CN107159212A - 纳米金属颗粒负载于介孔γ‑氧化铝复合材料的制备方法 - Google Patents

纳米金属颗粒负载于介孔γ‑氧化铝复合材料的制备方法 Download PDF

Info

Publication number
CN107159212A
CN107159212A CN201710318268.3A CN201710318268A CN107159212A CN 107159212 A CN107159212 A CN 107159212A CN 201710318268 A CN201710318268 A CN 201710318268A CN 107159212 A CN107159212 A CN 107159212A
Authority
CN
China
Prior art keywords
solid material
salt
carried
nano
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710318268.3A
Other languages
English (en)
Inventor
汪学广
乔梦然
张满
苏新
马帅
郭曙强
丁伟中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201710318268.3A priority Critical patent/CN107159212A/zh
Publication of CN107159212A publication Critical patent/CN107159212A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种纳米金属颗粒负载于介孔γ‑氧化铝复合材料的制备方法,应用于无机纳米材料技术领域。本发明通过无机盐和碳酸铵的部分水解法,通过控制碳酸铵的滴定速度形成溶胶凝胶,然后在400℃下进行煅烧制得第一固体材料,然后将第一固体材料与一水合1.10‑菲啰啉溶解于乙醇与去离子水的混合溶液中,搅拌蒸干得到第二固体材料,之后再将第二固体材料在氮气气氛下,在600‑900oC下焙烧2h,最终制得纳米金属颗粒负载于介孔γ‑氧化铝复合材料。本发明工艺简单,成本低廉,制备出的复合材料具有高的比表面积,狭窄的孔径分布和较大的孔容,且金属颗粒高度分散,原料廉价易得,制备工艺易于控制,易于工业化。

