source of table 3.NPT1 protein sequences and its misfolded proteins
At the 5th aspect, the present invention provides a kind of recombinant precursor, and it contains the present invention first to described in the third aspect NPT1 or allele npt1 related polynucleotides.Carrier used in wherein described construct is cloning vector or for table Up to the expression vector of the polynucleotides.
At the 6th aspect, the present invention provides a kind of recombinant host cell, and it contains the restructuring described in fifth aspect present invention Construct, or it is integrated with its genome the present invention first to the NPT1 described in the third aspect or allele npt1 multinuclears Thuja acid.The host cell can be selected from plant cell or microbial cell, such as Bacillus coli cells, agrobatcerium cell, Preferred plant cell, most preferably rice cell.The cell can be separation, in vitro, culture or be plant one Part.
At the 7th aspect, the present invention provides the polynucleotides or polypeptide of first to fourth aspect or the restructuring structure of the 5th aspect Build body or the 6th aspect recombinant host cell improvement rice plants character in purposes.
The invention further relates to improve the method for rice plants character, this method includes preparing containing first to fourth aspect The rice plant of the construct of polynucleotides or the 5th aspect, for example, the restructuring that methods described can be included in terms of the 6th is planted Thing cytothesis transfer-gen plant, or obtain transfer-gen plant with the recombinant microorganism cell transfecting rice plant of the 6th aspect. The character includes but is not limited to:Stalk rugosity, Grain number per spike and yield etc..
The present invention also provides a kind of method for the paddy rice for cultivating output increased, and this method includes:With the restructuring of the 7th aspect Host cell infection rice plant, which obtains the decline of NPT1 gene expression doses or amino acid sequence change, to be caused under protein function The transgenic rice plant of drop, reduces NPT1 gene expression doses particular by RNAi technology or passes through CRISPR/Cas9 And initiative NPT1 gene expression doses decline or NPT1 albumen lose or miopragia transgenic paddy rice.
In eighth aspect, the present invention provides the purposes of the npt1 genes, and it is used to increase crop stem rugosity, every fringe Grain number per spike, mass of 1000 kernel, and then improve the yield of crop.
At the 9th aspect, the present invention relates to a kind of method for the paddy rice for cultivating output increased.This method includes:From the 6th hair The bright restructuring paddy rice host cell regeneration of transgenic rice plant comprising npt1 allele, or by reducing NPT1 genes Expression, or change NPT1 protein biological functions, or by Tilling technologies, that is, be exactly directional induction gene Group mutating technology obtain NPT1 gene expression doses decline or NPT1 albumen lose or miopragia paddy rice or will bag The rice plant of the allele containing npt1 hybridizes with another plant, preferably go out tiller number slightly reduce, stalk thickening, per fringe grain number per spike Increase with mass of 1000 kernel, and then the increased plant of yield.
Invention technician is it should be understood that the research based on the present inventor is found, i.e. reduce the expression of NPT1 genes Amount, or make the miopragia of its NPT1 albumen expressed, it can act as increase rice tillering number, stalk rugosity, per fringe fringe The effect of grain number, mass of 1000 kernel and yield, can reduce the expression quantity of NPT1 genes, or make its table by selecting appropriate technology The miopragia of the NPT1 albumen reached, and then rice breeding is carried out on this basis.
At the tenth aspect, the present invention has found OsOTUB1 albumen (that is, paddy rice by yeast two-hybrid screening interaction albumen NPT1 albumen) it can be interacted with ubiquitin binding enzyme OsUBC13, and suppress its function.The present inventor has found OsUBC13 mistakes first Amount expression transfer-gen plant can increase yield, and this shows that rice breeding can be carried out using OsUBC13 genes.Therefore, this hair Bright to be related to a kind of method that every fringe grain number per spike and the increased paddy rice of yield are cultivated by overexpression OsUBC13, this method includes Transgenic rice plant is obtained with the recombinant host cell transfection rice plant of the recombinant precursor containing OsUBC13, is utilized In the paddy rice ubiquitin binding enzyme OsUBC13 and NPT1 albumen of OsUBC13 codings effect, resulting transgenic rice plant NPT1 activity is affected, therefore increase is per fringe grain number per spike and yield.Wherein described cell is microbial cell, the microorganism Cell is preferably Escherichia coli or agrobatcerium cell.Its action principle is OsUBC13 coding paddy rice ubiquitin binding enzyme OsUBC13, The albumen directly with NPT1 interactions between protein, enzymatic activity is suppressed by NPT1 albumen, therefore overexpression OsUBC13 transgenosis water The similar NPT1 protein actives of rice decline paddy rice, by increasing capacitance it is possible to increase paddy rice grain number per spike and yield.Wherein, the egg of OsUBC13 gene codes Bai Xulie such as SEQ ID NO:Shown in 36, in a specific embodiment, the nucleotide sequence such as SEQ of OsUBC13 genes ID NO:Shown in 35.
Tenth on the one hand, by CRISPR/cas9 gene editings technology knock out NPT1 or homologous gene TuNPT1, The increased crop of yield produced by HvNPT1, ZmNPT1, SbNPT1, GmNPT1, BnNPT1, GhNPT1, SlNPT1.It is described above Crop is preferably crops, is limited such as paddy rice, wheat, barley, corn, sorghum, soybean, rape, cotton, tomato, but not only In these crops.
12nd aspect, a kind of molecular marker assisted selection pyramiding breeding method for cultivating high-yield rice kind, this method Hybridize including the use of the parental rice comprising excellent allele npt1 with another parental rice comprising dep1-1 genes, rear Go out strain or kind containing npt1 and dep1 gene pyramidings according to molecular selection in generation.Wherein dep1-1 gene codes SEQ ID NO:Amino acid sequence (i.e. DEP1 albumen) shown in 34, in a specific embodiment, dep1-1 genes Nucleotides sequence such as SEQ ID NO:Shown in 33.
13rd aspect, the present inventor are further study show that OsOTUB1 and plant type of rice and the positive regulatory factor of yield OsSPL14 interactions between protein, and by influenceing OsSPL14 protein stabilities come controlling plant type of rice and yield.Therefore, the present invention is carried , should for a kind of by strengthening the method that plant type of rice modulin OsSPL14 cultivates every fringe grain number per spike and the increased paddy rice of yield Method is included with recombinant precursor and recombinant host cell containing NPT1 genes, the acquisition transgenic paddy rice plant of rice transformation plant Strain, is derived from the enhanced transfer-gen plant of OsSPL14 functions, wherein the cell is microbial cell, the microorganism is thin Born of the same parents are preferably Escherichia coli or agrobatcerium cell.Its action principle is NPT1 and OsSPL14 albumen direct interactions, science of heredity Prove that OsSPL14 is located at NPT1 downstreams, its function is suppressed by NPT1.
Wherein rice Os SPL14 protein sequences such as SEQ ID NO:Shown in 38, rice Os SPL14cDNA sequences such as SEQ ID NO:Shown in 37.
Brief description
Fig. 1 control Ideal Rice Plant Type strains qNPT1 QTL positioning.(a) spring river 06 and International Rice institute ideotype water Rice IR66167-27-5-1-6 hybridizes and obtains RIL by single seed descent, and wherein RIL52 shows ideotype Feature, engineer's scale, 20cm;(b) fringe portion phenotype compares, engineer's scale, 5cm;(c) tiller number statistical analysis;(d) grain number per spike statistical Analysis;(e) rugosity statistical analysis in the middle part of a section stalk is fallen;(f) Culm of Rice rugosity, grain number per spike, tiller number main effect QTL point are controlled Analysis.
Fig. 2 separate and cloned qNPT1 using map based cloning method.(a) by qNPT1 genes finely positioning in 4.1kb area In, its candidate gene encodes a deubiquitinating enzymes, is homologous gene of mankind's OTUB1 genes in paddy rice;(b) screens area Between haplotype analysis.
Fig. 3 .OsOTUB1 functional verifications.(a) plant type of rice compares, engineer's scale, 20cm;(b) CRISPR/cas9 methods are created Paddy rice osotub1-C1 mutant processed, green portion is sgRNA target sequences, and RED sector is PAM sequences;(c) heading stage compares Analysis;(d) plant height comparative analysis;(e) a section diameter statistical analysis is fallen;(f) tiller number comparative analysis;(g) spike length degree compares point Analysis;(h) per the stalk number comparative analysis of fringe Their First Branch;(i) per two grades of branch stalk number comparative analysis of fringe;(j) compare per fringe grain number per spike Analysis;(k) mass of 1000 kernel comparative analysis;(l) single plant yield statistical analysis.
Fig. 4 real-time quantitative PCRs detect expression of the OsOTUB1 genes in paddy rice different tissues.R:The tip of a root;C:Stem Stalk;LB:Blade;LS:Leaf sheath;SAM:Shoot apical meristem;YP0.2: 0.2 centimetre of young fringe;YP6:06 centimetre of fringe;YP12:12 lis Meter Sui.
Fig. 5 pOsOTUB1 under ZH11 backgrounds::GUS transfer-gen plant GUS coloration results.(a) OsOTUB1 is in plumule With root expression, engineer's scale, 1cm;(b) the crosscutting display OsOTUB1 in root maturation zone is expressed in pericycle and bast, engineer's scale, 200μm;(c) OsOTUB1 is in the significantly high expression of tip of a root quiescent center, engineer's scale, 200 μm;(d) the crosscutting display of a section stalk is fallen OsOTUB1 is expressed in stalk vascular bundle, engineer's scale, 100 μm;(e) the young fringe dyeing of different development stage, found in young fringe period OsOTUB1 expression is most strong, and fringe development later stage is gradually reduced, engineer's scale, 1cm;(f) OsOTUB1 is expressed in developmental glume, Engineer's scale, 1mm.
Fig. 6 .OsOTUB1-GFP fusion proteins are positioned in cytoplasm and nucleus.(a) OsOTUB1-GFP fusion proteins Positioned in the cell of tip of a root elongation zone, engineer's scale, 20 μm;(b) OsOTUB1-GFP fusion proteins are primary in seedling leaf sheath dissociation in 10 days Plastid is positioned, engineer's scale, 10 μm.
Fig. 7 .OsOTUB1 overexpression transfer-gen plant phenotypic analyses.(a) grouting later stage plant type compares.OsOTUB1 is excessive Express transgenic plant, which shows different degrees of dwarfing, tiller reduction, blade, uneven class sizes isophenous;Engineer's scale, 20cm; (b) fringe portion form compares.OsOTUB1 overexpression transgenic lines show different degrees of fringe and diminished, and branch stalk is reduced;Ratio Chi, 5cm;(c) leaf morphology comparative analysis.OsOTUB1 overexpressions transgenic line OE-8# and OE-13# is in heading early stage leaf There are uneven class sizes in piece;Engineer's scale, 2cm;(d) Trypan Blue finds OsOTUB1 overexpression transgenic lines OE-8# and OE- 13# occurs in that different degrees of apoptosis;(e) OsOTUB1 gene expression amounts are analyzed in overexpression strain;(f) OsOTUB1 overexpression transfer-gen plant plant heights show different degrees of reduction;(g) OsOTUB1 overexpressions transfer-gen plant Tiller number shows different degrees of reduction;(h) OsOTUB1 overexpressions transfer-gen plant is shown in various degree per fringe grain number per spike Reduce.
Fig. 8 rice Os OTUB1 albumen has K48 and K63 ubiquitin chain Disaggregating activities.
Fig. 9 .OsOTUB1 and OsUBC13 interactions controlling plant type of rice and yield.(a) yeast two-hybrid checking OsOTUB1 with OsUBC13 interactions between protein;(b) Pull-down experimental analyses OsOTUB1 and OsUBC13 interactions between protein;(c) BiFC experimental analyses OsOTUB1 and OsUBC13 interactions between protein, engineer's scale, 10 μm;(d) under ZH11 backgrounds, the plant type of OsUBC13 transfer-gen plants Compare, engineer's scale, 20cm;(e) a section stalk rugosity of falling compares, engineer's scale, 0.5mm;(f) fringe type compares, engineer's scale, 5cm; (g) grain type compares, engineer's scale, 2mm;(h) OsUBC13 gene expression doses are analyzed;(i) tiller number statistical analysis;(j) per fringe fringe Grain number statistical analysis;(k) mass of 1000 kernel statistical analysis;(l) a section rugosity statistical analysis is fallen.
The SBP domains of Figure 10 .OsSPL14 albumen participate in OsOTUB1 interactions between protein.(a) yeast two-hybrid is verified OsOTUB1ΔN1-80With OsSPL14 Δs N21-100Interaction;(b) schematic diagram of OsSPL14 Protein Deletion Mutants;(c)BiFC The different structure territory of experimental analysis OsSPL14 albumen and OsOTUB1 interactions between protein, engineer's scale, 10 μm.
Figure 11 .OsOTUB-OsSPL14 molecular modules controlling plant type of rice.(a) BiFC experiment prove OsOTUB1 with OsSPL14 SBP domains interaction;(b) Co-IP experiments prove OsOTUB1 and OsSPL14 interactions between protein;(c) in NIL- Under npt1 backgrounds, reduction OsSPL14 expression can cause the character such as the increase of its tiller number and grain number per spike reduction, and similar ZH11 is wild Type phenotype;And ZH11-OsSPL14WFPMaterial phenotype is similar to NIL-npt1, engineer's scale, 20cm;(d) in NIL-npt1 backgrounds Under, OsSPL14 gene expressions are reduced, every fringe grain number per spike can be caused to reduce, and ZH11-OsSPL14WFPMaterial phenotype is similar to NIL-npt1, engineer's scale, 5cm;(e) OsSPL14 gene expression doses are analyzed;(f) tiller number statistical analysis;(g) per fringe fringe grain Number statistical analysis;(h) a section stalk rugosity statistical analysis is fallen.
The amino acid alignment analysis of Figure 12 .OTUB1 and its homologous gene.
The energy complementation ZH11-npt1 mutation of Figure 13 overexpressions corn, barley, mouse and mankind OTUB1 homologous genes Phenotype.(a) grouting later stage plant type compares, and is overexpressed the tiller increase of transfer-gen plant, and stalk attenuates, engineer's scale, 20cm;(b) Fringe portion form compares, and the branch stalk for being overexpressed transfer-gen plant is reduced, and is reduced per fringe grain number per spike, engineer's scale, 5cm;(c)OsOTUB1 Gene expression dose is analyzed;(d) tiller number statistical analysis;(e) per fringe grain number per spike statistical analysis;(f) section stalk middle part is fallen directly Footpath statistical analysis.
The excellent allele npt1 of Figure 14 and dep1-1 pyramiding breedings lifting rice yield.(a) be in the milk later stage plant type ratio Compared with engineer's scale, 20cm;(b) fringe portion form compares, engineer's scale, 5cm;(c) grain type compares, engineer's scale, 2mm;(d) a section stem is fallen Stalk rugosity compares, engineer's scale, 0.5mm;(e) number of vascular bundles statistical analysis;(f) heading stage statistical analysis;(g) plant height statistical Analysis;(h) tiller number statistical analysis mass of 1000 kernel statistical analysis;(i) per fringe grain number per spike statistical analysis;(j) mass of 1000 kernel statistical analysis; (k) output statistics is analyzed.
Figure 15 reduction OsOTUB1 (i.e. NPT1) gene expression genetically modified plants yield increases.(a) be in the milk later stage plant type ratio Compared with engineer's scale, 20cm;(b) fringe portion form compares, engineer's scale, 5cm;(c) OsOTUB1 gene expression doses are analyzed;(d) per fringe Grain number per spike statistical analysis;(e) a section stalk rugosity statistical analysis is fallen;(f) single plant yield statistical analysis.
Figure 16 show OsOTUB1 sgRNA boxes sequence (SEQ ID NO:24):U6a-sgRNA box monocotyledons.Its The sequence that middle lowercase is shown is target sequence, and the sequence that decline runic underscore is shown is sgRNA coded sequences.
Embodiment
The in-depth study by extensive, the present invention, which has cloned one, can change Culm of Rice rugosity, tiller number, per fringe The ideotype gene NPT1 of grain number per spike and yield, the gene is located at No. eight chromosome long arm of paddy rice;The gene expression amount drops The mutation of low or afunction can cause tiller number to reduce, and stalk thickening increases per fringe grain number per spike, mass of 1000 kernel and yield.
Plant Transformation
In a particularly preferred embodiment, at least one control grain of the invention is expressed in higher organisms such as plant The albumen of wide and grain weight.The nucleotide sequence for the gene that the control grain of the present invention is wide and grain is heavy can be inserted into expression cassette, so Afterwards preferably, by the expression cassette stable integration in the Plant Genome.In another preferred embodiment, by the control The nucleotide sequence of wide and grain weight the gene of granulation is included in the virus of non-pathogenic self-replacation.The plant converted according to the present invention Thing can be monocotyledon or dicotyledon, including but not limited to corn, wheat, barley, rye, sweet potato, beans, pea, Witloof, lettuce, wild cabbage, cauliflower, broccoli, turnip, radish, spinach, asparagus, onion, garlic, pepper, celery, winter squash, south Melon, hemp, zucchini, apple, pears , Wen Quince, melon, plum, cherry, peach, nectarine, apricot, strawberry, grape, rasp berry, blackberry, blueberry, spinach Trailing plants, avocado, papaya, mango, banana, soybean, tomato, sorghum, sugarcane, beet, sunflower, oil seed rape, clover, cigarette Grass, carrot, cotton, clover, rice, potato, eggplant, cucumber, Arabidopsis and xylophyta such as coniferous tree and deciduous tree.It is special You Xuanshi not paddy rice, wheat, barley, corn, oat or rye.
Once by desired nucleotide sequence conversion enter specified plant species in, can have been bred in the species it or It is transferred into other kinds of same species with traditional breeding method, particularly including in commercial variety.