Description

纳米金属颗粒负载于介孔γ-氧化铝复合材料的制备方法
技术领域
本发明涉及一种纳米金属颗粒负载于介孔γ-氧化铝复合材料的制备方法,应用于无机纳米材料技术领域。
背景技术
按照国际纯粹和应用化学协会(IUPAC)的定义,多孔材料可以根据它们孔直径的大小分为三类:孔径小于2nm的材料为微孔材料(microporous materials);孔径在2~50nm的材料为中孔材料(mesoporous materials);孔径大于50nm的材料为大孔材料(macroporous materials)。介孔材料具有极高的比表面积、良好的孔道结构、狭窄的孔径分布、孔径大小连续可调等特点,使得它在吸附、分离和催化中得到广泛应用。介孔γ-氧化铝具有较高的比表面积,容易制备,价格便宜,而且作为复合材料催化剂载体时,其独特的多孔结构也有利于反应过程中的传质和传热。镍,钴以及铁的高催化活性及其经济适用性使得其在各种催化反应中得到广泛的应用。
关于介孔氧化铝负载金属颗粒的制备方法报道很多。《化学进展》报到了近年来制备介孔氧化铝负载金属颗粒的方法主要包括:通过溶剂热合成法、溶胶-凝胶法、沉淀法、微乳液法、离子液法、硬模板法等先制备出介孔氧化铝,之后通过浸渍法,将金属盐分散至介孔氧化铝上。然后再将金属盐还原出来得到金属颗粒。这些方法中大多要用有机物做模板剂或者使用昂贵的有机铝盐,并且操作条件一般比较苛刻。此外,需要分步制得介孔氧化铝和所需的复合材料。因而开发一种原料易得,成本低廉,操作简单,处理方便,反应条件温和,易于工业化的介孔γ-Al2O3负载金属颗粒的复合材料的合成方法具有重要意义。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种纳米金属颗粒负载于介孔γ-氧化铝复合材料的制备方法,该方法制备的复合材料具有狭窄的孔径分布和较高的比表面积,且工艺设备简单,操作简便。
为达到上述发明创造目的,本发明采用下述技术方案:
一种纳米金属颗粒负载于介孔γ-氧化铝复合材料的制备方法,包括如下步骤:
a.将一定量的可溶性无机金属盐混合物溶于30~70ml的去离子水溶液中,可溶性无机金属盐与去离子水的质量比为(4~37):1,于70℃的水浴锅中磁力搅拌,直至可溶性无机金属盐完全溶解,得到第一混合溶液;
b.在70℃下,将浓度为0.8mol/L~1.5mol/L的碳酸铵溶液以0.9~2mL/min的速度加入到上述步骤a中制备的第一混合溶液中,进行不断搅拌,直至搅拌成凝胶;之后,将所得的溶胶凝胶于20~35℃条件下陈化12~26h,然后置于磁盘中,于80~150℃烘箱中12~26h,烘干后得第一固体材料;
c.将上述步骤b所得的第一固体材料在空气气氛下以1~5℃/min的升温速度升至200~300℃焙烧,并保温8~12h,之后再以1~5℃/min钟的升温速度升至400~600℃焙烧,并保温8~12h,得到第二固体材料;
d.将乙醇和去离子水的混合溶液作为溶剂,其中乙醇和水的体积比为1:(1~3),然后,将一定量的上述步骤c所得的第二固体材料和一定量的一水合1.10-菲啰啉加入到上述混合溶液中,其中,第二固体材料和一水合1.10-菲啰啉的加入量的质量比为1:(0.1~0.8);再在40~60℃下不断搅拌混合溶液,直到逐步蒸干溶剂,得到第三固体材料;
e.将上述步骤d中所得的第三固体材料以2~10℃/min的升温速率升温到600~900℃焙烧2~5h,制得纳米金属颗粒负载于介孔γ-氧化铝复合材料。
所述的可溶性无机金属盐为铝盐、镍盐、钴盐和铁盐中的任意一种盐或任意几种的混合盐;所述的铝盐为六水合硝酸铝;所述的镍盐为六水合硝酸镍;所述的钴盐为六水合硝酸钴;所述的铁盐为九水合硝酸铁。
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:
1.该方法将无机盐负载于介孔γ-氧化铝孔道内,再浸渍有机含氮化合物,通过热分解还原的方法,得到金属纳米颗粒镍(钴或铁)负载于碳铝复合载体上,制得具有介孔γ-氧化铝狭窄孔径分布和高比表面积的复合材料;
2.该方法制备的高比表面积、有狭窄孔径分布的介孔复合材料,采用的溶剂均为去离子水和乙醇,具有操作简便、工艺设备简单优点,同时由于材料价格便宜,降低了生产成本;
3.该方法制备的复合材料应用于工业生产上的芳硝基化合物的选择性氢转移还原反应,具有极高的活性与选择性,且反应条件温和,操作简单。
附图说明
图1为本发明实施例一制备的纳米金属钴颗粒负载于介孔γ-氧化铝复合材料的X射线粉末衍射(XRD)获得的结构图
图2为本发明实施例一制备的纳米金属钴颗粒负载于介孔γ-氧化铝复合材料的高倍透射电子显微镜(TEM)图片。
图3为本发明实施例一制备的纳米金属钴颗粒负载于介孔γ-氧化铝复合材料的氮气吸脱附和孔径分布图。
图4为本发明实施例二制备的纳米金属钴颗粒负载于介孔γ-氧化铝复合材料的氮气吸脱附和孔径分布图。