Preferably, the nucleotide sequence of the present invention is expressed in genetically modified plants, phase is thus caused in genetically modified plants Answer the biosynthesis of the wide albumen of grain.By this way, the genetically modified plants with Ameliorative character can be produced.In order to be planted in transgenosis Nucleotide sequence of the present invention is expressed in thing, nucleotide sequence of the present invention may need to modify and optimize.All organisms have spy Fixed codon usage bias, this is known in the art, can keep nucleotide sequence coded ammonia of the present invention Base changes its codon to meet plant-preference while sour.Moreover, from having at least about 35%, preferably more than about 45%, more Preferably more than 50%, the most preferably greater than about coded sequence of 60%GC contents can be best implemented with high-caliber table in plant Reach.Although preferred gene order can fully be expressed in monocotyledon and dicot plant species, it can modify Sequence to adapt to the specific codons preference and G/C content preference of monocotyledon or dicotyledon because these preferences by It is proved to be different (Murray etc., Nucl.Acids Res.17:477-498(1989)).In addition, nucleotide sequence can be screened To find the presence for the unconventional splice site for causing message truncation.Utilize Patent Application Publication EP 0 385 962 (Monsanto), the method described in EP 0 359 472 (Lubrizol) and WO 93/07278 (Ciba-Geigy), uses ability Site-directed mutagenesis technology known to domain, PCR and synthetic gene build the institute for carrying out needing to carry out in these nucleotide sequences There is change, those change as described above.
With reference to specific embodiment, the present invention is expanded on further.It should be understood that the following example is only used for further illustrating The present invention, and it is not limited to the spirit and scope of the present invention.
It should be noted that it should be appreciated by those skilled in the art that reagent, enzyme used in following embodiments etc. are except spy Do not mentionlet alone outside bright, be the reagent or enzyme of the pure rank of analysis commercially available from Reagent Company.
Embodiment 1:Ideal Rice Plant Type gene NPT1 clone
The present inventor is by Chinese Japonica Rice kind spring river 06 and International Rice institute ideotype strain IR66167-27-5-1-6 Hybridization harvest F1, and RIL is obtained by single seed descent;Wherein RIL52 strains have the increase of stalk rugosity, tiller number Mesh is slightly reduced, the phenotype (Fig. 1 a-e) for the ideotype feature that grain number per spike is dramatically increased.By RIL52 and rice variety Zhejiang spoke 802 Hybridization obtains F1, F2The blade that 196 individual plants are randomly selected in offspring extracts DNA, while a section middle part stalk is thick for correspondence investigation The characters such as degree, tiller number and every fringe grain number per spike.Polymorphism analysis is carried out using SSR primer pairs RIL52 and Zhejiang spoke 802, selection has Polymorphic primer, respectively to 196 F2Individual plant enters performing PCR amplification, according to electrophoresis result and mapping software Mapmaker Version 3.0 requires that every individual plant for RIL52 banding patterns occur is labeled as B, and the individual plant for the banding pattern of Zhejiang spoke 802 occur is labeled as A, The individual plant for occurring RIL52 and the banding pattern of Zhejiang spoke 802 simultaneously is labeled as H.Utilize Win QTL Cartographer V2.5 and recombination region Between the method mapped carry out QTL positioning and Effect Estimation, as a result find there is a control simultaneously on No. 8 chromosome long arm Culm of Rice rugosity (Culm Diameter), tiller number (Tiller Number) and per fringe grain number per spike (Grain Number) Main effect QTL, is named as qNPT1 (Fig. 1 f).
Continue to be returned Zhejiang spoke 802 after RIL52 and Zhejiang spoke 802 are hybridized, obtain BC1F2Colony;Choose similar RIL52 plant The individual plant of phenotype 389.Clear and definite 93 individual plants of phenotype are further therefrom chosen, DNA is extracted and carries out coarse positioning.Using in target Region filters out 8 InDel marks, and target gene is positioned between No. 8 chromosome long arms P6049 and P351.Utilize residue 296 individual plants carry out finely positioning, and target gene is positioned between P5528 and P3914.By the BC of similar RIL52 phenotypes1F2 Individual plant continues to be returned with ZF802, obtains the BC of objective trait2F25326, sample is separated, is continued with the development of screens interval 6 In-Del label screenings exchange individual plant, and the 4.1Kbp that most target gene is positioned between P139 and P143 at last is interval interior, its In include 1 predicted gene.One deubiquitinating enzymes of the gene code, are homologous genes of the mankind OTUB1 in paddy rice, by it It is named as OsOTUB1 (Fig. 2 a).RAP-DB(http://rapdb.dna.affrc.go.jp/) predict that OsOTUB1 has two Transcript, wherein OsOTUB1.1 have 8 extrons, 7 intrones, code area 825bp;OsOTUB1.2 has aobvious outside 5 Son, 4 intrones, code area 597bp.Haplotype analysis are carried out to screens interval, find to derive from IR66167-27-5-1-6 The peculiar 4 SNP differences of section and single base insertion difference, one of SNP is located at promoter (Fig. 2 b).
QNPT1 identify with separate used in molecular labeling be mark based on PCR, including SSR marker and voluntarily set Count InDel marks.SSR marker is all from the microsatellite marker linkage map that McCouch etc. (2001,2002) is delivered;STS is marked With ssr analysis instrument (http://www.gramene.org/gramene/searches/ssrtool) analysis cloned sequence sieve The reproducible SSR target sequences of microsatellite are selected, then primer is carried out to these target sequences with Primer5 analysis softwares and are set Meter.75 pairs are have selected from these primers to be uniformly distributed on chromosome, and the good mark of polymorphism is used for heredity between parent Background is screened, and part Primer and sequence are shown in Table 4.PCR programs slightly change progress according to Panaud etc. (1996) method, Specially every μ l amplification reaction systems of pipe 20, including:0.15 μM of SSR primers, 200 μM of dNTPs, 1 × PCR reaction buffers (50mM KCl, 10mM Tris-HCl pH 8.3,1.5mM MgCl2, 0.01% gelatin), 50~100ng template DNAs, 1U Taq enzyme;Response procedures are:94 DEG C of DNA denaturation 5min, circulation (94 DEG C of 1min, 56 DEG C of 1min, 72 DEG C of 1min) 36 times, 72 DEG C again Extend 5min.The PCR primer amplified carries out electrophoresis with 6% polyacrylamide denaturant gel, and voltage is adjusted to 300V, electric at room temperature Swimming about 3 hours.After electrophoresis is finished, silver staining record banding pattern or gel imaging.
Using the middle DNA for spending 11 (ZH11) as template, 2.5Kbp OsOTUB1.1 and OsOTUB1.2 promoter are expanded respectively Area, insertion pCAMBIA-2300 carriers (referring to Hajdukiewicz et al., 1994) constitute and carry paddy rice its own promoter Carrier pCAMBIA-OsOTUB1.1-2300 and pCAMBIA-OsOTUB1.2-2300.Meanwhile, with ZH11 young fringe material CDNA is template, expands OsOTUB1.1 and OsOTUB1.2 coding region sequence, respectively insertion vector pCAMBIA- OsOTUB1.1-2300 and pCAMBIA-OsOTUB1.2-2300, constitutes plant expression vector pOsOTUB1.1::OsOTUB1.1 And pOsOTUB1.2::OsOTUB1.2.ZH11-npt1 is converted by agriculture bacillus mediated method, and obtains transfer-gen plant.Grind Study carefully discovery pOsOTUB1.1::OsOTUB1.1 transgenic positive plant Primary branch and Secondary branch are reduced, and fringe is elongated, grain It is elongated, significantly reduced per tassel seed number, stalk attenuates, and tiller increases, the phenotype of similar ZH11 wild types;And pOsOTUB1.2:: The similar ZH11-npt1 of OsOTUB1.2 transgenic positive plant phenotypes.Result above shows that OsOTUB1.1 transcripts have function, ZH11-npt1 phenotype can be recovered.
Embodiment 2:The middle structure for spending 11 background NILs
The present inventor will spend 11 in RIL52 continuous backcrosses, choose stalk thickening, tiller reduction, the increased plant of grain number per spike, And detection is tracked to target zone using InDel molecular labelings P135;Meanwhile, the section beyond objective trait is carried on the back Scape is scanned, and final obtain is used for follow-up grind with the middle NIL ZH11-npt1 materials for spending 11 genetic backgrounds to be sufficiently close to Study carefully.Grouting later stage ZH11-npt1 shows sturdy stalk, available tillering reduction and per the increased phenotype of fringe grain number per spike.Enter one Walk statistical analysis to find, compared to ZH11 wild types, ZH11-npt1 internode stalk rugosity is dramatically increased, available tillering is reduced greatly About 2, spike length slightly shorten (length 18-20cm), increase 50-70, single plant yield increase about 10% (Fig. 3) per fringe grain number per spike.
Embodiment 3:NPT1 functional verification
Root (root), young tender stem stalk (culm), the blade of a pair of NIL seedling of 11 backgrounds are spent in extracting respectively (leaf blade), leaf sheath (leaf sheath), apical meristem (SAM), the young fringes (young panicle) of 0.2cm, 6cm The total serum IgE of fringe and 12cm fringes, reverse transcription is obtained after cDNA, quantitative PCR detection OsOTUB1 different tissues and device in a pair of materials Expression in official, hair OsOTUB1 has the expression of higher level, the especially expression quantity in young fringe in the whole developmental stage of paddy rice It is high.Compared to ZH11, expression of the OsOTUB1 in ZH11-npt1 different tissues and organ presents a certain degree of downward (Fig. 4).
With plasmid pB1121 (Chen et al., 2003) for template amplification GUS sequences, GUS fragments and carrier framework are reclaimed And connect, constitute carrier pCAMBIA::GUS-2300;2.5kb OsOTUB1.1 promoter sequences are expanded, digestion is reclaimed and inserted Enter pCAMBIA::GUS-2300, is built into pOsOTUB1::GUS.ZH11 is transferred to by agriculture bacillus mediated method, to turning The organ of gene plant different development stage and tissue carry out GUS dyeing and found, the gene paddy rice whole developmental stage all There is expression, especially significantly expressed in fibrovascular system.Seedling dyeing to growth one week, it was observed that OsOTUB1 is in plumule With root expression significantly (Fig. 5 a);Have in the quiescent center (quiescent center, QC) and root cap of Root apical meristem Express (Fig. 5 b);The pericycle expression (Fig. 5 c) in root;There is expression (Fig. 5 d) in stalk vascular bundle;The different times developed in fringe There is expression, gradually reduced to later stage experssion, is concentrated mainly in glume (Fig. 5 e, f).
Using pCAMBIA-2300 as skeleton carrier, then OsOTUB1.1 promoter insertion vectors sequentially insert Remove the OsOTUB1.1 coded sequences and GFP coded sequences of terminator codon, construct its own promoter driving OsOTUB1.1-GFP fusion protein plant expression vectors pOTUB1:OsOTUB1.1-GFP simultaneously converts ZH11.To transgenic seedlings Tip of a root direct tablet compressing is observed, it is found that OsOTUB1.1-GFP fusion proteins are positioned at cytoplasm and (Fig. 6 a) in nucleus.Further Transgenic positive plant shoots leaf sheath protoplast is digested, also demonstrate that OsOTUB1.1-GFP fusion proteins are positioned at cytoplasm With (Fig. 6 b) in nucleus.
Using pCAMBIA-2300 as skeleton carrier, pActin is constructed::OsOTUB1.1 Overexpression vectors, and pass through agriculture The method of bacillus mediation is transferred in ZH11, real-time quantitative PCR detection OsOTUB1.1 gene expression amounts, obtains scale Up to transgenic line OE-8 and OE-13.Show that fringe is small, downgrade two superelevation expression strains grouting later stages, blade has obvious Uneven class sizes phenotype, further to occur the blade of uneven class sizes carry out Trypan Blue, find part cell occur in that cell is dead Die.Statistical analysis finds that OsOTUB1.1 superelevation expression causes Primary branch, Secondary branch and significantly subtracting per fringe grain number per spike Few, plant height reduction shows dosage effect (Fig. 7).
The ubiquitination of target protein and deubiquitination regulation and control play cell and vital movement important function.Paddy rice OsOTUB1 encodes a deubiquitinating enzymes, take part in the depolymerization of ubiquitin chain.By OsOTUB1.1, it is public that OsOTUB1.2 is building up to GE Take charge of on prokaryotic expression carrier pGEX-4T-1, be transferred in Rosetta (DE3) bacterial strain induction expression protein and purify, buy Boston The OTUB1 albumen of Biochem companies and two kinds of substrate ubiquitin chain Tetra-ub.By GST-OsOTUB1.1, GST-OsOTUB1.2 It is incubated 1 hour jointly in 37 DEG C with two kinds of substrate ubiquitin chain Tetra-ub respectively with OTUB1, carries out external deubiquitination experiment. Western Blot detections find that Tetra-ub-K48 and Tetra-ub-K63 can be cracked by OsOTUB1.1, and can not be by OsOTUB1.2 is cracked, and this shows that the OsOTUB1.1 for possessing entire catalytic avtive spot can not only be catalyzed the solution of 48 ubiquitin chains It is poly-, and 63 ubiquitin chain depolymerization can be catalyzed.Further catalysis of the analysis OsOTUB1.1 to K48 and K63 ubiquitin chains is lived Property, find the two, OsOTUB1.1 depolymerization ability to K48 ubiquitin chain different with the depolymerization ability of K63 ubiquitin chains to K48 It is stronger, substantially by the whole depolymerization of substrate, form Ub1;And the depolymerization ability to K63 ubiquitin chains is weaker, formed Ub3, Ub2 and Ub1 (Fig. 8).
Embodiment 4:NPT1/OsOTUB1 interaction albumen OsUBC13 is identified and functional verification
OsOTUB1.1 is built on pGBKT7 (Clontech companies), using yeast-two hybrid technique from Rice Panicle Interaction albumen is screened in cDNA library.It is tentatively flat in-Ade/-His/-Leu/-Trp auxotrophs using the method for cotransformation Positive colony 200 is obtained on plate, positive colony 40 is obtained after blue hickie screening.Extract plasmid and convert Escherichia coli again, Confirm that OsUBC13 (Os01g48280), OsSPL14 (Os08g39890) interact with OsOTUB1.1 respectively.
OsUBC13 encodes a ubiquitin binding enzyme, its homologous protein UBC13 in animal directly with OTUB1 interactions, and Suppressed by OTUB1.By OsOTUB1.1 insertion pGEX-4T-1 prokaryotic expression carriers (being purchased from GE), pGEX-4T- is built into OsOTUB1.1;OsUBC13 insertion pET-28a prokaryotic expression carriers (being purchased from Novagen), are built into pET-28a-OsUBC13. It is transferred to respectively in coli strain Rosetta with reference protein GST empty carriers (be purchased from GE) simultaneously, induced expression and purifying is obtained Obtain GST, GST-OsOTUB1.1 and His-OsUBC13 albumen.By GST, GST-OsOTUB1.1 respectively with Sepharose 4B 4 DEG C be incubated 1 hour after, add His-OsUBC13 albumen.4 DEG C be incubated 2 hours after Western Blot detect, GST pull- Down experiments prove that GST-OsOTUB1.1 and His-OsUBC13 interacts.OsOTUB1.1 is connected to pSY-735-35S- CYFP-HA (Bracha-Drori, K.et al, 2004) carrier, expresses YFPC-OsOTUB1.1;OsUBC13 is connected to pSY- 736-35S-nYFP-EE (Bracha-Drori, K.et al, 2004) carrier, expresses YFPN-OsUBC13.7 are dissociated using enzyme process Its leaf sheath of rice seedling first, obtains protoplast.The method cotransformation protoplast mediated by PEG, as a result shows YFPC- OsOTUB1.1 and YFPN- OsUBC13 occurs to interact (Fig. 9 a-c) in nucleus and cytoplasm.
Using pCAMBIA-2300 as skeleton carrier, p35S is built respectively:OsUBC13 and p35S::OsUBC13-RNAi plants Expression vector converts ZH11, finds overexpression OsUBC13 plant plant height without significant change, tiller is slightly reduced, stalk thickening, one Secondary branch stalk and the increase of Secondary branch number, grain number per spike increase, phenotype are similar to NIL-npt1.To falling, internode stalk middle part is horizontal Cut, find stalk thickening, thicken, the increase of vascular bundle number.And OsUBC13 expression is reduced by RNAi, it is found that transgenosis is planted Strain plant height is without significant change, but tiller reduction, stalk attenuate, Primary branch and Secondary branch quantity are reduced, subtracted per fringe grain number per spike Few, phenotype is similar to the phenotype of OsOTUB1.1 overexpressing plants.To crosscutting in the middle part of the first internode under its fringe, it is found that stalk becomes Carefully, vascular bundle number is reduced.Result above shows that OsOTUB1 has the function (Fig. 9 d-i) of suppressing OsUBC13.
Embodiment 5:NPT1/OsOTUB1 interaction albumen OsSPL14 is identified and functional verification
OsSPL14 encodes a transcription factor, and it is regulated and controled on rna level by miR156.OsSPL14 transcriptional levels Increase with protein level so that rice tillering is reduced, grain number per spike and mass of 1000 kernel increase, while stalk becomes sturdy, energy resistant to lodging Power strengthens, and then improves yield.In order to further confirm that OsOTUB1 and OsSPL14 interaction and interaction domain, build Expression YFPN-OsSPL14 total lengths and different segment deletion transient expression vectors, respectively with expression YFPC- OsOTUB1.1 table Up to the instantaneous cotransformation rice leaf sheath protoplast of carrier.Observation finds OsOTUB1.1 and OsSPL14 SBP- domain phase interactions With (Figure 10, Figure 11 a).This shows that the SBP domains of paddy rice SPL transcription factors are that OsOTUB1.1 and OsSPL14 interacts Key structure domain.Co-immunoprecipitation (Co-immunoprecipitation, Co-IP) is study interaction of in vivo proteins one Plant experimental method.Extract ZH11 backgrounds pActin::OTUB1.1-GFP transfer-gen plants total protein is incubated for 4 DEG C with anti-GFP antibody 1h is educated, 40 μ L Protein G sepharose 4Bs are then added after 4 DEG C of common incubation 1h.Supernatant is outwelled to rinse three times and addition 2 × SDS sample-loading buffers, boiling water bath carries out sds polyacrylamide electrophoresis after 5 minutes.Western Blot detections are found OsOTUB1 interacts (Figure 11 b) in vivo with OsSPL14 albumen.
Using pCAMBIA-2300 as skeleton carrier, pActin is built::OsSPL14-RNAi plant expression vectors are converted ZH11-npt1, observation transfer-gen plant finds that reduction OsSPL14 expressions cause plant tillering to dramatically increase, and fringe portion is once Branch stalk and Secondary branch number are reduced, and are reduced per fringe grain number per spike, partly similar to ZH11 phenotypes.By excellent allele OsSPL14WFPZH11 backgrounds are hybridized to, ZH11-OsSPL14 is foundWFPTiller is reduced, fringe portion Primary branch and Secondary branch number Increase, Grain number per spike increase, similar to ZH11-npt1 phenotypes.These researchs show that OsSPL14 is in OsOTUB1 downstreams, the two The morphogenesis (Figure 11 c-h) of common regulation plant type of rice (fringe type).
Embodiment 6:The clone of NPT1 homologous genes and functional analysis
The lane database provided at NCBI websites (www.ncbi.nih.nlm.gov), passes through Basic logical Alignment search tool (BLAST) compare, obtain wheat, barley, corn, sorghum, arabidopsis, soybean, mouse and The homologous cDNA sequence of people, respectively Uralensis Fisch TuOTUB1 (SEQ ID NO:7), barley HvOTUB1 (SEQ ID NO:8), corn ZmOTUB1 (SEQ ID NO:9), sorghum SbOTUB1 (SEQ ID NO:10), arabidopsis AtOTUB1 (SEQ ID NO:11), soybean GmOTUB1 (SEQ ID NO:12), mouse MmOTUB1 (SEQ ID NO:13) with mankind HsOTUB1 (SEQ ID NO:14), the homology for the albumen that they are encoded is respectively:TuOTUB1(SEQ ID NO:16) with rice Os OTUB1 (SEQ ID NO:4) similitude is 86.43%;HvOTUB1(SEQ ID NO:17) similitude with rice Os OTUB1 is 86.79%; ZmOTUB1(SEQ ID NO:19) similitude with rice Os OTUB1 is 69.38%;Sb OTUB1(SEQ ID NO:18) it is same Rice Os OTUB1 similitudes are 68.10%;AtOTUB1(SEQ ID NO:20) similitude with rice Os OTUB1 is 59.80%;GmOTUB1(SEQ ID NO:21) similitude with rice Os OTUB1 is 61.32%;MmOTUB1(SEQ ID NO:22) similitude with rice Os OTUB1 is 38.70%;HsOTUB1(SEQ ID NO:23) with the similar of rice Os OTUB1 Property be 39.12% (Figure 12).
OsOTUB1 homologous gene is separated from corn, barley, mouse and the mankind respectively by homologous clone method ZmOTUB1, HvOTUB1, MmOTUB1 and HsOTUB1, construct pOsOTUB1 respectively:TuOTUB1、pOsOTUB1:HvOTUB1、 pOsOTUB1:MmOTUB1 and pActin:HsDEP1 carriers, convert ZH11-npt1 rice plants;Transgenic rice plant phenotype Comparative analysis shows that overexpression corn, barley, mouse and mankind OTUB1 homologous genes can the plants of complementation ZH11-npt1 paddy rice The mutant phenotype of strain, this shows that these homologous gene functions have conservative (Figure 13).
Embodiment 7:Excellent allele npt1 and dep1-1 pyramiding breeding application
DEP1 is the main effect QTL of a control paddy rice Erect Panicle and yield traits, its excellent allele dep1-1 energy Paddy rice stem apex meristematic activity is improved, increase improves the yield (invention authorized referring to the applicant per fringe grain number per spike Patent application, the unnamed gene was at that time in this application dep1, later in order to distinguish by Application No. 201110029759.9 The Different Variation type of same DEP1 genes, original dep1 is renamed as dep1-1).In order to evaluate dep1-1 and Npt1 assembly effects, npt1 is imported carry dep1-1 (SEQ ID NO by the method for hybridization:33) high yield japonica rice kind is military Round-grained rice 7 (WYJ7-dep1-1) is transported, by molecular marker assisted selection and continuous backcross 6 times, WYJ7-NPT1-dep1-1 is obtained With a pair of NILs of WYJ7-npt1-dep1-1.Multiple years field survey production analysis find, excellent allele npt1 and Dep1-1 polymerizations do not influence rice ear sprouting period and plant height, and tiller number slightly has reduction, but can substantially increase stalk thickening, per fringe fringe grain Number and mass of 1000 kernel, and then realize that yield increases (Figure 14).The molecular labeling being related in selection is P135 and Pd1, sequence See table 5.
Embodiment 8:NPT1 and its homologous gene are knocked out using CRISPR/cas9 systems
Compared by Basic logical alignment search tool (BLAST), obtain wheat, barley, jade Rice, sorghum, soybean, rape, cotton and the homologous cDNA sequence of tomato.It is conservative with homologous genes encoding protein amino acid sequence Region is target sequence, designs target site.Sequence is as follows:
Paddy rice:5′-tcagctggaaagtgttctgcagg
Wheat:5′-ttaaggcgaacacgaggagatgg
Barley:5′-ttaagacggacacgaggagatgg
Corn:5′-aagctttatgttttcctacctgg
Sorghum:5′-aagctttatgttctcctacttgg
Soybean:5′-attcgtcgtactcgaggagatgg
Rape:5′-gttgcaatcaggcgaacaagagg
Cotton:5′-gcagccattagaagaacgcgagg
Tomato:5′-gctgccattagaagaacacgtgg
Target sequence is connected into sgRNA expression cassettes (sequence SEQ ID NO by design primer:24-32), monocotyledon side digestion Side connection insertion pYLCRISPR/Cas9PubiPYLCRISPR/Cas9P is even inserted in-MH, dicotyledon side trimming35S- DH, side Method has obtained Transgenic Rice positive plant at present referring in particular to document (Ma et al., 2015).Extract transgenic paddy rice The DNA of different strains, the gDNA sequences containing target site are expanded by PCR, are reclaimed PCR primer and are simultaneously sequenced, it was found that not similar shape The target site of formula knocks out strain,.Wherein osotub1-C1 mutant gDNA lacks 7 bases, causes frameshift mutation, encoding proteins Amino acid sequence is terminated in advance.Compared to ZH11, osotub1-C1 mutant shows similar NIL-npt1 phenotypes (Fig. 3).
Embodiment 9:Reduce the increase of NPT1 gene expression genetically modified plants yield
5 ' end the 300bp of PCR amplifications NPT1 genes (i.e. OsOTUB1 genes) code area cDNA sequence, constructs and possesses The RNAi interference carriers pActin of palindrome::RNAi-OsOTUB1, and be transferred to by agriculture bacillus mediated method OsOTUB1 gene expressions show different degrees of downward and show ZH11-npt1 classes in ZH11, transgenic positive plant As phenotype.Compare two materials of ZH11 and RNAi-OsOTUB1, it is found that RNAi-OsOTUB1 transgenic line fringes shorten, stalk Thickening, Primary branch and the increase of Secondary branch number, per the increase of fringe grain number per spike, yield increase (Figure 15).
Part primer and sequence used in table 4.QTL analyses and map based cloning
Part primer and sequence used in the vector construction of table 5.
It should be understood that although with reference to its exemplary embodiment, particularly shown and description is carried out to the present invention, It should be understood by those skilled in the art that without departing substantially from spirit of the invention as defined in appended claims Under conditions of scope, the change of various forms and details can be carried out wherein, any of various embodiments can be carried out Combination.
Bibliography:
Kiewicz P, Svab Z, and Maliga P. (1994) .The small, versatilepPZP family ofAgrobacterium binary vectors for plant transformation.Plant Molecular Biology 25.989-994.
Chen P-Y, Wang C-K, Soong S-C, and To K.-Y (2003) .Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from Transgenic plants.Molecular Breeding 11,287-293.
Ma X, Zhang Q, Zhu Q, et al. (2015) .A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants.Mol Plant 8,1274-1284.
Bracha-Drori K, Shichrur K, Katz A, et al. (2004) .Detection of protein- protein interactions in plants using bimolecular fluorescence complementation.Plant J;40:419-427.
Sequence table
<110>Inst. of Genetics and Development Biology, CAS
<120>Control the ideotype gene NPT1 of Culm of Rice rugosity, tiller number, grain number per spike, mass of 1000 kernel and yield and its answer With
<130> IB178051
<160> 38
<170> PatentIn version 3.1
<210> 1
<211> 825
<212> DNA
<213>NPT1 cDNA from Zhejiang spoke 802
<400> 1
atgggcgggg actactacca ctcgtgctgc ggcgaccccg accccgacct ccgcgcgccc 60
gaggggccca agctgccgta cgtcggggac aaggaacctc tctccacttt agccgctgag 120
tttcagtctg gcagccccat tttacaggag aaaataaagt tgcttggtga acagtatgat 180
gctttaagaa ggacacgagg agatggaaac tgcttttatc gaagctttat gttttcctac 240
ttggaacata tcctagagac acaagacaaa gctgaggttg agcgcattct aaaaaaaatt 300
gagcagtgca agaagactct tgcagatctt ggatacattg agttcacctt tgaagatttc 360
ttctctatat tcattgatca gctggaaagt gttctgcagg gacatgaatc ctccataggg 420
gccgaagagc ttctagaaag aaccagggat cagatggttt ctgattatgt tgtcatgttc 480
tttaggtttg tcacctctgg tgaaatccaa aggagggctg agttcttcga accattcatc 540
tctggcttga caaattcgac tgtggttcag ttctgcaagg cttccgtgga gccgatgggc 600
gaggaaagtg accatgtcca cataattgcc ctatcagatg cgttgggtgt gccaatccgt 660
gtgatgtacc tagacagaag ctcatgtgat gctggaaata taagtgtgaa ccaccatgat 720
ttcagccctg aggccaattc atcggacggt gctgctgctg ctgagaaacc ttacattact 780
ttgctctacc gtcctggtca ctacgacatt ctctacccga agtga 825
<210> 2
<211> 825
<212> DNA
<213>Npt1 cDNA from IR66167-27-5-1-6
<400> 2
atgggcgggg actactacca ctcgtgctgc ggcgaccccg accccgacct ccgcgcgccc 60
gaggggccca agctgccgta cgtcggggac aaggaacctc tctccacttt agccgctgag 120
tttcagtctg gcagccccat tttacaggag aaaataaagt tgcttggtga acagtatgat 180
gctttaagaa ggacacgagg agatggaaac tgcttttatc gaagctttat gttttcctac 240
ttggaacata tcctagagac acaagacaaa gctgaggttg agcgcattct aaaaaaaatt 300
gagcagtgca agaagactct tgcagatctt ggatacattg agttcacctt tgaagatttc 360
ttctctatat tcattgatca gctggaaagt gttctgcagg gacatgaatc ctccataggg 420
gccgaagagc ttctagaaag aaccagggat cagatggttt ctgattatgt tgtcatgttc 480
tttaggtttg tcacctctgg tgaaatccaa aggagggccg agttcttcga accattcatc 540
tctggcttga caaattcgac tgtggttcag ttctgcaagg cttccgtgga gccgatgggc 600
gaggaaagtg accatgtcca cataattgcc ctatcagatg cgttgggtgt gccaatccgt 660
gtgatgtacc tagacagaag ctcatgtgat gctggaaata taagtgtgaa ccaccatgat 720
ttcagccctg aggccaattc atcggacggt gctgctgctg ctgagaaacc ttacattact 780
ttgctctacc gtcctggtca ctacgacatt ctctacccga agtga 825
<210> 3
<211> 3825
<212> DNA
<213>Npt1 gDNA sequences from Zhejiang spoke 802
<400> 3
atgggcgggg actactacca ctcgtgctgc ggcgaccccg accccgacct ccgcgcgccc 60
gaggggccca agctgccgta cgtcggggac aaggtgagat gttgacgcct ctctctcttt 120
ctctgtctct ctcgctcgct ttgactcatc tgcgctttga ctcatctgcg gtcgatagat 180
ttgttcatgt ggtagaaatg ggtctgaatc gtggtaagac gcccagtgtt gccatgccag 240
tatccgctag ttgtgccagc aggtgaggcg atagatcagt cctgttagtc tagttggatg 300
ctgattgttg gtcatcatta ctgttgtatt ggtgctccat ttctatgtga attgacattt 360
taaggcgtct atacaagcag tggggactag aatttggata acaagtaaca atttcccctt 420
attgcgtcat cttaaaggat aagaggagtt atcagatgct ggattttctc ctttattttt 480
agtcgtggtg cctggaataa tggagattgg ctgaacaagt tcatatcagt tgtgtccatt 540
ttcatcctct ggatggtcag tccttaagta ttgtcaggcg ctattgttgt gagttgtaac 600
tgttgtactt gattttttag cttcgttggt gaactgatgt ttggaggttc atgcagaagt 660
cagaaccatg gggaattaga atttggatga acagacagca attacctttc gtgttctctt 720
ctaggaaaag aagggtttat ctgttatcat ttgctggatg tgctccttac ttaatattta 780
tgcatggaat aatagagatg gccaaacaag tttgctccat agcgtattat gattctagga 840
taaaagtggt gtcatccttt aatcgtcaca cctaggacaa taaatgtgaa ggacgaactt 900
gttgatgcag aataatagcc tatgctagtc aattcagcac agaaactgag gttaaatgtg 960
tcccaaaagt ttcagttaag gttcacacta ggatttacac gaacagaaca aatctgcaaa 1020
tatagtccat atgagaaggt ggagagctac atacacacaa tttcatatga aatggaaaat 1080
gatgttggca ctaaacttgg atttaggtca agtagttaga tatttgatgc ctcaaattca 1140
ttttgttctg ttaattgcaa gcaccttttc acaatggagg acactaatgc attgctatga 1200
ttatctctgt gtttgtacag ttattttagg ctatcgtatg actttcttct gctttcattt 1260
gtgttcatta ttgatatctt ttgaaccttg caggaacctc tctccacttt agccgctgag 1320
tttcagtctg gcagccccat tttacaggag aaaataaagg tccatatgga tttggcagtt 1380
ataatatgta atagacatat tttggttgat ctatcgtatc aatggatggt gcttcaattt 1440
gttcttataa tttcttgctt ggtctgcagt tgcttggtga acagtatgat gctttaagaa 1500
ggacacgagg agatggaaac tgcttttatc gaagctttat gttttcctac ttggtattat 1560
ttttggtctg tttccataca aactttgact attttataag ctgatgatct tatcatttgc 1620
ttctaggaac atatcctaga gacacaagac aaagctgagg ttgagcgcat tctaaaaaaa 1680
attgagcagt gcaagaagac tcttgcagat cttggataca ttgagttcac ctttgaagat 1740
ttcttctctg taagtcttta ttgttacttt gtgtggtcct ccttacttat cctgttcaat 1800