具体实施方式
本发明的优选实施例详述如下:
实施例一:
本实施例中的制备步骤如下:
a.将37.5g的六水合硝酸铝、6.92g的六水合硝酸钴溶于50ml去离子水中,于70℃水浴锅中磁力搅拌10分钟,直至六水合硝酸铝和六水合硝酸钴完全分散在溶液中,得到第一混合溶液;
b.在70℃下,将浓度为1mol/L的碳酸铵溶液以0.9ml/min的速度加入到上述步骤a中制备的第一混合溶液中,不断搅拌,直至搅拌成凝胶;之后,将所得的溶胶凝胶于30℃下陈化12~26h,再转移至100℃的烘箱中烘干24h,得到第一固体材料;
c.将上述步骤b所得的第一固体材料在空气气氛中以1℃/min的升温速率升至200℃焙烧10h,之后,再以1℃/min升温速度升温至400℃焙烧10h,烘干后得到第二固体材料;
d.乙醇和水以体积比为1:1的比例混合,其混合溶液为溶剂,将1.8g的上述步骤c所得的第二固体材料和0.3g的一水合1,10-菲啰啉溶于上述混合溶液,在40℃下不断搅拌混合溶液,直至逐步蒸干其溶剂,得到第三固体材料;
e.将上述步骤d中所得的第三固体材料在氮气气氛下以5℃/min的升温速率升至700℃焙烧2h,制得纳米金属颗粒负载于介孔γ-氧化铝复合材料。
对本实施例制备的纳米金属颗粒负载于介孔γ-氧化铝复合材料进行分析测试,将本实例所得纳米金属颗粒负载于介孔γ-复合氧化铝复合材料进行XRD图谱测定,透射电子显微镜(TEM)测定和氮气吸-脱附测定。
图l是本实例所得纳米金属颗粒负载于介孔γ-复合氧化铝复合材料的(XRD)图,在从图1可见,对应样品的(XRD)图中明显的金属钴的衍射峰。
图2是本实例所得纳米金属颗粒负载于介孔γ-氧化铝复合材料高倍透射电子显微镜(TEM)图片,从图2中可以看出,金属钴颗粒均匀分散在介孔γ-氧化铝复合载体上。
图3的是本实例所得纳米金属颗粒负载于介孔γ-复合氧化铝复合材料孔径分布曲线图,孔分布曲线是以孔容对孔径一次微分作图,纵坐标应是dV/dr,单位cm-3·g-1·nm-1,代表孔容随孔径的变化率,横坐标为孔径,单位为nm。内置图为吸附等温线图,横坐标P/P0代表相对压强,是无量纲数值,P是测试点氮气的绝对压强,P0是测试温度下氨气的饱和蒸气压,相对压强即氮气的吸附平衡压强相对于其饱和蒸气压大小;纵坐标是吸附量,是有量纲数值,指平衡时单位量吸附剂在平衡温度和压强下吸附的吸附质的量。(吸附剂的量以质量计量,吸附质的量则以体积、质量或物质的量计量,但大多以吸附质在标准状况(STP)下气体体积计量,因此常见的单位量纲是cm3/g或mL/g,其后带STP指明为标准状况。)其中本实施例制备的纳米金属颗粒负载于介孔γ-氧化铝复合材料比表面积为206m2/g,平均孔径为3.8nm,孔容为0.15cm3/g,孔径分布比较均匀和狭窄。
实施例二
本实施例中的制备步骤如下:
a.将37.5g的六水合硝酸铝、6.92g的六水合硝酸钴溶于50ml去离子水中,于70℃水浴锅中磁力搅拌10分钟,直至六水合硝酸铝和六水合硝酸钴完全分散在溶液中,得到第一混合溶液;
b.在70℃下,将浓度为1.5mol/L的碳酸铵溶液以1.4ml/min的速度加入到上述步骤a中制备的第一混合溶液中,不断搅拌,直至搅拌成凝胶;之后,将所得的溶胶凝胶于30℃下陈化18h,再转移至100℃的烘箱中烘干20h,得到第一固体材料;
c.将上述步骤b所得的第一固体材料在空气气氛中以2℃/min的升温速率升至250℃焙烧10h,之后,再以2℃/min升温速度升温至500℃焙烧10h,烘干后得到第二固体材料;
d.乙醇和水以体积比为1:2的比例混合,其混合溶液为溶剂,将1.5g的上述步骤c所得的第二固体材料和0.4g的一水合1,10-菲啰啉溶于上述混合溶液,在50℃下不断搅拌混合溶液,直至逐步蒸干其溶剂,得到第三固体材料;
e.将上述步骤d中所得的第三固体材料在氮气气氛下以10℃/min的升温速率升至800℃焙烧3h,制得纳米金属颗粒负载于介孔γ-氧化铝复合材料。
本实施例制备的纳米金属钴颗粒负载于介孔γ-氧化铝-碳的复合材料的孔径分布曲线和氮气吸-脱附等温曲线如图4所示,本实施例制备的纳米金属钴颗粒负载于介孔γ-氧化铝-碳的复合材料比表面积为181m2/g,平均孔径为3.5nm,孔容0.07cm3/g,孔径分布比较均匀狭窄。
检测的项目及其使用的仪器
对所得样品进行N2吸附脱附测定,以及测定材料的BET比表面积和孔径分布;所用仪器为美国Micromeritics公司ASAP2020全自动快速比表面积及孔径分布测定仪。样品需在200℃脱气10h,脱去水分和物理吸附的其它物质。样品在Rigaku D/max-2550X射线衍射仪进行XRD图谱测定,以确定实验所制得的目标产物及纯度。测定条件为CuKα40KV,100mA,Scan speed:0.02°/s。透射电镜照片所用仪器为JEM-2010F microscope加速电压200kV。

Claims (2)

1.一种纳米金属颗粒负载于介孔γ-氧化铝复合材料的制备方法,其特征在于,该方法包括如下步骤:
a. 将一定量的可溶性无机金属盐混合物溶于30~70 ml的去离子水溶液中,可溶性无机金属盐与去离子水的质量比为(4~37):1,于70℃的水浴锅中磁力搅拌,直至可溶性无机金属盐完全溶解,得到第一混合溶液;
b. 在70℃下,将浓度为0.8~1.5mol/L的碳酸铵溶液以0.9~2mL/min的速度加入到上述步骤a中制备的第一混合溶液中,进行不断搅拌,,直至搅拌成凝胶;之后,将所得的溶胶凝胶于20~35℃条件下陈化12~26 h,然后置于磁盘中,于80~150℃烘箱中12~26 h,烘干后得第一固体材料;
c.将上述步骤b所得的第一固体材料在空气气氛下以1~5℃/min的升温速度升至200~300 ℃焙烧,并保温8~12 h,之后再以1~5 ℃/min 钟的升温速度升至400~600 ℃焙烧,并保温8~12 h,得到第二固体材料;
d. 将乙醇和去离子水的混合溶液作为溶剂,其中乙醇和水的体积比为1:(1~3),然后,将一定量的上述步骤c所得的第二固体材料和一定量的一水合1.10-菲啰啉加入到上述混合溶液中,其中,第二固体材料和一水合1.10-菲啰啉的加入量的质量比为1:(0.1~0.8);再在40~60 ℃下不断搅拌混合溶液,直到逐步蒸干溶剂,得到第三固体材料;
e. 将上述步骤d中所得的第三固体材料以2~10℃/min的升温速率升温到600~900℃焙烧2~5h,制得纳米金属颗粒负载于介孔γ-氧化铝复合材料。
2.一种根据权利要求1所述的纳米金属颗粒负载于介孔γ-氧化铝复合材料的制备方法,其特征在于,所述的可溶性无机金属盐为铝盐、镍盐、钴盐和铁盐中的任意一种盐或任意几种的混合盐;所述的铝盐为六水合硝酸铝;所述的镍盐为六水合硝酸镍;所述的钴盐为六水合硝酸钴;所述的铁盐为九水合硝酸铁。
CN201710318268.3A 2017-05-08 2017-05-08 纳米金属颗粒负载于介孔γ‑氧化铝复合材料的制备方法 Pending CN107159212A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710318268.3A CN107159212A (zh) 2017-05-08 2017-05-08 纳米金属颗粒负载于介孔γ‑氧化铝复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710318268.3A CN107159212A (zh) 2017-05-08 2017-05-08 纳米金属颗粒负载于介孔γ‑氧化铝复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN107159212A true CN107159212A (zh) 2017-09-15

Family

ID=59813772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710318268.3A Pending CN107159212A (zh) 2017-05-08 2017-05-08 纳米金属颗粒负载于介孔γ‑氧化铝复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN107159212A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114871426A (zh) * 2022-05-20 2022-08-09 爱科美材料科技(南通)有限公司 一种介孔氧化铝原位包覆纳米银材料、制备方法及应用
CN114950337A (zh) * 2022-04-06 2022-08-30 南京长三角绿色发展研究院有限公司 一种常温氨气干式吸附材料及其制备方法
CN117399014A (zh) * 2023-12-15 2024-01-16 乌镇实验室 一种限域氨分解催化剂的制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515215A (zh) * 2011-10-09 2012-06-27 上海大学 有狭窄孔径分布虫孔状介孔γ-Al2O3的制备方法
CN102616820A (zh) * 2012-04-24 2012-08-01 上海大学 低温制备高比表面介孔γ-Al2O3纳米材料的方法
CN105618033A (zh) * 2015-12-23 2016-06-01 上海大学 介孔γ-Al2O3高分散负载钯催化剂的制备方法
CN105771994A (zh) * 2016-03-26 2016-07-20 上海大学 纳米介孔氧化铝负载铝酸镍co2重整ch4催化剂及其制备方法
CN106391094A (zh) * 2016-08-30 2017-02-15 上海大学 介孔碳‑氧化硅负载纳米MoO3与纳米金属颗粒的复合材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515215A (zh) * 2011-10-09 2012-06-27 上海大学 有狭窄孔径分布虫孔状介孔γ-Al2O3的制备方法
CN102616820A (zh) * 2012-04-24 2012-08-01 上海大学 低温制备高比表面介孔γ-Al2O3纳米材料的方法
CN105618033A (zh) * 2015-12-23 2016-06-01 上海大学 介孔γ-Al2O3高分散负载钯催化剂的制备方法
CN105771994A (zh) * 2016-03-26 2016-07-20 上海大学 纳米介孔氧化铝负载铝酸镍co2重整ch4催化剂及其制备方法
CN106391094A (zh) * 2016-08-30 2017-02-15 上海大学 介孔碳‑氧化硅负载纳米MoO3与纳米金属颗粒的复合材料的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114950337A (zh) * 2022-04-06 2022-08-30 南京长三角绿色发展研究院有限公司 一种常温氨气干式吸附材料及其制备方法
CN114950337B (zh) * 2022-04-06 2023-08-18 南京长三角绿色发展研究院有限公司 一种常温氨气干式吸附材料及其制备方法
CN114871426A (zh) * 2022-05-20 2022-08-09 爱科美材料科技(南通)有限公司 一种介孔氧化铝原位包覆纳米银材料、制备方法及应用
CN114871426B (zh) * 2022-05-20 2023-12-22 爱科美材料科技(南通)有限公司 一种介孔氧化铝原位包覆纳米银材料、制备方法及应用
CN117399014A (zh) * 2023-12-15 2024-01-16 乌镇实验室 一种限域氨分解催化剂的制备方法和应用
CN117399014B (zh) * 2023-12-15 2024-04-23 乌镇实验室 一种限域氨分解催化剂的制备方法和应用