tgctgttttg caacttatgc cagatgtatt ccctctgaat agtatgaaga tctgtccgat 1860
tattttcatg tatgcttgtt tgcatttcct ttttagatgt tcctggaata atttttgtat 1920
gagctagtta taatgagagc ttgtgcattt tcctgtcatg caacaaatta aatactagtg 1980
tctaatcctt gtgcattgtt aataactttg aaaatgatta gccttgaaga ttggtccatt 2040
atatatatgt tcacttgttt cttagttagg atcactcacc agtcaccctt ctgaagttca 2100
taatgtatca cttataagta agctagcaaa acaaaatttg gactgtttgt agccacccag 2160
aacccaaata gatggatttc acattatttt ctactggctt tgggagttat ttgatcgatg 2220
ctagtacaac gttgaaattt gggtagttga gatgcgtttt tcacaaagga ctcctttatt 2280
ggtgcttgat ctacaactgg tgttttactt ttttacaaaa aaatgtaatc tccttgcagt 2340
gcactcaaat tattgcaacc tccttcctta tgttcccacc ctcattattt tcagatattc 2400
attgatcagc tggaaagtgt tctgcaggga catgaatcct ccatagggta aatatcctag 2460
agttatattt gtatccttaa tgcatatgac caataatcat gtattaacaa caaagcaatt 2520
tttgtaattg tttataaagt atggcatgtc catcataaat gttttccttc tgtagtgaat 2580
ctattttgtt ttcctgtatc cttagggccg aagagcttct agaaagaacc agggatcaga 2640
tggtttctga ttatggtttg tacatccaga tatgtgtagt atgcctttct ctgctttgct 2700
ctcattattt aactatgtct tctttagttg tcatgttctt taggtttgtc acctctggtg 2760
aaatccaaag gagggctgag ttcttcgaac cattcatctc tggcttgaca aattcgactg 2820
tggttcaggt tagctccata cttccatttt atgagggttt gtacagtcgt tggggaggta 2880
ttatgaggta caatacctcc aggtaccggg agttaccaca cataagcata aaatgtgtgg 2940
tgcctctcca aggaccacaa gaaatctctt cattatattt gtaatgcaca gagcagagag 3000
tacagacaaa tagacctgca ctctgcattt tcattaagta tttagatgtg agattattct 3060
atgttttatc tctcttgtta gtattttttg ctctgtttta taatggaagt tcattttctt 3120
gggaactgtc attcacaaaa caatgagtta tcgtaccctg ccatttagta gggaatttgg 3180
tggtaaaaaa ccattaactt tttcttcaat tttgtgcctt ctgcacaagg tgggataggg 3240
catatattgt ggaacaaaag agtgcacaat gactaattat ttagtatgca tcacactgga 3300
gtatgatata ctagtggaaa ggttatggca aaataccatg atagtagctt gatagattag 3360
caggtccgta agtatttttc caatgataat gttttattca ttaaactgta gcaggataaa 3420
atctacttat gcaccttttt ttcatgagta gcaaacaatg cattctctgg tttgaaaaac 3480
ttgttcaagt tgcagtgtgt tattccaatc cgtgtttgtg tgacaagcaa ttgctggagt 3540
tactgatcct gagttcaatt caatttgcag ttctgcaagg cttccgtgga gccgatgggc 3600
gaggaaagtg accatgtcca cataattgcc ctatcagatg cgttgggtgt gccaatccgt 3660
gtgatgtacc tagacagaag ctcatgtgat gctggaaata taagtgtgaa ccaccatgat 3720
ttcagccctg aggccaattc atcggacggt gctgctgctg ctgagaaacc ttacattact 3780
ttgctctacc gtcctggtca ctacgacatt ctctacccga agtga 3825
<210> 4
<211> 3824
<212> DNA
<213>Npt1 gDNA sequences from IR66167-27-5-1-6
<400> 4
atgggcgggg actactacca ctcgtgctgc ggcgaccccg accccgacct ccgcgcgccc 60
gaggggccca agctgccgta cgtcggggac aaggtgagat gttgacgcct ctctctctct 120
ctgtctctct cgctcgcttt gactcatctg cgctttgact catctgcggt cgatagattt 180
gttcatgtgg tagaaatggg tctgaatcgt ggtaagacgc ccagtgttgc catgccagta 240
tccgctagtt gtgccagcag gtgaggcgat agatcagtcc tgttagtcta gttggatgct 300
gattgttggt catcattact gttgtattgg tgctccattt ctatgtgaat tgacatttta 360
aggcgtctat acaagcagtg gggactagaa tttggataac aagtaacaat ttccccttat 420
tgcgtcatct taaaggataa gaggagttat cagatgctgg attttctcct ttatttttag 480
tcgtggtgcc tggaataatg gagattggct gaacaagttc atatcagttg tgtccatttt 540
catcctctgg atggtcagtc cttaagtatt gtcaggcgct attgttgtga gttgtaactg 600
ttgtacttga ttttttagct tcgttggtga actgatgttt ggaggttcat gcagaagtca 660
gaaccatggg gaattagaat ttggatgaac agacagcaat tacctttcgt gttctcttct 720
aggaaaagaa gggtttatct gttatcattt gctggatgtg ctccttactt aatatttatg 780
catggaataa tagagatggc caaacaagtt tgctccatag cgtattatga ttctaggata 840
aaagtggtgt catcctttaa tcgtcacacc taggacaata aatgtgaagg acgaacttgt 900
tgatgcagaa taatagccta tgctagtcaa ttcagcacag aaactgaggt taaatgtgtc 960
ccaaaagttt cagttaaggt tcacactagg atttacacga acagaacaaa tctgcaaata 1020
tagtccatat gagaaggtgg agagctacat acacacaatt tcatatgaaa tggaaaatga 1080
tgttggcact aaacttggat ttaggtcaag tagttagata tttgatgcct caaatttatt 1140
ttgttctgtt aattgcaagc accttttcac aatggaggac actaatgcat tgctatgatt 1200
atctctgtgt ttgtacagtt attttaggct atcgtatgac tttcttctgc tttcatttgt 1260
gttcattatt gatatctttt gaaccttgca ggaacctctc tccactttag ccgctgagtt 1320
tcagtctggc agccccattt tacaggagaa aataaaggtc catatggatt tggcagttat 1380
aatatgtaat agacatattt tggttgatct atcgtatcaa tggatggtgc ttcaatttgt 1440
tcttataatt tcttgcttgg tctccagttg cttggtgaac agtatgatgc tttaagaagg 1500
acacgaggag atggaaactg cttttatcga agctttatgt tttcctactt ggtattattt 1560
ttggtctgtt tccatacaaa ctttgactat tttataagct gatgatctta tcatttgctt 1620
ctaggaacat atcctagaga cacaagacaa agctgaggtt gagcgcattc taaaaaaaat 1680
tgagcagtgc aagaagactc ttgcagatct tggatacatt gagttcacct ttgaagattt 1740
cttctctgta agtctttatt gttactttgt gtggtcctcc ttacttatcc tgttcaattt 1800
ctgttttgca acttatgcca gatgtattcc ctctgaatag tatgaagatc tgtccgatta 1860
ttttcatgta tgcttgtttg catttccttt ttagatgttc ctggaataat ttttgtatga 1920
gctagttata atgagagctt gtgcattttc ctgtcatgca acaaattaaa tactagtgtc 1980
taatccttgt gcattgttaa taactttgaa aatgattagc cttgaagatt ggtccattat 2040
atatatgttc acttgtttct tagttaggat cactcaccag tcacccttct gaagttcata 2100
atgtatcact tataagtaag ctagcaaaac aaaatttgga ctgtttgtag ccacccagaa 2160
cccaaataga tggatttcac attattttct actggctttg ggagttattt gatcgatgct 2220
agtacaacgt tgaaattttg ggtagttgag atgcattttt cacaaaggac tcctttattg 2280
gtgcttgatc tacaactggt gttttacttt tttacaaaaa aatgtaatct ccttgcagtg 2340
cactcaaatt attgcaacct ccttccttat gttcccaccc tcattatttt cagatattca 2400
ttgatcagct ggaaagtgtt ctgcagggac atgaatcctc catagggtaa atatcctaga 2460
gttatatttg tatccttaat gcatatgacc aataatcatg tattaacaac aaagcatttt 2520
ttgtaattgt ttataaagta tggcatgtcc atcataaatg ttttccttct gtagtgaatc 2580
tattttgttt tcctgtatcc ttagggccga agagcttcta gaaagaacca gggatcagat 2640
ggtttctgat tatggtttgt acatccagat atgtgtagta tgcctttctc tgctttgctc 2700
tcattattta actatgtctt ctttagttgt catgttcttt aggtttgtca cctctggtga 2760
aatccaaagg agggccgagt tcttcgaacc attcatctct ggcttgacaa attcgactgt 2820
ggttcaggtt agctccatac ttccattgta tgagggtttg tacagttgtt ggggaggtat 2880
tatgaggtac aatacctcca ggtaccggga gttaccacac ataagcataa aatgtgtggt 2940
gcctctccaa ggaccacaag aaatctcttc attatatttg taatgcacag agcagagagt 3000
acagacaaat agacctgcac tctgcatttt cattaagtat ttagatgtga gattattcta 3060
tgttttatct ctcttgttag tattttttgc tctgttttat aatggaagtt cattttcttg 3120
ggaactgtca ttcacaaaac aatgagttat cgtaccctgc catttagtag ggaatttggt 3180
ggtaaaaaac cattaacttt ttcttcaatt ttgtgccttc tgcacaaggt gggatagggc 3240
atatattgtg gaacaaaaga gtgcacaatg actaattatt tagtatgcat cacactggag 3300
tatgatatac tagtggaaag gttatggcaa aataccatga tagtagcttg atagattagc 3360
aggtccgtaa gtatttttcc aatgataatg ttttattcat taaactgtag caggataaaa 3420
tctacttatg cacctttttt tcatgagtag caaacaatgc attctctggt ttgaaaaact 3480
tgttcaagtt gcagtgtgtt attccaatcc gtgtttgtgt gacaagcaat tgctggagtt 3540
actgatcctg agttcaattc aatttgcagt tctgcaaggc ttccgtggag ccgatgggcg 3600
aggaaagtga ccatgtccac ataattgccc tatcagatgc gttgggtgtg ccaatccgtg 3660
tgatgtacct agacagaagc tcatgtgatg ctggaaatat aagtgtgaac caccatgatt 3720
tcagccctga ggccaattca tcggacggtg ctgctgctgc tgagaaacct tacattactt 3780
tgctctaccg tcctggtcac tacgacattc tctacccgaa gtga 3824
<210> 5
<211> 2462
<212> DNA
<213>The kb promoter sequences of NPT1 2.5 from Zhejiang spoke 802
<400> 5
gagttgaagt tgttgctgct gtcataagta ctatctgcta aatgggcaca ctcctagcat 60
tattagaact gagaaatatc ccaagcaatg aaagcgacaa aaaagtaccc gtttgaagac 120
atgattgaca tggtcacatc aaacaccgga catcaacatc taaatgtaca taacaaggcc 180
aaaataattt tcgatgctgg ttggtgctac caagtcccac gtatgatact taagaatcaa 240
tcatgaatat tacaaatcaa gtcaaactac gttatgtatt gaactcttat aattactgca 300
acatatcaca ctggaatttc ctatggtaat tcctcgccag ccttatccta cccatccctt 360
gcagtatatt aagagcatca acaacaaaca tgattcaaga caacttttat taacactgaa 420
caacataaat tgggaacaaa acaaaccact tggaggcatg attaggataa tcggtattaa 480
agaactggac atcacaattc acaactagat gttgaaataa tacctgtctc ttctttggct 540
catggcaggt gtcagtgaaa tatactgatg ctccaagaga gctggaagca ccgtttccac 600
gtaatcaaaa tgtccttttc gtttgctgca atcaacctta aagggctctt ttgatgctat 660
ctcttcaggc atgtccttta caacttccac ataacctctg gtttgctcaa tgaagtaatc 720
aacatcgaaa acgtctgcaa atccactgac agagaatacc aataagtgat gaactacctt 780
ttgaacagaa ataaactgca taactacaag tagcacagtc gttcatcttg tagagtgatt 840
ctcataccta gattcattcc agtaggcagc aacctcaaac ttgggcagaa ccattgttgc 900
gttgagaagg cgcgcaaccg caattccatc acatagctga agaaacattc ggaagaataa 960
ttacaaccag gagtaacata ataacatagc cagttgaaat cacattcgcc ttgcaatgtg 1020
aaaattttca taaataatct gaaaatttag ttatgccact atatatcatg caacctgcct 1080
ccacgacatt ttaatcatgg agtagaagat aaaacatatg atccccctca ttgaccctac 1140
tatcttacta cttgtgcatg gccgaacgat ctaacagcga aatccagaaa gccaacactc 1200
atttgatccc actaacaacg gaagagagaa acgctagccg agatcgctta acgtacatcg 1260
cgtcgcagct ggttgagccc gccgtagcag tcgatccgga tgtacccatt cctcctcgac 1320
ggagctgcag aagaagagga ggttcaaaac cgcaatcacc accacagtct caagcagaga 1380
tgtccactac ccggatcctt aaacccaaac cacaaatcac ggcgaggtct cacccggcat 1440
tgccgcccgc caccacccgc acgaccgcca ctccgccacc cgccgctgcg cccatatgac 1500
ccgcgacccc gacgccgacg gcgactcctc cctaaagacc aaaagcgagt aagcgagatc 1560
cgtaagcttc tggaacaatc tcgagcatca gctgcaagag gtgaggctgg gccgcgtacc 1620
tggaggtggg aagagtgaag aagaaaggcg gagaggaggg tggagagagg aggaagtaga 1680
gcgcgggggc gaggaagatg accggtagga ggatgcggac gcggctgcgc gcccaccacg 1740
ccgccggcga cgccgacgac gacatcgcct cgccgcgaga agcactggat ctgatcggcc 1800
gccgcctcca cgccggagtg gagagcgtat ataagctcgt cagaatgtgg gcccgtggct 1860
atgtgggccc accatgtcat cgacgcttat caagatcgag cggtggcgtg aggaaaccgg 1920
taggggtggg ggggctaacc aatcggaaac gcgtaataac tcacccgcgg ttcactttct 1980
ccttatgaca cgtgggccca tctcttcctg gacccacctg tcagttaccc ttacggcctc 2040
cactctgagg atctaaacgt aaaaacgaat ttatcggagg gcttatccgc gaggggaaaa 2100
aaacgcgcac ttatttctcg ccttcgccga gatctcggaa gagaagaaca cgcaccgcgg 2160
ggagagggga gagaagcgga aagctccacc gaatcgaagc ccccacacac gcgaagctgg 2220
cgcgggaggc ggccgacgcg agcgcccgga agcgcaaggc ggcggacggc ggcggggagg 2280
gcgacgccgc ggcgacggtc ccggaggagg cggtgatggg ggaggcggcg gcggcagccg 2340
cggcccccga gccggtcgtc gaggggggag gagggggggg ggaggggttg aatcctaacc 2400
ctagcggcgg tgggggagga ggtggtggag ggtgctcgga ctccgtgtcg gtcgagctct 2460
cg 2462
<210> 6
<211> 2462
<212> DNA
<213>The kb promoter sequences of npt1 2.5 from IR66167-27-5-1-6
<400> 6
gagttgaagt tgttgctgct gtcataagta ctatctgcta aatgggcaca ctcctagcat 60
tattagaact gagaaatatc ccaagcaatg aaagcgacaa aaaagtaccc gtttgaagac 120
atgattgaca tggtcacatc aaacaccgga catcaacatc taaatgtaca taacaaggcc 180
aaaataattt tcgatgctgg ttggtgctac caagtcccac gtatgatact taagaatcaa 240
tcatgaatat tacaaatcaa gtcaaactac gttatgtatt gaactcttat aattactgca 300
acatatcaca ctggaatttc ctatggtaat tcctcgccag ccttatccta cccatccctt 360
gcagtatatt aagagcatca acaacaaaca tgattcaaga caacttttat taacactgaa 420
caacataaat tgggaacaaa acaaaccact tggaggcatg attaggataa tcggtattaa 480
agaactggac atcacaattc acaactagat gttgaaataa tacctgtctc ttctttggct 540
catggcaggt gtcagtgaaa tatactgatg ctccaagaga gctggaagca ccgtttccac 600
gtaatcaaaa tgtccttttc gtttgctgca atcaacctta aagggctctt ttgatgctat 660
ctcttcaggc atgtccttca caacttccac ataacctctg gtttgctcaa tgaagtaatc 720
aacatcgaaa acgtctgcaa atccactgac agagaatacc aataagtgat gaactacctt 780
ttgaacagaa ataaactgca taactacaag tagcacagtc gttcatcttg tagagtgatt 840
ctcataccta gattcattcc agtaggcagc aacctcaaac ttgggcagaa ccattgttgc 900
gttgagaagg cgcgcaaccg caattccatc acatagctga agaaacattc ggaagaataa 960
ttacaaccag gagtaacata ataacatagc cagttgaaat cacattcgcc ttgcaatgtg 1020
aaaattttca taaataatct gaaaatttag ttatgccact atatatcatg caacctgcct 1080
ccacgacatt ttaatcatgg agtagaagat aaaacatatg atccccctca ttgaccctac 1140
tatcttacta cttgtgcatg gccgaacgat ctaacagcga aatccagaaa gccaacactc 1200
atttgatccc actaacaacg gaagagagaa acgctagccg agatcgctta acgtacatcg 1260
cgtcgcagct ggttgagccc gccgtagcag tcgatccgga tgtacccatt cctcctcgac 1320
ggagctgcag aagaagagga ggttcaaaac cgcaatcacc accacagtct caagcagaga 1380
tgtccactac ccggatcctt aaacccaaac cacaaatcac ggcgaggtct cacccggcat 1440
tgccgcccgc caccacccgc acgaccgcca ctccgccacc cgccgctgcg cccatatgac 1500
ccgcgacccc gacgccgacg gcgactcctc cctaaagacc aaaagcgagt aagcgagatc 1560
cgtaagcttc tggaacaatc tcgagcatca gctgcaagag gtgaggctgg gccgcgtacc 1620
tggaggtggg aagagtgaag aagaaaggcg gagaggaggg tggagagagg aggaagtaga 1680
gcgcgggggc gaggaagatg accggtagga ggatgcggac gcggctgcgc gcccaccacg 1740
ccgccggcga cgccgacgac gacatcgcct cgccgcgaga agcactggat ctgatcggcc 1800
gccgcctcca cgccggagtg gagagcatat ataagctcgt cagaatgtgg gcccgtggct 1860
atgtgggccc accatgtcat cgacgcttat caagatcgag cggtggcgtg aggaaaccgg 1920
taggggtggg ggggctaacc aatcggaaac gcgtaataac tcacccgcgg ttcactttct 1980
ccttatgaca cgtgggccca tctcttcctg gacccacctg tcagttaccc ttacggcctc 2040
cactctgagg atctaaacgt aaaaacgaat ttatcggagg gcttatccgc gaggggaaaa 2100
aaacgcgcac ttatttctcg ccttcgccga gatctcggaa gagaagaaca cgcaccgcgg 2160
ggagagggga gagaagcgga aagctccacc gaatcgaagc ccccacacac gcgaagctgg 2220
cgcgggaggc ggccgacgcg agcgcccgga agcgcaaggc ggcggacggc ggcggggagg 2280
gcgacgccgc ggcgacggtc ccggaggagg cggtgatggg ggaggcggcg gcggcagccg 2340
cggcccccga gccggtcgtc gaggggggag gagggggggg ggaggggttg aatcctaacc 2400
ctagcggcgg tgggggagga ggtggtggag ggtgctcgga ctccgtgtcg gtcgagctct 2460
cg 2462
<210> 7
<211> 840
<212> DNA
<213>Uralensis Fisch TuNPT1 cDNA sequences
<400> 7
atgggcgggg actactacca cgcctgctgc ggcgacccgg accccgacca caagcccgag 60
ggaccccagg tgccgtacat cggtaacaag gaacctctct ccgccttagc agcagagttc 120
cagtctggca gccccatttt acaggagaaa ataaagttgc ttggtgaaca atatgatgct 180
ttaaggcgaa cacgaggaga tggaaactgc ttttatcgaa gctttatgtt ctcctacctg 240
gaacatatcc tagagacaca agatagagct gaggttgagc gcatcctaaa aaacattgaa 300
cagtgcaaga tgacactttc aggtcttgga tacattgaat tcacttttga agacttcttc 360
tctatgttca ttgaggagct gcaaaatgtt ctgcagggac acgaaacttc tattgggcct 420
gaagaacttc tagaaagaac cagggatcaa acgacttctg attatgttgt catgttcttt 480
aggtttgtta cctctggtga aattcaaagg agggctgagt tctttgaacc atttatttct 540
ggcttgacaa attcgaccgt ggctcagttt tgcaagtctt ctgtggagcc aatgggcgag 600
gaaagcgacc atgtgcacat tattgctctg tcagatgcgt taggggtgcc aatccgcgtg 660
atgtacctag accgaagctc ctgtgacaca ggcaatctaa gtgtgaacca ccatgatttc 720
attcctgcag ccaattcctc tgaaggtgat gctgcaatgg gattaaatcc ggctgaggag 780
aaaccttaca ttactctgct ctaccggcct ggtcactatg atattctcta cccaaagtga 840
<210> 8
<211> 840
<212> DNA
<213>Barley HvNPT1 cDNA sequences
<400> 8
atgggcgggg actactacca cgcctgctgc ggcgaccccg accccgaccc caagcccgag 60
ggaccccagg tgccgtacat cggtaacaag gaacctctct ccgccttagc agcagagttc 120
cagtctggca gccccatttt acaggagaaa ataaagttgc ttggtgaaca atatgatgct 180
ttaagacgga cacgaggaga tggaaactgc ttttatcgaa gctttatgtt ctcctacctg 240
gaacatatcc ttgagacaca agacagagct gaggttgagc gcatcctaaa aaacattgaa 300
caatgcaaga agacactttc aggtcttgga tacattgagt tcacttttga ggacttcttc 360
tctatgttca ttgaggagct gcaaaatgtt ctgcagggac acggaacttc tattgggcct 420
gaagaacttc tagaaagaac cagggatcag acgacttctg attatgttgt catgttcttt 480
agatttgtta cctctggtga aattcaaagg agggctgagt tctttgaacc atttatttct 540
ggcttgacaa attcgaccgt ggttcagttt tgcaagtctt ctgtggagcc aatgggcgag 600
gaaagtgacc atgtgcacat tattgctctg tcagatgcgt taggggtgcc aatccgcgtg 660
atgtacctag accgaagctc ttgtgacaca ggcaatctaa gtgtgaacca ccatgatttc 720
atccctgcag ccaattcctc tgaaggtgat gctgcaatgg gattaaatcc tgctgatgag 780
aaaccttaca ttactctgct ctaccggcct ggtcactatg acattctcta cccgaagtga 840
<210> 9
<211> 891
<212> DNA
<213>Corn ZmNPT1 cDNA sequences
<400> 9
atgggcgacg ttccacaggc gccgcacgct gcgggaggtg gagaagagtg ggcggggccg 60
gaccctaacc ctagcccgag cctcggcggc tgctcggacc ccgtgtcggt ggagctctcc 120
atgggcgggg actactaccg cgcctgctgc ggcgagcccg atcccgacat ccccgagggg 180
cccaagctgc cgtgcgttgg ggacaaggaa cctctctcct ctttagcagc tgagtttcag 240
tctggcagcc ccattttaca agagaaaatt aagttgcttg gcgagcaata tggtgcttta 300
agacgtacac gtggagatgg aaactgcttt tatcgaagct ttatgttttc ctacctggaa 360
cacatcctag agacacaaga caaagctgag gctgatcgca tcatggtaaa aattgaggaa 420
tgcaagaaaa cactcctctc tcttggatat attgagttca cttttgagga cttcttttcg 480
atattcattg aactgctgga aagtgttctg cagggacatg aaactcctat agggtttgtc 540
acttctggtg aaattcaaag gaggtctgac ttctttgaac cgttcatatc tggcttgaca 600
aattcaaccg tggttcagtt ctgcaaggct tctgtggaac ctatgggtga ggaaagtgac 660
catgtgcaca taattgccct atcagatgca ctaggcgtac caatccgtgt tatgtaccta 720
gaccgaagct cgtgtgacac tggcaacctg agcgtgaatc accacgattt catcccgtcg 780
gccaatgatt cggagggtga tgcggccacg acacctgctc ctgccacaga gaaaccgtac 840
atcactttgc tctaccgtcc tggccactac gatattctct acccaaagtg a 891
<210> 10
<211> 909
<212> DNA
<213>Sorghum SbNPT1 cDNA sequences
<400> 10
atgggcgacg tgccccaggc gccgcacgcc gcggaaggag gaggaggagg actggaggag 60
ggggcggtgc ccgaccctaa ccctagcccg agcctgagcc tcggcggctg ctcggacccc 120
gtgtcgctgg agctctccat gggcggggac tactaccgcg cctgctgcgg cgaccccgac 180
cccgacatcc ccgaggggcc caagctgccg tgcgttgggg aaaaggaacc tctctcctct 240
ttagcagccg agtttcagtc tggcagcccc attttacaag agaaaattaa gttgcttggc 300
gaacaatatg gtgctttaag acggacacgt ggagatggaa actgctttta tcgaagcttt 360
atgttctcct acttggaaca catcctagag acacaagaca aagctgaggc tgatcgcatc 420
atggtaaaaa ttgaggattg caagaagacg ctcctgtctc ttggatatat tgagttcact 480
tttgaggatt tctttgcgat attcattgat atgctggaaa gtgttctgca gggacatgaa 540
actcctatag ggtttgtcac ttctggtgaa attcaaagga ggtctgactt ctttgaacca 600
ttcatatctg gcttgacaaa ttcaactgtg gttcagttct gcaaggcttc tgtggaacct 660
atgggtgagg aaagtgacca tgttcacata attgccctat cggatgcact aggtgtacct 720
atccgtgtta tgtacctaga ccgaagctcg tgtgatactg gcaatctgag tgtgaatcac 780
catgatttca tcccttcgtc caatgcttct gagggtgatg ctgcgatgac atctactcct 840
gacgctgaga aaccttacat cactttgctc taccgtcctg gtcactatga tattctctac 900
ccaaagtga 909
<210> 11
<211> 906
<212> DNA
<213>Soybean GmNPT1 cDNA sequences
<400> 11
atgcagagta aagaagctgt tgtggaagat ggggaaataa agagtgtgac tgctgtaggg 60
tctgaaattg atgggtggac caattttggg gacgatgaca taatgcagca gcagtataca 120
attcagtctg aagaggctaa gaaagttcca tctgtgggcg acaaggaacc actgagtagc 180
ttagctgctg aatataaatc aggcagtcct atcttgctgg agaaaataaa ggtgcttgat 240
gagcaatacg ctgccattcg tcgtactcga ggagatggaa actgcttctt tcgaagcttt 300
atgttttcat atcttgagca tgttatgaaa tgtcaagacc aagcagaagt tgatcgtatc 360
caagccaatg ttgaaaaaag tagaaaagca ctgcagacct tgggttatgc agacttgact 420
tttgaagatt tttttgcgtt attccttgag cagctggaat ctgttattca agggaaagag 480
acttccataa gtcatgaaga gcttgttctt agaagccgag atcagtcagt atctgattat 540
gtcgttatgt tcttcagatt tgttacctct gccgcaatac aaaagcgcac agaatttttt 600
gaaccattca tactaggctt aactaataca acggtcgagc agttttgcaa atcatctgtt 660
gaaccaatgg gtgaagagag cgaccatgtg cacattactg ccctttcaga tgcattgggc 720
attccagtcc gtgttgtgta ccttgaccgc agctcaagtg atactggtgg tgtcagtgta 780
aatcatcatg atttcatgcc agtggctggt gatctcccaa atgctagttg cagctctgaa 840
aagaacattc ctttcatcac actactatat cgtcctggtc actatgacat cctctatcca 900
aaatga 906
<210> 12
<211> 903
<212> DNA
<213>Rape BnNPT1 cDNA sequences
<400> 12
atgcagaatc agaatgatac ggtgaaggat gatgcggagc tcgctgcttc catctcggct 60
gaacaatggg gatgctgttc agtggaggaa ccatcttttc aagatgatga agctgctaaa 120
gttccttatg ttggtgataa ggagcctatg tctagtttag ctgcagagta ccaagcaggg 180
agccccattt tgcttgagaa gataaaggta ctggacagtc aatatgttgc aatcaggcga 240
acaagaggag atggaaactg cttcttccga agttttatgt tctcttacct tgagcatatt 300
ttggaatcac aagatggtgc tgaagttgac cgtatcaagc tcaatgttga aaaatgtaga 360
aagaatctgc agaacttagg ctacacagat ttcacatttg aggacttctt tgcgttgttc 420
cttgagcaac tagatgacat cctccaagga ggcgaagagt ctataagcta tgatgagctg 480
gttaacagaa gtagagatca gtctgtttcc gactacattg tgatgttctt caggtttgtt 540
actgctggtg aaataaaaac gcgtgctgag ttcttcgagc cttttataac aggattatct 600
aataccacag tggatcagtt ttgcaagaca tcagttgaac cgatggggga agagagtgac 660
catattcaca taacagcttt gtcggacgcg cttggtgttg caatccgggt tgtgtatctt 720
gaccgtagct catgtgatac tggaggtggt gtcactgtga accatcacga ctttgttccc 780
gttggcagtg gcactaatga gaaagaagaa gcttcttctg ctgctccctt tataacattg 840
ctctatcgtc caggccatta cgatatcctc taccccaagg tattggagaa tgtggaaaaa 900
tga 903
<210> 13
<211> 912
<212> DNA
<213>Cotton GhNPT1 cDNA sequences
<400> 13
atgcaaaatc aggatggagc ggtagctgat agggaaaagg aatctgctgt atccattccc 60
atttctgaag ttgatgactg ggcaaatttc gcagatgatg atatcatgca gcaacaatct 120
gccattcatg ctgaggaggc caagaaaatt ccatttgttg gtgacaagga accactctct 180
atgttggcag ctgaatatga atcaggaagt cctatattgc tagaaaaaat aaaggtgctt 240
gatcagcaat atgcagccat tagaagaacg cgaggagatg gaaactgctt tttccggagt 300
tttatgtttt cataccttga acatattttg gaatctcaag accgtgctga ggttgatcgt 360
atcaaaggca atgttgaaga atgtagaaag ccacttcagc gcttagccca cacagatttt 420
acatttgagg actttttttc gttattcctt gagcagctgg aatgcgttct tcaaggaaat 480
gaagattcca taagtcagga tgaattaata ctaaggagtc gagatcagtc aatttccgac 540
tatgttgtaa tgttcttcag gtttgttacc tctggtgaaa tacgaaagcg atcagagttt 600
ttcgaaccct ttattttggg attaacaaat gcaacagtgg aacagttttg caagtcatcc 660
gtagagccaa tgggtgaaga gagtgatcat gtgcacatta ctgccctttc agacgctctg 720
ggcgtgccaa ttcgtgttgt gtaccttgat cggagctctt gtgacattgg tggtgttagt 780
gtaaaccatc atgattttct tcctacttcg ggcgataagt caaatgctaa aggtggtagc 840
actgtccctg tcaagccttt tattaccttg ctatatcgtc caggccacta tgacattctc 900
tatccaaagt ga 912
<210> 14
<211> 906
<212> DNA
<213>Tomato SlNPT1 cDNA sequences
<400> 14
atgcaggatc aggatgtgga tgtggatgtg gctgatgcag caaaagaaac gtttacatct 60
tctgaaactg atgactggaa aaaatacaag gatgatgata ttatgcaaca gcactctgcc 120
atacaagctg aacaagctgt aaaagttcca tttcttggtg ataaggaacc tttgtcctca 180
ttagaagctg aataccatct gggaaattca attgtgcttg agaaaataaa ggtgctgagt 240
gaacagtatg ctgccattag aagaacacgt ggagatggga actgcttttt ccgcagtttc 300
atgtttggtt accttgagca cattctggaa tcacaagatc acaatgaagt tcaacacatt 360
aaatctaata ttgaggaatg caagaagaca cttcaaagtt tgggctatgc agaattcacc 420
tttgaagact tttttgcatt attcctcgag caactcgata gtgttcttca aggtagcgaa 480
gattccataa gtcatgatga actcctgtgc agaagtcgtg atccatcaat ttctgactat 540
gttgttatgt tcttcagatt tgtgacatca ggtgaaataa gaaagcggtc cgagtttttc 600
gaaccattta ttctaggact aacaaatacc tcagtggagc agttttgcaa gtcagcagtg 660
gaacccatgg gtgaagagag tgatcatgtg caaattacag ccctatcaga tgcattgggt 720
gtaccgatcc gtgttgtata tcttgaccga agctcatgtg agaacaacag catcaatgta 780
aatcaccatg actttattcc tactagcagg gaggtcggga atagtgatgt ttccaagacc 840
acaaatcgtc catctatcac cctgctgtat cgcccagggc attatgacat tctgtacccc 900
aagtga 906
<210> 15
<211> 274
<212> PRT
<213>Rice Os OTUB1 albumen
<400> 15
Met Gly Gly Asp Tyr Tyr His Ser Cys Cys Gly Asp Pro Asp Pro Asp
1 5 10 15
Leu Arg Ala Pro Glu Gly Pro Lys Leu Pro Tyr Val Gly Asp Lys Glu
20 25 30
Pro Leu Ser Thr Leu Ala Ala Glu Phe Gln Ser Gly Ser Pro Ile Leu
35 40 45
Gln Glu Lys Ile Lys Leu Leu Gly Glu Gln Tyr Asp Ala Leu Arg Arg
50 55 60
Thr Arg Gly Asp Gly Asn Cys Phe Tyr Arg Ser Phe Met Phe Ser Tyr
65 70 75 80
Leu Glu His Ile Leu Glu Thr Gln Asp Lys Ala Glu Val Glu Arg Ile
85 90 95
Leu Lys Lys Ile Glu Gln Cys Lys Lys Thr Leu Ala Asp Leu Gly Tyr
100 105 110
Ile Glu Phe Thr Phe Glu Asp Phe Phe Ser Ile Phe Ile Asp Gln Leu
115 120 125
Glu Ser Val Leu Gln Gly His Glu Ser Ser Ile Gly Ala Glu Glu Leu
130 135 140
Leu Glu Arg Thr Arg Asp Gln Met Val Ser Asp Tyr Val Val Met Phe
145 150 155 160
Phe Arg Phe Val Thr Ser Gly Glu Ile Gln Arg Arg Ala Glu Phe Phe
165 170 175
Glu Pro Phe Ile Ser Gly Leu Thr Asn Ser Thr Val Val Gln Phe Cys
180 185 190
Lys Ala Ser Val Glu Pro Met Gly Glu Glu Ser Asp His Val His Ile
195 200 205
Ile Ala Leu Ser Asp Ala Leu Gly Val Pro Ile Arg Val Met Tyr Leu
210 215 220
Asp Arg Ser Ser Cys Asp Ala Gly Asn Ile Ser Val Asn His His Asp
225 230 235 240
Phe Ser Pro Glu Ala Asn Ser Ser Asp Gly Ala Ala Ala Ala Glu Lys
245 250 255
Pro Tyr Ile Thr Leu Leu Tyr Arg Pro Gly His Tyr Asp Ile Leu Tyr
260 265 270
Pro Lys
<210> 16
<211> 279
<212> PRT
<213>Uralensis Fisch TuOTUB1 albumen
<400> 16
Met Gly Gly Asp Tyr Tyr His Ala Cys Cys Gly Asp Pro Asp Pro Asp
1 5 10 15
His Lys Pro Glu Gly Pro Gln Val Pro Tyr Ile Gly Asn Lys Glu Pro
20 25 30
Leu Ser Ala Leu Ala Ala Glu Phe Gln Ser Gly Ser Pro Ile Leu Gln
35 40 45
Glu Lys Ile Lys Leu Leu Gly Glu Gln Tyr Asp Ala Leu Arg Arg Thr
50 55 60
Arg Gly Asp Gly Asn Cys Phe Tyr Arg Ser Phe Met Phe Ser Tyr Leu
65 70 75 80
Glu His Ile Leu Glu Thr Gln Asp Arg Ala Glu Val Glu Arg Ile Leu
85 90 95
Lys Asn Ile Glu Gln Cys Lys Met Thr Leu Ser Gly Leu Gly Tyr Ile
100 105 110
Glu Phe Thr Phe Glu Asp Phe Phe Ser Met Phe Ile Glu Glu Leu Gln
115 120 125
Asn Val Leu Gln Gly His Glu Thr Ser Ile Gly Pro Glu Glu Leu Leu
130 135 140
Glu Arg Thr Arg Asp Gln Thr Thr Ser Asp Tyr Val Val Met Phe Phe
145 150 155 160
Arg Phe Val Thr Ser Gly Glu Ile Gln Arg Arg Ala Glu Phe Phe Glu