Similar Documents

Publication Publication Date Title
Lan et al. Facile preparation of hierarchical hollow structure gamma alumina and a study of its adsorption capacity
Huang et al. Effect of reduction treatment on structural properties of TiO 2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation
Zhang et al. Development of a nanosphere adsorbent for the removal of fluoride from water
Sakr et al. Mg-Zn-Al LDH: Influence of intercalated anions on CO2 removal from natural gas
CN102616820B (zh) 低温制备高比表面介孔γ-Al2O3纳米材料的方法
Wang et al. Different surfactants-assisted hydrothermal synthesis of hierarchical γ-Al2O3 and its adsorption performances for parachlorophenol
CN102649590B (zh) 无比表面活性剂制备介孔NiAl2O4材料的方法
CN102515215A (zh) 有狭窄孔径分布虫孔状介孔γ-Al2O3的制备方法
Schill et al. Low-temperature NH 3–SCR of NO on mesoporous Mn 0.6 Fe 0.4/TiO 2 prepared by a hydrothermal method
Gabal et al. Synthesis and characterization of nano-sized ceria powder via oxalate decomposition route
CN107824172B (zh) 一种表面富含缺陷位的纳米氧化铝载体的制备方法
CN106391094B (zh) 介孔碳-氧化硅负载纳米MoO3与纳米金属颗粒的复合材料的制备方法
Kamimura et al. Simple template-free synthesis of high surface area mesoporous ceria and its new use as a potential adsorbent for carbon dioxide capture
CN107159212A (zh) 纳米金属颗粒负载于介孔γ‑氧化铝复合材料的制备方法
Motlagh et al. Sol–gel synthesis of Mn2O3/Al2O3/SiO2 hybrid nanocomposite and application for removal of organic dye
CN106311251A (zh) 介孔二氧化硅负载的高分散镍镧氧化物催化剂的制备方法
Zheng et al. Solvothermal synthesis in ethylene glycol and catalytic activity for CO oxidation of CuO/CeO 2 catalysts
CN104549289A (zh) 用于co2重整ch4反应的高活性高稳定性的介孔铝镍基催化剂及其制备方法
CN1935662A (zh) 纳米晶构筑的多孔氧化铜聚集体及制备方法
CN107601581B (zh) 一种双尺度孔隙结构纳米晶钛酸钴粉体及其制备方法
Seredych et al. Adsorption of ammonia on graphite oxide/aluminium polycation and graphite oxide/zirconium–aluminium polyoxycation composites
CN108636410A (zh) 一种具有多孔结构的铁掺杂氧化铝中空微球的制备方法及其应用
Huang et al. Preparation of SiO 2–ZrO 2 xerogel and its application for the removal of organic dye
Taghavimoghaddam et al. SBA-15 supported cobalt oxide species: Synthesis, morphology and catalytic oxidation of cyclohexanol using TBHP
CN105536783A (zh) 有序介孔碳负载Ru纳米催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170915