165 170 175
Pro Phe Ile Ser Gly Leu Thr Asn Ser Thr Val Ala Gln Phe Cys Lys
180 185 190
Ser Ser Val Glu Pro Met Gly Glu Glu Ser Asp His Val His Ile Ile
195 200 205
Ala Leu Ser Asp Ala Leu Gly Val Pro Ile Arg Val Met Tyr Leu Asp
210 215 220
Arg Ser Ser Cys Asp Thr Gly Asn Leu Ser Val Asn His His Asp Phe
225 230 235 240
Ile Pro Ala Ala Asn Ser Ser Glu Gly Asp Ala Ala Met Gly Leu Asn
245 250 255
Pro Ala Glu Glu Lys Pro Tyr Ile Thr Leu Leu Tyr Arg Pro Gly His
260 265 270
Tyr Asp Ile Leu Tyr Pro Lys
275
<210> 17
<211> 279
<212> PRT
<213>Barley HvOTUB1 albumen
<400> 17
Met Gly Gly Asp Tyr Tyr His Ala Cys Cys Gly Asp Pro Asp Pro Asp
1 5 10 15
Pro Lys Pro Glu Gly Pro Gln Val Pro Tyr Ile Gly Asn Lys Glu Pro
20 25 30
Leu Ser Ala Leu Ala Ala Glu Phe Gln Ser Gly Ser Pro Ile Leu Gln
35 40 45
Glu Lys Ile Lys Leu Leu Gly Glu Gln Tyr Asp Ala Leu Arg Arg Thr
50 55 60
Arg Gly Asp Gly Asn Cys Phe Tyr Arg Ser Phe Met Phe Ser Tyr Leu
65 70 75 80
Glu His Ile Leu Glu Thr Gln Asp Arg Ala Glu Val Glu Arg Ile Leu
85 90 95
Lys Asn Ile Glu Gln Cys Lys Lys Thr Leu Ser Gly Leu Gly Tyr Ile
100 105 110
Glu Phe Thr Phe Glu Asp Phe Phe Ser Met Phe Ile Glu Glu Leu Gln
115 120 125
Asn Val Leu Gln Gly His Gly Thr Ser Ile Gly Pro Glu Glu Leu Leu
130 135 140
Glu Arg Thr Arg Asp Gln Thr Thr Ser Asp Tyr Val Val Met Phe Phe
145 150 155 160
Arg Phe Val Thr Ser Gly Glu Ile Gln Arg Arg Ala Glu Phe Phe Glu
165 170 175
Pro Phe Ile Ser Gly Leu Thr Asn Ser Thr Val Val Gln Phe Cys Lys
180 185 190
Ser Ser Val Glu Pro Met Gly Glu Glu Ser Asp His Val His Ile Ile
195 200 205
Ala Leu Ser Asp Ala Leu Gly Val Pro Ile Arg Val Met Tyr Leu Asp
210 215 220
Arg Ser Ser Cys Asp Thr Gly Asn Leu Ser Val Asn His His Asp Phe
225 230 235 240
Ile Pro Ala Ala Asn Ser Ser Glu Gly Asp Ala Ala Met Gly Leu Asn
245 250 255
Pro Ala Asp Glu Lys Pro Tyr Ile Thr Leu Leu Tyr Arg Pro Gly His
260 265 270
Tyr Asp Ile Leu Tyr Pro Lys
275
<210> 18
<211> 296
<212> PRT
<213>Corn ZmOTUB1 albumen
<400> 18
Met Gly Asp Val Pro Gln Ala Pro His Ala Ala Gly Gly Gly Glu Glu
1 5 10 15
Trp Ala Gly Pro Asp Pro Asn Pro Ser Pro Ser Leu Gly Gly Cys Ser
20 25 30
Asp Pro Val Ser Val Glu Leu Ser Met Gly Gly Asp Tyr Tyr Arg Ala
35 40 45
Cys Cys Gly Glu Pro Asp Pro Asp Ile Pro Glu Gly Pro Lys Leu Pro
50 55 60
Cys Val Gly Asp Lys Glu Pro Leu Ser Ser Leu Ala Ala Glu Phe Gln
65 70 75 80
Ser Gly Ser Pro Ile Leu Gln Glu Lys Ile Lys Leu Leu Gly Glu Gln
85 90 95
Tyr Gly Ala Leu Arg Arg Thr Arg Gly Asp Gly Asn Cys Phe Tyr Arg
100 105 110
Ser Phe Met Phe Ser Tyr Leu Glu His Ile Leu Glu Thr Gln Asp Lys
115 120 125
Ala Glu Ala Asp Arg Ile Met Val Lys Ile Glu Glu Cys Lys Lys Thr
130 135 140
Leu Leu Ser Leu Gly Tyr Ile Glu Phe Thr Phe Glu Asp Phe Phe Ser
145 150 155 160
Ile Phe Ile Glu Leu Leu Glu Ser Val Leu Gln Gly His Glu Thr Pro
165 170 175
Ile Gly Phe Val Thr Ser Gly Glu Ile Gln Arg Arg Ser Asp Phe Phe
180 185 190
Glu Pro Phe Ile Ser Gly Leu Thr Asn Ser Thr Val Val Gln Phe Cys
195 200 205
Lys Ala Ser Val Glu Pro Met Gly Glu Glu Ser Asp His Val His Ile
210 215 220
Ile Ala Leu Ser Asp Ala Leu Gly Val Pro Ile Arg Val Met Tyr Leu
225 230 235 240
Asp Arg Ser Ser Cys Asp Thr Gly Asn Leu Ser Val Asn His His Asp
245 250 255
Phe Ile Pro Ser Ala Asn Asp Ser Glu Gly Asp Ala Ala Thr Thr Pro
260 265 270
Ala Pro Ala Thr Glu Lys Pro Tyr Ile Thr Leu Leu Tyr Arg Pro Gly
275 280 285
His Tyr Asp Ile Leu Tyr Pro Lys
290 295
<210> 19
<211> 302
<212> PRT
<213>Sorghum SbOTUB1 albumen
<400> 19
Met Gly Asp Val Pro Gln Ala Pro His Ala Ala Glu Gly Gly Gly Gly
1 5 10 15
Gly Leu Glu Glu Gly Ala Val Pro Asp Pro Asn Pro Ser Pro Ser Leu
20 25 30
Ser Leu Gly Gly Cys Ser Asp Pro Val Ser Leu Glu Leu Ser Met Gly
35 40 45
Gly Asp Tyr Tyr Arg Ala Cys Cys Gly Asp Pro Asp Pro Asp Ile Pro
50 55 60
Glu Gly Pro Lys Leu Pro Cys Val Gly Glu Lys Glu Pro Leu Ser Ser
65 70 75 80
Leu Ala Ala Glu Phe Gln Ser Gly Ser Pro Ile Leu Gln Glu Lys Ile
85 90 95
Lys Leu Leu Gly Glu Gln Tyr Gly Ala Leu Arg Arg Thr Arg Gly Asp
100 105 110
Gly Asn Cys Phe Tyr Arg Ser Phe Met Phe Ser Tyr Leu Glu His Ile
115 120 125
Leu Glu Thr Gln Asp Lys Ala Glu Ala Asp Arg Ile Met Val Lys Ile
130 135 140
Glu Asp Cys Lys Lys Thr Leu Leu Ser Leu Gly Tyr Ile Glu Phe Thr
145 150 155 160
Phe Glu Asp Phe Phe Ala Ile Phe Ile Asp Met Leu Glu Ser Val Leu
165 170 175
Gln Gly His Glu Thr Pro Ile Gly Phe Val Thr Ser Gly Glu Ile Gln
180 185 190
Arg Arg Ser Asp Phe Phe Glu Pro Phe Ile Ser Gly Leu Thr Asn Ser
195 200 205
Thr Val Val Gln Phe Cys Lys Ala Ser Val Glu Pro Met Gly Glu Glu
210 215 220
Ser Asp His Val His Ile Ile Ala Leu Ser Asp Ala Leu Gly Val Pro
225 230 235 240
Ile Arg Val Met Tyr Leu Asp Arg Ser Ser Cys Asp Thr Gly Asn Leu
245 250 255
Ser Val Asn His His Asp Phe Ile Pro Ser Ser Asn Ala Ser Glu Gly
260 265 270
Asp Ala Ala Met Thr Ser Thr Pro Asp Ala Glu Lys Pro Tyr Ile Thr
275 280 285
Leu Leu Tyr Arg Pro Gly His Tyr Asp Ile Leu Tyr Pro Lys
290 295 300
<210> 20
<211> 301
<212> PRT
<213>Soybean GmOTUB1 albumen
<400> 20
Met Gln Ser Lys Glu Ala Val Val Glu Asp Gly Glu Ile Lys Ser Val
1 5 10 15
Thr Ala Val Gly Ser Glu Ile Asp Gly Trp Thr Asn Phe Gly Asp Asp
20 25 30
Asp Ile Met Gln Gln Gln Tyr Thr Ile Gln Ser Glu Glu Ala Lys Lys
35 40 45
Val Pro Ser Val Gly Asp Lys Glu Pro Leu Ser Ser Leu Ala Ala Glu
50 55 60
Tyr Lys Ser Gly Ser Pro Ile Leu Leu Glu Lys Ile Lys Val Leu Asp
65 70 75 80
Glu Gln Tyr Ala Ala Ile Arg Arg Thr Arg Gly Asp Gly Asn Cys Phe
85 90 95
Phe Arg Ser Phe Met Phe Ser Tyr Leu Glu His Val Met Lys Cys Gln
100 105 110
Asp Gln Ala Glu Val Asp Arg Ile Gln Ala Asn Val Glu Lys Ser Arg
115 120 125
Lys Ala Leu Gln Thr Leu Gly Tyr Ala Asp Leu Thr Phe Glu Asp Phe
130 135 140
Phe Ala Leu Phe Leu Glu Gln Leu Glu Ser Val Ile Gln Gly Lys Glu
145 150 155 160
Thr Ser Ile Ser His Glu Glu Leu Val Leu Arg Ser Arg Asp Gln Ser
165 170 175
Val Ser Asp Tyr Val Val Met Phe Phe Arg Phe Val Thr Ser Ala Ala
180 185 190
Ile Gln Lys Arg Thr Glu Phe Phe Glu Pro Phe Ile Leu Gly Leu Thr
195 200 205
Asn Thr Thr Val Glu Gln Phe Cys Lys Ser Ser Val Glu Pro Met Gly
210 215 220
Glu Glu Ser Asp His Val His Ile Thr Ala Leu Ser Asp Ala Leu Gly
225 230 235 240
Ile Pro Val Arg Val Val Tyr Leu Asp Arg Ser Ser Ser Asp Thr Gly
245 250 255
Gly Val Ser Val Asn His His Asp Phe Met Pro Val Ala Gly Asp Leu
260 265 270
Pro Asn Ala Ser Cys Ser Ser Glu Lys Asn Ile Pro Phe Ile Thr Leu
275 280 285
Leu Tyr Arg Pro Gly His Tyr Asp Ile Leu Tyr Pro Lys
290 295 300
<210> 21
<211> 300
<212> PRT
<213>Rape BnOTUB1 albumen
<400> 21
Met Gln Asn Gln Asn Asp Thr Val Lys Asp Asp Ala Glu Leu Ala Ala
1 5 10 15
Ser Ile Ser Ala Glu Gln Trp Gly Cys Cys Ser Val Glu Glu Pro Ser
20 25 30
Phe Gln Asp Asp Glu Ala Ala Lys Val Pro Tyr Val Gly Asp Lys Glu
35 40 45
Pro Met Ser Ser Leu Ala Ala Glu Tyr Gln Ala Gly Ser Pro Ile Leu
50 55 60
Leu Glu Lys Ile Lys Val Leu Asp Ser Gln Tyr Val Ala Ile Arg Arg
65 70 75 80
Thr Arg Gly Asp Gly Asn Cys Phe Phe Arg Ser Phe Met Phe Ser Tyr
85 90 95
Leu Glu His Ile Leu Glu Ser Gln Asp Gly Ala Glu Val Asp Arg Ile
100 105 110
Lys Leu Asn Val Glu Lys Cys Arg Lys Asn Leu Gln Asn Leu Gly Tyr
115 120 125
Thr Asp Phe Thr Phe Glu Asp Phe Phe Ala Leu Phe Leu Glu Gln Leu
130 135 140
Asp Asp Ile Leu Gln Gly Gly Glu Glu Ser Ile Ser Tyr Asp Glu Leu
145 150 155 160
Val Asn Arg Ser Arg Asp Gln Ser Val Ser Asp Tyr Ile Val Met Phe
165 170 175
Phe Arg Phe Val Thr Ala Gly Glu Ile Lys Thr Arg Ala Glu Phe Phe
180 185 190
Glu Pro Phe Ile Thr Gly Leu Ser Asn Thr Thr Val Asp Gln Phe Cys
195 200 205
Lys Thr Ser Val Glu Pro Met Gly Glu Glu Ser Asp His Ile His Ile
210 215 220
Thr Ala Leu Ser Asp Ala Leu Gly Val Ala Ile Arg Val Val Tyr Leu
225 230 235 240
Asp Arg Ser Ser Cys Asp Thr Gly Gly Gly Val Thr Val Asn His His
245 250 255
Asp Phe Val Pro Val Gly Ser Gly Thr Asn Glu Lys Glu Glu Ala Ser
260 265 270
Ser Ala Ala Pro Phe Ile Thr Leu Leu Tyr Arg Pro Gly His Tyr Asp
275 280 285
Ile Leu Tyr Pro Lys Val Leu Glu Asn Val Glu Lys
290 295 300
<210> 22
<211> 303
<212> PRT
<213>Cotton GhOTUB1 albumen
<400> 22
Met Gln Asn Gln Asp Gly Ala Val Ala Asp Arg Glu Lys Glu Ser Ala
1 5 10 15
Val Ser Ile Pro Ile Ser Glu Val Asp Asp Trp Ala Asn Phe Ala Asp
20 25 30
Asp Asp Ile Met Gln Gln Gln Ser Ala Ile His Ala Glu Glu Ala Lys
35 40 45
Lys Ile Pro Phe Val Gly Asp Lys Glu Pro Leu Ser Met Leu Ala Ala
50 55 60
Glu Tyr Glu Ser Gly Ser Pro Ile Leu Leu Glu Lys Ile Lys Val Leu
65 70 75 80
Asp Gln Gln Tyr Ala Ala Ile Arg Arg Thr Arg Gly Asp Gly Asn Cys
85 90 95
Phe Phe Arg Ser Phe Met Phe Ser Tyr Leu Glu His Ile Leu Glu Ser
100 105 110
Gln Asp Arg Ala Glu Val Asp Arg Ile Lys Gly Asn Val Glu Glu Cys
115 120 125
Arg Lys Pro Leu Gln Arg Leu Ala His Thr Asp Phe Thr Phe Glu Asp
130 135 140
Phe Phe Ser Leu Phe Leu Glu Gln Leu Glu Cys Val Leu Gln Gly Asn
145 150 155 160
Glu Asp Ser Ile Ser Gln Asp Glu Leu Ile Leu Arg Ser Arg Asp Gln
165 170 175
Ser Ile Ser Asp Tyr Val Val Met Phe Phe Arg Phe Val Thr Ser Gly
180 185 190
Glu Ile Arg Lys Arg Ser Glu Phe Phe Glu Pro Phe Ile Leu Gly Leu
195 200 205
Thr Asn Ala Thr Val Glu Gln Phe Cys Lys Ser Ser Val Glu Pro Met
210 215 220
Gly Glu Glu Ser Asp His Val His Ile Thr Ala Leu Ser Asp Ala Leu
225 230 235 240
Gly Val Pro Ile Arg Val Val Tyr Leu Asp Arg Ser Ser Cys Asp Ile
245 250 255
Gly Gly Val Ser Val Asn His His Asp Phe Leu Pro Thr Ser Gly Asp
260 265 270
Lys Ser Asn Ala Lys Gly Gly Ser Thr Val Pro Val Lys Pro Phe Ile
275 280 285
Thr Leu Leu Tyr Arg Pro Gly His Tyr Asp Ile Leu Tyr Pro Lys
290 295 300
<210> 23
<211> 301
<212> PRT
<213>Tomato SlOTUB1 albumen
<400> 23
Met Gln Asp Gln Asp Val Asp Val Asp Val Ala Asp Ala Ala Lys Glu
1 5 10 15
Thr Phe Thr Ser Ser Glu Thr Asp Asp Trp Lys Lys Tyr Lys Asp Asp
20 25 30
Asp Ile Met Gln Gln His Ser Ala Ile Gln Ala Glu Gln Ala Val Lys
35 40 45
Val Pro Phe Leu Gly Asp Lys Glu Pro Leu Ser Ser Leu Glu Ala Glu
50 55 60
Tyr His Leu Gly Asn Ser Ile Val Leu Glu Lys Ile Lys Val Leu Ser
65 70 75 80
Glu Gln Tyr Ala Ala Ile Arg Arg Thr Arg Gly Asp Gly Asn Cys Phe
85 90 95
Phe Arg Ser Phe Met Phe Gly Tyr Leu Glu His Ile Leu Glu Ser Gln
100 105 110
Asp His Asn Glu Val Gln His Ile Lys Ser Asn Ile Glu Glu Cys Lys
115 120 125
Lys Thr Leu Gln Ser Leu Gly Tyr Ala Glu Phe Thr Phe Glu Asp Phe
130 135 140
Phe Ala Leu Phe Leu Glu Gln Leu Asp Ser Val Leu Gln Gly Ser Glu
145 150 155 160
Asp Ser Ile Ser His Asp Glu Leu Leu Cys Arg Ser Arg Asp Pro Ser
165 170 175
Ile Ser Asp Tyr Val Val Met Phe Phe Arg Phe Val Thr Ser Gly Glu
180 185 190
Ile Arg Lys Arg Ser Glu Phe Phe Glu Pro Phe Ile Leu Gly Leu Thr
195 200 205
Asn Thr Ser Val Glu Gln Phe Cys Lys Ser Ala Val Glu Pro Met Gly
210 215 220
Glu Glu Ser Asp His Val Gln Ile Thr Ala Leu Ser Asp Ala Leu Gly
225 230 235 240
Val Pro Ile Arg Val Val Tyr Leu Asp Arg Ser Ser Cys Glu Asn Asn
245 250 255
Ser Ile Asn Val Asn His His Asp Phe Ile Pro Thr Ser Arg Glu Val
260 265 270
Gly Asn Ser Asp Val Ser Lys Thr Thr Asn Arg Pro Ser Ile Thr Leu
275 280 285
Leu Tyr Arg Pro Gly His Tyr Asp Ile Leu Tyr Pro Lys
290 295 300
<210> 24
<211> 578
<212> DNA
<213>OsOTUB1 sgRNA expression cassette sequences
<400> 24
tggaatcggc agcaaaggat tttttcctgt agttttccca caaccatttt ttaccatccg 60
aatgatagga taggaaaaat atccaagtga acagtattcc tataaaattc ccgtaaaaag 120
cctgcaatcc gaatgagccc tgaagtctga actagccggt cacctgtaca ggctatcgag 180
atgccataca agagacggta gtaggaacta ggaagacgat ggttgattcg tcaggcgaaa 240
tcgtcgtcct gcagtcgcat ctatgggcct ggacggaata ggggaaaaag ttggccggat 300
aggagggaaa ggcccaggtg cttacgtgcg aggtaggcct gggctctcag cacttcgatt 360
cgttggcacc ggggtaggat gcaatagaga gcaacgttta gtaccacctc gcttagctag 420
agcaaactgg actgccttat atgcgcgggt gctggcttgg ctgccgtcag ctggaaagtg 480
ttctgcgttt tagagctaga aatagcaagt taaaataagg ctagtccgtt atcaacttga 540
aaaagtggca ccgagtcggt gctttttttc aagagctt 578
<210> 25
<211> 578
<212> DNA
<213>TuOTUB1 sgRNA expression cassette sequences
<400> 25
tggaatcggc agcaaaggat tttttcctgt agttttccca caaccatttt ttaccatccg 60
aatgatagga taggaaaaat atccaagtga acagtattcc tataaaattc ccgtaaaaag 120
cctgcaatcc gaatgagccc tgaagtctga actagccggt cacctgtaca ggctatcgag 180
atgccataca agagacggta gtaggaacta ggaagacgat ggttgattcg tcaggcgaaa 240
tcgtcgtcct gcagtcgcat ctatgggcct ggacggaata ggggaaaaag ttggccggat 300
aggagggaaa ggcccaggtg cttacgtgcg aggtaggcct gggctctcag cacttcgatt 360
cgttggcacc ggggtaggat gcaatagaga gcaacgttta gtaccacctc gcttagctag 420
agcaaactgg actgccttat atgcgcgggt gctggcttgg ctgccgttaa ggcgaacacg 480
aggagagttt tagagctaga aatagcaagt taaaataagg ctagtccgtt atcaacttga 540
aaaagtggca ccgagtcggt gctttttttc aagagctt 578
<210> 26
<211> 578
<212> DNA
<213>HvOTUB1 sgRNA expression cassette sequences
<400> 26
tggaatcggc agcaaaggat tttttcctgt agttttccca caaccatttt ttaccatccg 60
aatgatagga taggaaaaat atccaagtga acagtattcc tataaaattc ccgtaaaaag 120
cctgcaatcc gaatgagccc tgaagtctga actagccggt cacctgtaca ggctatcgag 180
atgccataca agagacggta gtaggaacta ggaagacgat ggttgattcg tcaggcgaaa 240
tcgtcgtcct gcagtcgcat ctatgggcct ggacggaata ggggaaaaag ttggccggat 300
aggagggaaa ggcccaggtg cttacgtgcg aggtaggcct gggctctcag cacttcgatt 360
cgttggcacc ggggtaggat gcaatagaga gcaacgttta gtaccacctc gcttagctag 420
agcaaactgg actgccttat atgcgcgggt gctggcttgg ctgccgttaa gacggacacg 480
aggagagttt tagagctaga aatagcaagt taaaataagg ctagtccgtt atcaacttga 540
aaaagtggca ccgagtcggt gctttttttc aagagctt 578
<210> 27
<211> 578
<212> DNA
<213>ZmOTUB1 sgRNA expression cassette sequences
<400> 27
tggaatcggc agcaaaggat tttttcctgt agttttccca caaccatttt ttaccatccg 60
aatgatagga taggaaaaat atccaagtga acagtattcc tataaaattc ccgtaaaaag 120
cctgcaatcc gaatgagccc tgaagtctga actagccggt cacctgtaca ggctatcgag 180
atgccataca agagacggta gtaggaacta ggaagacgat ggttgattcg tcaggcgaaa 240
tcgtcgtcct gcagtcgcat ctatgggcct ggacggaata ggggaaaaag ttggccggat 300
aggagggaaa ggcccaggtg cttacgtgcg aggtaggcct gggctctcag cacttcgatt 360
cgttggcacc ggggtaggat gcaatagaga gcaacgttta gtaccacctc gcttagctag 420
agcaaactgg actgccttat atgcgcgggt gctggcttgg ctgccgaagc tttatgtttt 480
cctaccgttt tagagctaga aatagcaagt taaaataagg ctagtccgtt atcaacttga 540
aaaagtggca ccgagtcggt gctttttttc aagagctt 578
<210> 28
<211> 578
<212> DNA
<213>SbOTUB1 sgRNA expression cassette sequences
<400> 28
tggaatcggc agcaaaggat tttttcctgt agttttccca caaccatttt ttaccatccg 60
aatgatagga taggaaaaat atccaagtga acagtattcc tataaaattc ccgtaaaaag 120
cctgcaatcc gaatgagccc tgaagtctga actagccggt cacctgtaca ggctatcgag 180
atgccataca agagacggta gtaggaacta ggaagacgat ggttgattcg tcaggcgaaa 240
tcgtcgtcct gcagtcgcat ctatgggcct ggacggaata ggggaaaaag ttggccggat 300
aggagggaaa ggcccaggtg cttacgtgcg aggtaggcct gggctctcag cacttcgatt 360
cgttggcacc ggggtaggat gcaatagaga gcaacgttta gtaccacctc gcttagctag 420
agcaaactgg actgccttat atgcgcgggt gctggcttgg ctgccgaagc tttatgttct 480
cctactgttt tagagctaga aatagcaagt taaaataagg ctagtccgtt atcaacttga 540
aaaagtggca ccgagtcggt gctttttttc aagagctt 578
<210> 29
<211> 455
<212> DNA
<213>GmOTUB1 sgRNA expression cassette sequences
<400> 29
tggaatcggc agcaaaggat ttactttaaa ttttttctta tgcagcctgt gatggataac 60
tgaatcaaac aaatggcgtc tgggtttaag aagatctgtt ttggctatgt tggacgaaac 120
aagtgaactt ttaggatcaa cttcagttta tatatggagc ttatatcgag caataagata 180
agtgggcttt ttatgtaatt taatgggcta tcgtccatag attcactaat acccatgccc 240
agtacccatg tatgcgtttc atataagctc ctaatttctc ccacatcgct caaatctaaa 300
caaatcttgt tgtatatata acactgaggg agcaacattg gtcaattcgt cgtactcgag 360
gagagtttta gagctagaaa tagcaagtta aaataaggct agtccgttat caacttgaaa 420
aagtggcacc gagtcggtgc tttttttcaa gagct 455
<210> 30
<211> 455
<212> DNA
<213>BnOTUB1 sgRNA expression cassette sequences
<400> 30
tggaatcggc agcaaaggat ttactttaaa ttttttctta tgcagcctgt gatggataac 60
tgaatcaaac aaatggcgtc tgggtttaag aagatctgtt ttggctatgt tggacgaaac 120
aagtgaactt ttaggatcaa cttcagttta tatatggagc ttatatcgag caataagata 180
agtgggcttt ttatgtaatt taatgggcta tcgtccatag attcactaat acccatgccc 240
agtacccatg tatgcgtttc atataagctc ctaatttctc ccacatcgct caaatctaaa 300
caaatcttgt tgtatatata acactgaggg agcaacattg gtcagttgca atcaggcgaa 360
caaggtttta gagctagaaa tagcaagtta aaataaggct agtccgttat caacttgaaa 420
aagtggcacc gagtcggtgc tttttttcaa gagct 455
<210> 31
<211> 455
<212> DNA
<213>GhOTUB1 sgRNA expression cassette sequences
<400> 31
tggaatcggc agcaaaggat ttactttaaa ttttttctta tgcagcctgt gatggataac 60
tgaatcaaac aaatggcgtc tgggtttaag aagatctgtt ttggctatgt tggacgaaac 120
aagtgaactt ttaggatcaa cttcagttta tatatggagc ttatatcgag caataagata 180
agtgggcttt ttatgtaatt taatgggcta tcgtccatag attcactaat acccatgccc 240
agtacccatg tatgcgtttc atataagctc ctaatttctc ccacatcgct caaatctaaa 300
caaatcttgt tgtatatata acactgaggg agcaacattg gtcagcagcc attagaagaa 360
cgcggtttta gagctagaaa tagcaagtta aaataaggct agtccgttat caacttgaaa 420
aagtggcacc gagtcggtgc tttttttcaa gagct 455
<210> 32
<211> 455
<212> DNA
<213>SlOTUB1 sgRNA expression cassette sequences
<400> 32
tggaatcggc agcaaaggat ttactttaaa ttttttctta tgcagcctgt gatggataac 60
tgaatcaaac aaatggcgtc tgggtttaag aagatctgtt ttggctatgt tggacgaaac 120
aagtgaactt ttaggatcaa cttcagttta tatatggagc ttatatcgag caataagata 180
agtgggcttt ttatgtaatt taatgggcta tcgtccatag attcactaat acccatgccc 240
agtacccatg tatgcgtttc atataagctc ctaatttctc ccacatcgct caaatctaaa 300
caaatcttgt tgtatatata acactgaggg agcaacattg gtcagctgcc attagaagaa 360
cacggtttta gagctagaaa tagcaagtta aaataaggct agtccgttat caacttgaaa 420
aagtggcacc gagtcggtgc tttttttcaa gagct 455
<210> 33
<211> 825
<212> DNA
<213>Paddy rice dep1-1 cDNA sequence
<400> 33
atgggggagg aggcggtggt gatggaggcg ccgaggccca agtcgccgcc gaggtacccg 60
gacctgtgcg gccggcggcg gatgcagctg gaggtgcaga tcctgagccg cgagatcacg 120
ttcctcaagg atgagcttca cttccttgaa ggagctcagc ccgtttctcg ttctggatgc 180
attaaagaga taaatgagtt tgttggtaca aaacatgacc cactaatacc aacaaagaga 240
aggaggcaca gatcttgccg tctttttcgg tggatcggat caaaattgtg tatctgcatt 300
tcatgtcttt gctactgttg caagtgctca cccaagtgca aaagaccaag gtgcctcaat 360
tgttcttgca gctcatgctg cgacgagcca tgctgtaagc caaactgcag tgcgtgctgc 420
gctgggtcat gctgtagtcc agactgctgc tcatgctgta aacctaactg cagttgctgc 480
aagacccctt cttgctgcaa accgaactgc tcgtgctcct gtccaagctg cagctcatgc 540
tgcgatacat cgtgctgcaa accgagctgc acctgcttca acatctag 588
<210> 34
<211> 195
<212> PRT
<213>The amino acid sequence of paddy rice DEP1 albumen
<400> 34
Met Gly Glu Glu Ala Val Val Met Glu Ala Pro Arg Pro Lys Ser Pro
1 5 10 15
Pro Arg Tyr Pro Asp Leu Cys Gly Arg Arg Arg Met Gln Leu Glu Val
20 25 30
Gln Ile Leu Ser Arg Glu Ile Thr Phe Leu Lys Asp Glu Leu His Phe
35 40 45
Leu Glu Gly Ala Gln Pro Val Ser Arg Ser Gly Cys Ile Lys Glu Ile
50 55 60
Asn Glu Phe Val Gly Thr Lys His Asp Pro Leu Ile Pro Thr Lys Arg
65 70 75 80
Arg Arg His Arg Ser Cys Arg Leu Phe Arg Trp Ile Gly Ser Lys Leu
85 90 95
Cys Ile Cys Ile Ser Cys Leu Cys Tyr Cys Cys Lys Cys Ser Pro Lys
100 105 110
Cys Lys Arg Pro Arg Cys Leu Asn Cys Ser Cys Ser Ser Cys Cys Asp
115 120 125
Glu Pro Cys Cys Lys Pro Asn Cys Ser Ala Cys Cys Ala Gly Ser Cys
130 135 140
Cys Ser Pro Asp Cys Cys Ser Cys Cys Lys Pro Asn Cys Ser Cys Cys
145 150 155 160
Lys Thr Pro Ser Cys Cys Lys Pro Asn Cys Ser Cys Ser Cys Pro Ser
165 170 175
Cys Ser Ser Cys Cys Asp Thr Ser Cys Cys Lys Pro Ser Cys Thr Cys
180 185 190
Phe Asn Ile
195
<210> 35
<211> 462
<212> DNA
<213>Rice Os UBC13 gene orders
<400> 35
atggccaaca gcaacctccc ccggcgaatc atcaaggaga cgcagcgact cctcagcgag 60
ccagcgccgg gaatcagcgc gtctccgtcg gaggagaaca tgcgctactt caacgtcatg 120
atccttggcc cggcacagtc cccctatgaa ggtggagttt ttaagcttga actcttttta 180
cctgaggaat atcctatggc tgctccaaag gttaggttcc tgaccaaaat ataccacccc 240
aacattgaca agcttggtag gatatgcctt gacattctca aggacaaatg gagcccagcc 300
cttcagattc ggacagttct tttgagtatc caggcactcc taagtgcacc aaaccctgat 360
gatcctctct ctgataacat tgcaaagcac tggaaagcca atgaagcaga agctgttgaa 420
acagcaaagg agtggactcg cctgtatgcc agcggtgcat aa 462
<210> 36
<211> 153
<212> PRT
<213>The protein sequence of rice Os UBC13 gene codes
<400> 36
Met Ala Asn Ser Asn Leu Pro Arg Arg Ile Ile Lys Glu Thr Gln Arg
1 5 10 15
Leu Leu Ser Glu Pro Ala Pro Gly Ile Ser Ala Ser Pro Ser Glu Glu
20 25 30
Asn Met Arg Tyr Phe Asn Val Met Ile Leu Gly Pro Ala Gln Ser Pro
35 40 45
Tyr Glu Gly Gly Val Phe Lys Leu Glu Leu Phe Leu Pro Glu Glu Tyr
50 55 60
Pro Met Ala Ala Pro Lys Val Arg Phe Leu Thr Lys Ile Tyr His Pro
65 70 75 80
Asn Ile Asp Lys Leu Gly Arg Ile Cys Leu Asp Ile Leu Lys Asp Lys
85 90 95
Trp Ser Pro Ala Leu Gln Ile Arg Thr Val Leu Leu Ser Ile Gln Ala
100 105 110
Leu Leu Ser Ala Pro Asn Pro Asp Asp Pro Leu Ser Asp Asn Ile Ala
115 120 125
Lys His Trp Lys Ala Asn Glu Ala Glu Ala Val Glu Thr Ala Lys Glu
130 135 140
Trp Thr Arg Leu Tyr Ala Ser Gly Ala
145 150
<210> 37
<211> 1254
<212> DNA
<213>Rice Os SPL14 cDNA
<400> 37
atggagatgg ccagtggagg aggcgccgcc gccgccgccg gcggcggagt aggcggcagc 60
ggcggcggtg gtggtggagg ggacgagcac cgccagctgc acggtctcaa gttcggcaag 120
aagatctact tcgaggacgc cgccgcggca gcaggcggcg gcggcactgg cagtggcagt 180
ggcagcgcga gcgccgcgcc gccgtcctcg tcttccaagg cggcgggtgg tggacgcggc 240
ggagggggca agaacaaggg gaagggcgtg gccgcggcgg cgccaccgcc gccgccgccg 300
ccgccgcggt gccaggtgga ggggtgcggc gcggatctga gcgggatcaa gaactactac 360
tgccgccaca aggtgtgctt catgcattcc aaggctcccc gcgtcgtcgt cgccggcctc 420
gagcagcgct tctgccagca gtgcagcagg ttccacctgc tgcctgaatt tgaccaagga 480
aaacgcagct gccgcagacg ccttgcaggt cataatgagc gccggaggag gccgcaaacc 540
cctttggcat cacgctacgg tcgactagct gcatctgttg gtgagcatcg caggttcaga 600
agctttacgt tggatttctc ctacccaagg gttccaagca gcgtaaggaa tgcatggcca 660
gcaattcaac caggcgatcg gatctccggt ggtatccagt ggcacaggaa cgtagctcct 720
catggtcact ctagtgcagt ggcgggatat ggtgccaaca catacagcgg ccaaggtagc 780
tcttcttcag ggccaccggt gttcgctggc ccaaatctcc ctccaggtgg atgtctcgca 840
ggggtcggtg ccgccaccga ctcgagctgt gctctctctc ttctgtcaac ccagccatgg 900
gatactacta cccacagtgc cgctgccagc cacaaccagg ctgcagccat gtccactacc 960
accagctttg atggcaatcc tgtggcaccc tccgccatgg cgggtagcta catggcacca 1020
agcccctgga caggttctcg gggccatgag ggtggtggtc ggagcgtggc gcaccagcta 1080
ccacatgaag tctcacttga tgaggtgcac cctggtccta gccatcatgc ccacttctcc 1140
ggtgagcttg agcttgctct gcaggggaac ggtccagccc cagcaccacg catcgatcct 1200
gggtccggca gcaccttcga ccaaaccagc aacacgatgg attggtctct gtag 1254
<210> 38
<211> 417
<212> PRT
<213>The albumen of rice Os SPL14 codings
<400> 38
Met Glu Met Ala Ser Gly Gly Gly Ala Ala Ala Ala Ala Gly Gly Gly
1 5 10 15
Val Gly Gly Ser Gly Gly Gly Gly Gly Gly Gly Asp Glu His Arg Gln
20 25 30
Leu His Gly Leu Lys Phe Gly Lys Lys Ile Tyr Phe Glu Asp Ala Ala
35 40 45
Ala Ala Ala Gly Gly Gly Gly Thr Gly Ser Gly Ser Gly Ser Ala Ser
50 55 60
Ala Ala Pro Pro Ser Ser Ser Ser Lys Ala Ala Gly Gly Gly Arg Gly
65 70 75 80
Gly Gly Gly Lys Asn Lys Gly Lys Gly Val Ala Ala Ala Ala Pro Pro
85 90 95
Pro Pro Pro Pro Pro Pro Arg Cys Gln Val Glu Gly Cys Gly Ala Asp
100 105 110
Leu Ser Gly Ile Lys Asn Tyr Tyr Cys Arg His Lys Val Cys Phe Met
115 120 125
His Ser Lys Ala Pro Arg Val Val Val Ala Gly Leu Glu Gln Arg Phe
130 135 140
Cys Gln Gln Cys Ser Arg Phe His Leu Leu Pro Glu Phe Asp Gln Gly
145 150 155 160
Lys Arg Ser Cys Arg Arg Arg Leu Ala Gly His Asn Glu Arg Arg Arg
165 170 175
Arg Pro Gln Thr Pro Leu Ala Ser Arg Tyr Gly Arg Leu Ala Ala Ser
180 185 190
Val Gly Glu His Arg Arg Phe Arg Ser Phe Thr Leu Asp Phe Ser Tyr
195 200 205
Pro Arg Val Pro Ser Ser Val Arg Asn Ala Trp Pro Ala Ile Gln Pro
210 215 220
Gly Asp Arg Ile Ser Gly Gly Ile Gln Trp His Arg Asn Val Ala Pro
225 230 235 240
His Gly His Ser Ser Ala Val Ala Gly Tyr Gly Ala Asn Thr Tyr Ser
245 250 255
Gly Gln Gly Ser Ser Ser Ser Gly Pro Pro Val Phe Ala Gly Pro Asn
260 265 270
Leu Pro Pro Gly Gly Cys Leu Ala Gly Val Gly Ala Ala Thr Asp Ser
275 280 285
Ser Cys Ala Leu Ser Leu Leu Ser Thr Gln Pro Trp Asp Thr Thr Thr
290 295 300
His Ser Ala Ala Ala Ser His Asn Gln Ala Ala Ala Met Ser Thr Thr
305 310 315 320
Thr Ser Phe Asp Gly Asn Pro Val Ala Pro Ser Ala Met Ala Gly Ser
325 330 335
Tyr Met Ala Pro Ser Pro Trp Thr Gly Ser Arg Gly His Glu Gly Gly
340 345 350
Gly Arg Ser Val Ala His Gln Leu Pro His Glu Val Ser Leu Asp Glu
355 360 365
Val His Pro Gly Pro Ser His His Ala His Phe Ser Gly Glu Leu Glu
370 375 380
Leu Ala Leu Gln Gly Asn Gly Pro Ala Pro Ala Pro Arg Ile Asp Pro
385 390 395 400
Gly Ser Gly Ser Thr Phe Asp Gln Thr Ser Asn Thr Met Asp Trp Ser
405 410 415
Leu
6

Claims (14)

1. control rice tillering number, stalk rugosity, the ideotype base per fringe grain number per spike, mass of 1000 kernel and yield of a kind of separation Cause, it encodes SEQ ID NO:Amino acid sequence shown in 15, is named as NPT1.
2. the gene described in claim 1, it includes SEQ ID NOs:Nucleotide sequence shown in 1 or 3.
3. the allele of the gene of claim 1, it includes SEQ ID NOs:Nucleotide sequence shown in 2 or 4, is ordered Entitled npt1.
4. the promoter sequence of the gene of claim 1 or its allele, it is such as SEQ ID NO:Shown in 5 or 6.
5. the homologous gene of the gene of claim 1, it encodes SEQ ID NOs:Amino acid sequence shown in any of 16-23 Row.
6. the homologous gene described in claim 5, it includes SEQ ID NOs:Nucleotide sequence shown in any of 7-14.
7. a kind of albumen of separation, its amino acid sequence such as SEQ ID NOs:Shown in any of 15-23.
8. a kind of recombinant precursor, it is characterised in that include the sequence any one of claim 1-6.
9. a kind of recombinant host cell, it is characterised in that include the sequence any one of claim 1-6;Or include right It is required that the recombinant precursor described in 8, wherein the cell is microbial cell, wherein the microbial cell is preferably large intestine bar Bacterium or agrobatcerium cell.
10. a kind of method for the paddy rice for cultivating output increased, this method includes:With the allele npt1 comprising claim 3 Recombinant host cell transfection rice plant obtain NPT1 gene expression doses decline or amino acid sequence change cause albumen The transgenic rice plant of function reduction, or by the rice plant containing the allele npt1 described in claim 3 and separately One rice plant hybridizes, wherein another rice plant is preferably Grain number per spike increase, the increased plant of yield.
11. a kind of method that every fringe grain number per spike and the increased paddy rice of yield are cultivated by overexpression OsUBC13, this method includes With recombinant precursor and recombinant host cell containing OsUBC13, rice transformation plant obtains transgenic rice plant, resulting Transgenic rice plant in NPT1 activity be affected, thus increase per fringe grain number per spike and yield, wherein the cell is micro- Biological cell, the microbial cell is preferably Escherichia coli or agrobatcerium cell.
12. a kind of pyramiding breeding method of the molecular marker assisted selection for the rice varieties for cultivating high yield, this method includes making With the parental rice comprising the allele npt1 described in claim 3 and another paddy rice for carrying excellent allele dep1-1 Parents, go out to have polymerize excellent allele npt1 and dep1-1 new lines or product in offspring according to molecular selection Kind.
13. a kind of crop that NPT1 or its homologous gene cultivation output increased are knocked out by CRISPR/cas9 gene editings technology Method, methods described include using NPT1 or its homologous gene as target spot, pass through CRISPR/cas9 gene editings technology knock out target Point gene, cultivates and obtains the crop of output increased, wherein the crop be selected from paddy rice, wheat, barley, corn, sorghum, soybean, Rape, cotton or tomato.
14. a kind of function by strengthening plant type of rice modulin OsSPL14 is cultivated per fringe grain number per spike and the increased water of yield The method of rice, this method is included with recombinant precursor and recombinant host cell containing NPT1, and rice transformation plant, which obtains, turns base Because of rice plant, the enhanced transfer-gen plant of OsSPL14 functions is derived from, wherein the cell is microbial cell, it is described Microbial cell is preferably Escherichia coli or agrobatcerium cell.
CN201710461754.0A 2017-06-16 2017-06-16 Ideal plant type gene NPT1 for controlling rice stem thickness, tillering number, spike grain number, thousand grain weight and yield and its application Active CN107164347B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710461754.0A CN107164347B (en) 2017-06-16 2017-06-16 Ideal plant type gene NPT1 for controlling rice stem thickness, tillering number, spike grain number, thousand grain weight and yield and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710461754.0A CN107164347B (en) 2017-06-16 2017-06-16 Ideal plant type gene NPT1 for controlling rice stem thickness, tillering number, spike grain number, thousand grain weight and yield and its application

Publications (2)

Publication Number Publication Date
CN107164347A true CN107164347A (en) 2017-09-15
CN107164347B CN107164347B (en) 2020-09-29

Family

ID=59818798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710461754.0A Active CN107164347B (en) 2017-06-16 2017-06-16 Ideal plant type gene NPT1 for controlling rice stem thickness, tillering number, spike grain number, thousand grain weight and yield and its application

Country Status (1)

Country Link
CN (1) CN107164347B (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107937416A (en) * 2017-12-29 2018-04-20 中国科学院遗传与发育生物学研究所 Improve gene and its application of nitrogen fertilizer for paddy rice utilization ratio and yield
CN108034661A (en) * 2017-12-19 2018-05-15 武汉生物工程学院 Application of the OsNPF8.8b genes in rice yield and nutritional quality is improved
CN108070601A (en) * 2017-12-19 2018-05-25 武汉生物工程学院 Application of the OsNPF8.6b genes in rice yield is improved
WO2018215779A1 (en) * 2017-05-25 2018-11-29 Institute Of Genetics And Developmental Biology Chinese Academy Of Sciences Methods for increasing grain productivity
CN109112138A (en) * 2017-12-01 2019-01-01 华中农业大学 A kind of gene OsVAS1 of adjusting and controlling rice ideotype
CN109628469A (en) * 2019-02-02 2019-04-16 浙江省农业科学院 The molecular labeling of the identification more Tillering gene Hvhtd of barley semi-dwarf mutant based on introne 2 and its application
CN109706155A (en) * 2018-08-30 2019-05-03 南京农业大学 POsHEN1::OsSPL14 expression casette and its construction method and application
CN109721648A (en) * 2019-03-11 2019-05-07 中国农业科学院作物科学研究所 A kind of plant type of rice GAP-associated protein GAP and its encoding gene and application
CN110592102A (en) * 2019-10-18 2019-12-20 青岛农业大学 Gene LBA5 for regulating and controlling peanut side branch angle, growth habit and plant type and application thereof
CN110642930A (en) * 2019-11-05 2020-01-03 中国农业大学 Gene for regulating and controlling tillering number of corn, and encoded protein and application thereof
CN110714013A (en) * 2019-09-29 2020-01-21 南京农业大学 Application of soybean E2 ubiquitin-conjugating enzyme gene GmUBC1
CN110991811A (en) * 2019-11-08 2020-04-10 云南农业大学 Method for evaluating crop yield under mixed intercropping mode
CN111875685A (en) * 2020-04-10 2020-11-03 中国科学技术大学 Application of rice protein OsSWC4 in regulation and control of rice plant type
CN112143737A (en) * 2020-09-21 2020-12-29 盐城工学院 Application of OsbZIP62-VP64 fusion expression in improvement of rice agronomic traits
WO2021159741A1 (en) * 2020-02-10 2021-08-19 南京启真基因工程有限公司 Crispr system for preparing nuclear donor cell of cloned pig having irs gene-deficient diabetes mellitus, and application thereof
CN113817767A (en) * 2021-08-19 2021-12-21 西北农林科技大学 Method for improving wheat yield by creating wheat TaOTUB1 gene function deletion homozygous mutant
CN113999858A (en) * 2021-12-13 2022-02-01 山东农业大学 SiPLATZ12 gene for regulating growth and development of foxtail millet and application thereof
CN114644698A (en) * 2020-12-21 2022-06-21 中国科学院遗传与发育生物学研究所 Application of rice gene OsREM20 in regulation of grain number per ear and yield
CN114703226A (en) * 2022-04-11 2022-07-05 中国水稻研究所 Application of rice OsUBC27 gene or protein coded by same in improving rice yield
CN114940708A (en) * 2022-04-08 2022-08-26 扬州大学 Application of OsPIL16 gene or protein thereof in regulation and control of rice stem thickness
CN114958867A (en) * 2022-05-14 2022-08-30 河南农业大学 Corn ear grain weight and yield regulation gene KWE2, and encoding protein, functional marker, expression vector and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101597610A (en) * 2008-06-05 2009-12-09 中国科学院遗传与发育生物学研究所 Vertical compact panicle gene and application thereof
CN103243107A (en) * 2012-02-10 2013-08-14 中国科学院遗传与发育生物学研究所 Panicle size controlling gene, mutant and application thereof
CN103993018A (en) * 2014-03-13 2014-08-20 中国科学院遗传与发育生物学研究所 Gene for controlling Oryza sativa plant height, enhancing lodging resistance, increasing effective tiller number and yield and its application

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101597610A (en) * 2008-06-05 2009-12-09 中国科学院遗传与发育生物学研究所 Vertical compact panicle gene and application thereof
CN103243107A (en) * 2012-02-10 2013-08-14 中国科学院遗传与发育生物学研究所 Panicle size controlling gene, mutant and application thereof
CN103993018A (en) * 2014-03-13 2014-08-20 中国科学院遗传与发育生物学研究所 Gene for controlling Oryza sativa plant height, enhancing lodging resistance, increasing effective tiller number and yield and its application

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GENBANK: ""PREDICTED:Oryza sativa Japonica Group ubiquitin thioesterase otubain-like (LOC4346169),mRNA",NCBI Reference Sequence: XM_015794619.1", 《GENBANK》 *
SHUANSUO WANG ET AL.: "Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defnes a new plant type rice associated with higher grain yield", 《CELL RESEARCH》 *
YU J ET AL.: ""Oryza sativa Indica Group hypothetical protein",EEC83954", 《EMBL-EBI》 *
YU J ET AL.: ""Ubiquitin thioesterase",B9G207_ORYSJ", 《EMBL-EBI》 *
刘鑫等: "水稻泛素结合酶基因家族的生物信息学与表达分析", 《中国水稻科学》 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11725214B2 (en) 2017-05-25 2023-08-15 Institute Of Genetics And Developmental Biology Chinese Academy Of Sciences Methods for increasing grain productivity
WO2018215779A1 (en) * 2017-05-25 2018-11-29 Institute Of Genetics And Developmental Biology Chinese Academy Of Sciences Methods for increasing grain productivity
CN109112138A (en) * 2017-12-01 2019-01-01 华中农业大学 A kind of gene OsVAS1 of adjusting and controlling rice ideotype
CN109112138B (en) * 2017-12-01 2020-12-08 华中农业大学 Gene OsVAS1 for regulating and controlling ideal plant type of rice
CN108034661B (en) * 2017-12-19 2020-05-29 武汉生物工程学院 Application of OsNPF8.8b gene in improving rice yield and nutrition quality
CN108070601A (en) * 2017-12-19 2018-05-25 武汉生物工程学院 Application of the OsNPF8.6b genes in rice yield is improved
CN108070601B (en) * 2017-12-19 2020-07-07 武汉生物工程学院 Application of OsNPF8.6b gene in increasing rice yield
CN108034661A (en) * 2017-12-19 2018-05-15 武汉生物工程学院 Application of the OsNPF8.8b genes in rice yield and nutritional quality is improved
CN107937416A (en) * 2017-12-29 2018-04-20 中国科学院遗传与发育生物学研究所 Improve gene and its application of nitrogen fertilizer for paddy rice utilization ratio and yield
CN107937416B (en) * 2017-12-29 2020-11-03 中国科学院遗传与发育生物学研究所 Gene for improving utilization efficiency and yield of rice nitrogen fertilizer and application thereof
CN109706155A (en) * 2018-08-30 2019-05-03 南京农业大学 POsHEN1::OsSPL14 expression casette and its construction method and application
CN109628469A (en) * 2019-02-02 2019-04-16 浙江省农业科学院 The molecular labeling of the identification more Tillering gene Hvhtd of barley semi-dwarf mutant based on introne 2 and its application
CN109628469B (en) * 2019-02-02 2022-03-29 浙江省农业科学院 Molecular marker for identifying barley half-dwarf multi-tillering gene Hvhtd based on intron 2 and application thereof
CN109721648A (en) * 2019-03-11 2019-05-07 中国农业科学院作物科学研究所 A kind of plant type of rice GAP-associated protein GAP and its encoding gene and application
CN110714013A (en) * 2019-09-29 2020-01-21 南京农业大学 Application of soybean E2 ubiquitin-conjugating enzyme gene GmUBC1
CN110714013B (en) * 2019-09-29 2022-08-16 南京农业大学 Application of soybean E2 ubiquitin-conjugating enzyme gene GmUBC1
CN110592102A (en) * 2019-10-18 2019-12-20 青岛农业大学 Gene LBA5 for regulating and controlling peanut side branch angle, growth habit and plant type and application thereof
CN110642930B (en) * 2019-11-05 2021-05-11 中国农业大学 Gene for regulating and controlling tillering number of corn, and encoded protein and application thereof
CN110642930A (en) * 2019-11-05 2020-01-03 中国农业大学 Gene for regulating and controlling tillering number of corn, and encoded protein and application thereof
CN110991811A (en) * 2019-11-08 2020-04-10 云南农业大学 Method for evaluating crop yield under mixed intercropping mode
WO2021159741A1 (en) * 2020-02-10 2021-08-19 南京启真基因工程有限公司 Crispr system for preparing nuclear donor cell of cloned pig having irs gene-deficient diabetes mellitus, and application thereof
CN111875685A (en) * 2020-04-10 2020-11-03 中国科学技术大学 Application of rice protein OsSWC4 in regulation and control of rice plant type
CN111875685B (en) * 2020-04-10 2022-05-13 中国科学技术大学 Application of rice protein OsSWC4 in regulation of rice plant type
CN112143737A (en) * 2020-09-21 2020-12-29 盐城工学院 Application of OsbZIP62-VP64 fusion expression in improvement of rice agronomic traits
CN112143737B (en) * 2020-09-21 2023-04-25 苏州健雄职业技术学院 Application of OsbZIP62-VP64 fusion expression in improving agronomic traits of rice
CN114644698A (en) * 2020-12-21 2022-06-21 中国科学院遗传与发育生物学研究所 Application of rice gene OsREM20 in regulation of grain number per ear and yield
CN114644698B (en) * 2020-12-21 2023-08-29 中国科学院遗传与发育生物学研究所 Application of rice gene OsREM20 in regulation of spike number and yield
CN113817767A (en) * 2021-08-19 2021-12-21 西北农林科技大学 Method for improving wheat yield by creating wheat TaOTUB1 gene function deletion homozygous mutant
CN113817767B (en) * 2021-08-19 2023-09-12 西北农林科技大学 Method for improving wheat yield by creating wheat TaOTUB1 gene function deletion homozygous mutant
CN113999858A (en) * 2021-12-13 2022-02-01 山东农业大学 SiPLATZ12 gene for regulating growth and development of foxtail millet and application thereof
CN113999858B (en) * 2021-12-13 2023-04-07 山东农业大学 SiPLATZ12 gene for regulating and controlling growth and development of foxtail millet and application thereof
CN114940708A (en) * 2022-04-08 2022-08-26 扬州大学 Application of OsPIL16 gene or protein thereof in regulation and control of rice stem thickness
CN114940708B (en) * 2022-04-08 2023-09-19 扬州大学 Application of OsPIL16 gene or protein thereof in regulating and controlling rice stem thickness
CN114703226A (en) * 2022-04-11 2022-07-05 中国水稻研究所 Application of rice OsUBC27 gene or protein coded by same in improving rice yield
CN114703226B (en) * 2022-04-11 2022-09-13 中国水稻研究所 Application of rice OsUBC27 gene or protein coded by same in improving rice yield
CN114958867B (en) * 2022-05-14 2023-07-21 河南农业大学 Corn ear grain weight and yield regulation gene KWE2, coded protein, functional marker, expression vector and application thereof
CN114958867A (en) * 2022-05-14 2022-08-30 河南农业大学 Corn ear grain weight and yield regulation gene KWE2, and encoding protein, functional marker, expression vector and application thereof

Also Published As

Publication number Publication date
CN107164347B (en) 2020-09-29

Similar Documents

Publication Publication Date Title
CN107164347A (en) Control Culm of Rice rugosity, tiller number, grain number per spike, mass of 1000 kernel and the ideotype gene NPT1 of yield and its application
CN100381465C (en) Bacterial leaf spot resistance related protein and its coding gene and uses
US20130019334A1 (en) Corn event mzdt09y
CN107937416B (en) Gene for improving utilization efficiency and yield of rice nitrogen fertilizer and application thereof
CN108822194B (en) Plant starch synthesis related protein OsFLO10, and coding gene and application thereof
WO2019024534A1 (en) Rice als mutant protein for conferring herbicide resistance to plants, and use thereof
CN108291234A (en) Multiple sporinite forms gene
CN110724183B (en) Application of GmXTH91 protein in regulation and control of plant stress resistance and plant height
CN108642067A (en) A kind of relevant gene OsHsp70cp-2 of paddy endosperm silty and its coding protein and application
CN109912702B (en) Application of protein OsARE1 in regulation and control of low nitrogen resistance of plants
WO2023065966A1 (en) Application of bfne gene in tomato plant type improvement and biological yield increase
RU2665804C2 (en) Cotton phya1 rnai improving fiber quality, root elongation, flowering, maturity and yield potential in upland cultivars (gossypium hirsutum l.)
CN110592114B (en) Application of oryza sativa auxin glycosyl transferase gene
CN110804090A (en) Protein CkWRKY33 and coding gene and application thereof
CN107326035B (en) Deubiquitinating enzyme gene UBP5 for regulating rice grain shape and leaf color and application thereof
CN113832162A (en) Modulation of seed vigor
CN113061171A (en) Rice blast resistant protein and gene, isolated nucleic acid and application thereof
CN112812161A (en) Application of protein IbMYC2 in regulation and control of plant drought resistance
CN106636028A (en) Rice protein with imidazolinone herbicide resistance activity and coding gene and application of rice protein
CN109207485A (en) Application of the OsAPS1 gene in improvement Rice Resistance characteristic of disease
CN111386035A (en) Plant promoters for transgene expression
CN112724213B (en) Sweet potato anthocyanin synthesis and stress resistance related protein IbMYB4, and coding gene and application thereof
CN114395580A (en) Gene for controlling plant height of corn
CN116064428A (en) Novel herbicide-resistant acetyl-CoA carboxylase mutant and application thereof
CN109956996B (en) Millet yield-related protein SiAMP1, and coding gene and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant